Patents by Inventor SEAN T. MA
SEAN T. MA has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11171207Abstract: A transistor includes a body of semiconductor material with a gate structure in contact with a portion of the body. A source region contacts the body adjacent the gate structure and a drain region contacts the body adjacent the gate structure such that the portion of the body is between the source region and the drain region. A first isolation region is under the source region and has a top surface in contact with a bottom surface of the source region. A second isolation region is under the drain region and has a top surface in contact with a bottom surface of the drain region. Depending on the transistor configuration, a major portion of the inner-facing sidewalls of the first and second isolation regions contact respective sidewalls of either a subfin structure (e.g., FinFET transistor configurations) or a lower portion of a gate structure (e.g., gate-all-around transistor configuration).Type: GrantFiled: December 20, 2017Date of Patent: November 9, 2021Assignee: Intel CorporationInventors: Willy Rachmady, Cheng-Ying Huang, Matthew V. Metz, Nicholas G. Minutillo, Sean T. Ma, Anand S. Murthy, Jack T. Kavalieros, Tahir Ghani, Gilbert Dewey
-
Patent number: 11164747Abstract: Group III-V semiconductor devices having asymmetric source and drain structures and their methods of fabrication are described. In an example, an integrated circuit structure includes a gallium arsenide layer on a substrate. A channel structure is on the gallium arsenide layer. The channel structure includes indium, gallium and arsenic. A source structure is at a first end of the channel structure and a drain structure is at a second end of the channel structure. The drain structure has a wider band gap than the source structure. A gate structure is over the channel structure.Type: GrantFiled: September 28, 2017Date of Patent: November 2, 2021Assignee: Intel CorporationInventors: Sean T. Ma, Gilbert Dewey, Willy Rachmady, Harold W. Kennel, Cheng-Ying Huang, Matthew V. Metz, Nicholas G. Minutillo, Jack T. Kavalieros, Anand S. Murthy
-
Publication number: 20210305367Abstract: Disclosed herein are source/drain regions in integrated circuit (IC) structures, as well as related methods and components. For example, in some embodiments, an IC structure may include: a channel region including a first semiconductor wire and a second semiconductor wire; and a source/drain region proximate to the channel region, wherein the source/drain region includes a first semiconductor portion proximate to an end of the first semiconductor wire, the source/drain region includes a second semiconductor portion proximate to an end of the second semiconductor wire, and the source/drain region includes a contact metal at least partially between the first semiconductor portion and the second semiconductor portion.Type: ApplicationFiled: March 27, 2020Publication date: September 30, 2021Applicant: Intel CorporationInventors: Sean T. Ma, Anand S. Murthy, Glenn A. Glass, Biswajeet Guha
-
Publication number: 20210305362Abstract: Disclosed herein are isolation regions in integrated circuit (IC) structures, as well as related methods and components. For example, in some embodiments, an IC component may include: a first region including silicon; a second region including alternating layers of a second material and a third material, wherein the second material includes silicon and germanium, the third material includes silicon, and individual ones of the layers in the second region has a thickness that is less than 3 nanometers; and a third region including alternating layers of the second material and the third material, wherein individual ones of the layers in the third region has a thickness that is greater than 3 nanometers, and the second region is between the first region and the third region.Type: ApplicationFiled: March 25, 2020Publication date: September 30, 2021Applicant: Intel CorporationInventors: Guillaume Bouche, Sean T. Ma, Andy Chih-Hung Wei
-
Publication number: 20210305370Abstract: Discussed herein is device contact sizing in integrated circuit (IC) structures. In some embodiments, an IC structure may include: a first source/drain (S/D) contact in contact with a first S/D region, and a second S/D contact in contact with a second S/D region, wherein the first S/D region and the second S/D region have a same length, and the first S/D contact and the second S/D contact have different lengths.Type: ApplicationFiled: March 26, 2020Publication date: September 30, 2021Applicant: Intel CorporationInventors: Guillaume Bouche, Andy Chih-Hung Wei, Sean T. Ma
-
Publication number: 20210305365Abstract: Disclosed herein are source/drain regions in integrated circuit (IC) structures, as well as related methods and components. For example, in some embodiments, an IC structure may include: an array of channel regions, including a first channel region and an adjacent second channel region; a first source/drain region proximate to the first channel region; a second source/drain region proximate to the second channel region; and an insulating material region at least partially between the first source/drain region and the second source/drain region.Type: ApplicationFiled: March 25, 2020Publication date: September 30, 2021Applicant: Intel CorporationInventors: Sean T. Ma, Andy Chih-Hung Wei, Guillaume Bouche
-
Publication number: 20210305244Abstract: Discussed herein is gate spacing in integrated circuit (IC) structures, as well as related methods and components. For example, in some embodiments, an IC structure may include: a first gate metal having a longitudinal axis; a second gate metal, wherein the longitudinal axis of the first gate metal is aligned with a longitudinal axis of the second gate metal; a first dielectric material continuously around the first gate metal; and a second dielectric material continuously around the second gate metal, wherein the first dielectric material and the second dielectric material are present between the first gate metal and the second gate metal.Type: ApplicationFiled: March 26, 2020Publication date: September 30, 2021Applicant: Intel CorporationInventors: Guillaume Bouche, Andy Chih-Hung Wei, Sean T. Ma
-
Publication number: 20210305380Abstract: Discussed herein are device contacts in integrated circuit (IC) structures. In some embodiments, an IC structure may include: a first source/drain (S/D) contact; a gate contact, wherein the gate contact is in contact with a gate and with the first S/D contact; and a second S/D contact, wherein a height of the second S/D contact is less than a height of the first S/D contact.Type: ApplicationFiled: March 27, 2020Publication date: September 30, 2021Applicant: Intel CorporationInventors: Guillaume Bouche, Andy Chih-Hung Wei, Mwilwa Tambwe, Sean T. Ma, Piyush Mohan Sinha
-
Publication number: 20210296180Abstract: An apparatus is described. The apparatus includes a FINFET device having a channel. The channel is composed of a first semiconductor material that is epitaxially grown on a subfin structure beneath the channel. The subfin structure is composed of a second semiconductor material that is different than the first semiconductor material. The subfin structure is epitaxially grown on a substrate composed of a third semiconductor material that is different than the first and second semiconductor materials. The subfin structure has a doped region to substantially impede leakage currents between the channel and the substrate.Type: ApplicationFiled: June 2, 2021Publication date: September 23, 2021Inventors: Gilbert DEWEY, Matthew V. METZ, Willy RACHMADY, Anand S. MURTHY, Chandra S. MOHAPATRA, Tahir GHANI, Sean T. MA, Jack T. KAVALIEROS
-
Publication number: 20210280708Abstract: Described herein are transistor arrangements fabricated by forming a metal gate cut as a trench that is non-selective to the gate sidewalls, in an etch process that can remove both the gate electrode materials and the surrounding dielectrics. Such an etch process may provide improvements in terms of accuracy, cost-efficiency, and device performance, compared to conventional approaches to forming metal gate cuts. In addition, such a process may be used to provide power rails, if the trench of a metal gate cut is to be at least partially filled with an electrically conductive material. Because the electrically conductive material is in the trench and may be in between the fins, as opposed to being provided over the fins, such power rails may be referred to as “recessed.” Providing recessed power rails may provide improvements in terms of reduced metal line resistance and reduced voltage droop.Type: ApplicationFiled: March 9, 2020Publication date: September 9, 2021Applicant: Intel CorporationInventors: Andy Chih-Hung Wei, Sean T. Ma, Piyush Mohan Sinha
-
Patent number: 11107890Abstract: An apparatus is described. The apparatus includes a FINFET device having a channel. The channel is composed of a first semiconductor material that is epitaxially grown on a subfin structure beneath the channel. The subfin structure is composed of a second semiconductor material that is different than the first semiconductor material. The subfin structure is epitaxially grown on a substrate composed of a third semiconductor material that is different than the first and second semiconductor materials. The subfin structure has a doped region to substantially impede leakage currents between the channel and the substrate.Type: GrantFiled: June 30, 2016Date of Patent: August 31, 2021Assignee: Intel CorporationInventors: Gilbert Dewey, Matthew V. Metz, Willy Rachmady, Anand S. Murthy, Chandra S. Mohapatra, Tahir Ghani, Sean T. Ma, Jack T. Kavalieros
-
Patent number: 11075119Abstract: An apparatus is provided which comprises: a fin; a layer formed on the fin, the layer dividing the fin in a first section and a second section; a first device formed on the first section of the fin; and a second device formed on the second section of the fin.Type: GrantFiled: March 30, 2017Date of Patent: July 27, 2021Assignee: Intel CorporationInventors: Aaron D. Lilak, Sean T. Ma, Justin R. Weber, Patrick Morrow, Rishabh Mehandru
-
Patent number: 11049773Abstract: A transistor device comprising a channel disposed on a substrate between a source and a drain, a gate electrode disposed on the channel, wherein the channel comprises a channel material that is separated from a body of the same material on a substrate. A method comprising forming a trench in a dielectric layer on an integrated circuit substrate, the trench comprising dimensions for a transistor body including a width; depositing a spacer layer in a portion of the trench, the spacer layer narrowing the width of the trench; forming a channel material in the trench through the spacer layer; recessing the dielectric layer to define a first portion of the channel material exposed and a second portion of the channel material in the trench; and separating the first portion of the channel material from the second portion of the channel material.Type: GrantFiled: September 30, 2016Date of Patent: June 29, 2021Assignee: Intel CorporationInventors: Gilbert Dewey, Matthew V. Metz, Sean T. Ma, Cheng-Ying Huang, Tahir Ghani, Anand S. Murthy, Harold W. Kennel, Nicholas G. Minutillo, Jack T. Kavalieros, Willy Rachmady
-
Patent number: 10957769Abstract: Monolithic FETs including a fin of a first III-V semiconductor material offering high carrier mobility is clad with a second III-V semiconductor material having a wider bandgap. The wider bandgap cladding may advantageously reduce band-to-band tunneling (BTBT) leakage current while transistor is in an off-state while the lower bandgap core material may advantageously provide high current conduction while transistor is in an on-state. In some embodiments, a InGaAs cladding material richer in Ga is grown over an InGaAs core material richer in In. In some embodiments, the semiconductor cladding is a few nanometers thick layer epitaxially grown on surfaces of the semiconductor core. The cladded fin may be further integrated into a gate-last finFET fabrication process. Other embodiments may be described and/or claimed.Type: GrantFiled: June 17, 2016Date of Patent: March 23, 2021Assignee: Intel CorporationInventors: Sean T. Ma, Chandra S. Mohapatra, Gilbert Dewey, Willy Rachmady, Harold W. Kennel, Matthew V. Metz, Jack T. Kavalieros, Anand S. Murthy, Tahir Ghani
-
Patent number: 10903364Abstract: Embodiments are generally directed to a semiconductor device with released source and drain. An embodiment of a method includes etching a buffer layer of a semiconductor device to form a gate trench under a gate channel portion of a channel layer of the device; filling the gate trench with an oxide material to form an oxide isolation layer; etching one or more source/drain contact trenches in an interlayer dielectric (ILD) layer for source and drain regions of the device; etching the oxide isolation layer within the one or more source/drain contact trenches to form one or more cavities under a source/drain channel in the source and drain regions, wherein the etching of each contact trench is to expose all sides of the source/drain channel; and depositing contact metal in the one or more contact trenches, including depositing the contact metal in the cavities under the source/drain channel.Type: GrantFiled: July 2, 2016Date of Patent: January 26, 2021Assignee: Intel CorporationInventors: Willy Rachmady, Sanaz K. Gardner, Chandra S. Mohapatra, Matthew V. Metz, Gilbert Dewey, Sean T. Ma, Jack T. Kavalieros, Anand S. Murthy, Tahir Ghani
-
Patent number: 10892335Abstract: Disclosed herein are tri-gate and all-around-gate transistor arrangements, and related methods and devices. For example, in some embodiments, a transistor arrangement may include a channel material disposed over a substrate; a gate electrode of a first tri-gate or all-around-gate transistor, disposed over a first part of the channel material; and a gate electrode of a second tri-gate or all-around-gate transistor, disposed over a second part of the channel material. The transistor arrangement may further include a device isolation structure made of a fixed charge dielectric material disposed over a third part of the channel material, the third part being between the first part and the second part of the channel material.Type: GrantFiled: December 1, 2016Date of Patent: January 12, 2021Assignee: Intel CorporationInventors: Sean T. Ma, Willy Rachmady, Gilbert W. Dewey, Aaron D. Lilak, Justin R. Weber, Harold W. Kennel, Cheng-Ying Huang, Matthew V. Metz, Jack T. Kavalieros, Anand S. Murthy, Tahir Ghani
-
Patent number: 10886408Abstract: Techniques are disclosed for forming group III-V material transistors employing nitride-based dopant diffusion barrier layers. The techniques can include growing the dilute nitride-based barrier layer as a relatively thin layer of III-V material in the sub-channel (or sub-fin) region of a transistor, near the substrate/III-V material interface, for example. Such a nitride-based barrier layer can be used to trap atoms from the substrate at vacancy sites within the III-V material. Therefore, the barrier layer can arrest substrate atoms from diffusing in an undesired manner by protecting the sub-channel layer from being unintentionally doped due to subsequent processing in the transistor fabrication. In addition, by forming the barrier layer pseudomorphically, the lattice mismatch of the barrier layer with the sub-channel layer in the heterojunction stack becomes insignificant. In some embodiments, the group III-V alloyed with nitrogen (N) material may include an N concentration of less than 5, 2, or 1.Type: GrantFiled: September 29, 2016Date of Patent: January 5, 2021Assignee: INTEL CORPORATIONInventors: Chandra S. Mohapatra, Harold W. Kennel, Glenn A. Glass, Willy Rachmady, Anand S. Murthy, Gilbert Dewey, Jack T. Kavalieros, Tahir Ghani, Matthew V. Metz, Sean T. Ma
-
Patent number: 10879365Abstract: In various embodiments, the disclosure describes transistors having non-vertical gates. In one embodiment, the non-vertical gates can have a curved or wide angle gate in order to reduce the electric field crowing on the drain side of the gate edge and/or portions having corners and thereby reduce leakage current in the transistor. In one embodiment, the non-vertical gate can be generated by one or more etching steps (for example, isotropic etching steps) of an underlying channel during the fabrication of a transistor having the non-vertical gate. In one embodiment, the non-vertical gate can be generated by one or more directional etching steps that may expose various facets having predetermined orientations of a source and/or drain associated with the transistor.Type: GrantFiled: March 31, 2017Date of Patent: December 29, 2020Assignee: Intel CorporationInventors: Cheng-Ying Huang, Sean T. Ma, Willy Rachmady, Gilbert Dewey, Matthew V. Metz, Harold W. Kennel, Jack T. Kavalieros, Anand S. Murthy, Tahir Ghani
-
Publication number: 20200403033Abstract: A memory structure includes conductive lines extending horizontally in a spaced apart fashion within a vertical stack above a base or substrate. The vertical stack includes a plurality of conductive lines, the first and second conductive lines being part of the plurality. A gate structure extends vertically through the first and second conductive lines. The gate structure includes a body of semiconductor material and a dielectric, where the dielectric is between the body and the conductive lines. An isolation material is on at least one side of the vertical stack and in contact with the conductive lines. The vertical stack defines a void located vertically between at the first and second conductive lines in the vertical stack and laterally between the gate structure and the isolation material. The void may extend along a substantial length (e.g., 20 nm or more) of the first and second conductive lines.Type: ApplicationFiled: June 20, 2019Publication date: December 24, 2020Applicant: Intel CorporationInventors: Aaron D. Lilak, Patrick R. Morrow, Hui Jae Yoo, Sean T. Ma, Scott B. Clendenning, Abhishek A. Sharma, Ehren Mannebach, Urusa Alaan
-
Patent number: 10861939Abstract: Semiconductor devices, computing devices, and related methods are disclosed herein. A semiconductor device includes a seed material, an epitaxial material in contact with the seed material, and at least one quantum region including an elastic stiffness that is greater than an elastic stiffness of the epitaxial material. The epitaxial material has lattice parameters that are different from lattice parameters of the seed material by at least a threshold amount. Lattice parameters of the quantum region are within the threshold amount of the lattice parameters of the epitaxial material. A method includes disposing an epitaxial material on a seed material, disposing a quantum region on the epitaxial material, and disposing the epitaxial material on the quantum region.Type: GrantFiled: September 30, 2016Date of Patent: December 8, 2020Assignee: Intel CorporationInventors: Matthew Metz, Gilbert Dewey, Harold W. Kennel, Cheng-Ying Huang, Sean T. Ma, Willy Rachmady