Patents by Inventor Shih-Ming Chang

Shih-Ming Chang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11289376
    Abstract: The present disclosure provides a method for forming interconnect structures. The method includes providing a semiconductor structure including a substrate and a conductive feature formed in a top portion of the substrate; depositing a resist layer over the substrate, wherein the resist layer has an exposure threshold; providing a radiation with an incident exposure dose to the resist layer, wherein the incident exposure dose is configured to be less than the exposure threshold of the resist layer while a sum of the incident exposure dose and a reflected exposure dose from a top surface of the conductive feature is larger than the exposure threshold of the resist layer, thereby forming a latent pattern above the conductive feature; and developing the resist layer to form a patterned resist layer.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: March 29, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD
    Inventors: Ru-Gun Liu, Shih-Ming Chang, Hoi-Tou Ng
  • Patent number: 11243472
    Abstract: A method includes receiving a layout that includes a shape to be formed on a photomask and determining a plurality of target lithographic contours for the shape, wherein the plurality of target lithographic contours includes a first target lithographic contour for a first set of process conditions and a second target lithographic contour for a second set of process conditions, performing a lithographic simulation of the layout to produce a first simulated contour at the first set of process conditions and a second simulated contour at the second set of process conditions, determining a first edge placement error between the first simulated contour and the first target lithographic contour and a second edge placement error between the second simulated contour and the second target lithographic contour, and determining a modification to the layout based on the first edge placement error and the second edge placement error.
    Type: Grant
    Filed: June 8, 2020
    Date of Patent: February 8, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Dong-Yo Jheng, Ken-Hsien Hsieh, Shih-Ming Chang, Chih-Jie Lee, Shuo-Yen Chou, Ru-Gun Liu
  • Publication number: 20210405534
    Abstract: An electron beam lithography system and an electron beam lithography process are disclosed herein for improving throughput. An exemplary method for increasing throughput achieved by an electron beam lithography system includes receiving an integrated circuit (IC) design layout that includes a target pattern, wherein the electron beam lithography system implements a first exposure dose to form the target pattern on a workpiece based on the IC design layout. The method further includes inserting a dummy pattern into the IC design layout to increase a pattern density of the IC design layout to greater than or equal to a threshold pattern density, thereby generating a modified IC design layout. The electron beam lithography system implements a second exposure dose that is less than the first exposure dose to form the target pattern on the workpiece based on the modified IC design layout.
    Type: Application
    Filed: July 2, 2021
    Publication date: December 30, 2021
    Inventors: Shih-Ming Chang, Wen Lo, Chun-Hung Liu, Chia-Hua Chang, Hsin-Wei Wu, Ta-Wei Ou, Chien-Chih Chen, Chien-Cheng Chen
  • Publication number: 20210382399
    Abstract: A method of operating a semiconductor apparatus includes generating an electric field in peripheral areas of a first covering structure and a second covering structure; causing a photomask to move to a position between the first and second covering structures such that the photomask at least partially vertically overlaps the first and second covering structures and such that particles attached to the photomask are attracted to the first and second covering structures by the electric field; and irradiating the photomask with light through light transmission regions of the first and second covering structures.
    Type: Application
    Filed: August 25, 2021
    Publication date: December 9, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Ming CHANG, Chiu-Hsiang CHEN, Ru-Gun LIU
  • Publication number: 20210366726
    Abstract: An integrated circuit structure includes a first metal feature formed into a first dielectric layer, a second metal feature formed into a second dielectric layer, the second dielectric layer being disposed on said first dielectric layer, and a via connecting the first metal feature to the second metal feature, wherein a top portion of the via is offset from a bottom portion of the via.
    Type: Application
    Filed: August 9, 2021
    Publication date: November 25, 2021
    Inventors: Shih-Ming Chang, Chih-Ming Lai, Ru-Gun Liu, Tsai-Sheng Gau, Chung-Ju Lee, Tien-I Bao, Shau-Lin Shue
  • Patent number: 11175597
    Abstract: A lithography patterning system includes a reticle having patterned features, a pellicle having a plurality of openings, a radiation source configured for emitting radiation to reflect and/or project the patterned features, and one or more mirrors configured for guiding reflected and/or projected patterned features onto a wafer. The pellicle is configured to protect the reticle against particles and floating contaminants. The plurality of openings include between 5% and 99.9% of lateral surface area of the pellicle. The pellicle can be attached to the reticle on a side of the patterned features, placed beside an optical path between the radiation source and the wafer, or placed in an optical path between mirrors and the radiation source. The plurality of openings in the pellicle are formed by a plurality of bar shaped materials, or formed in a honey comb structure or a mesh structure.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: November 16, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Ming Chang, Chiu-Hsiang Chen, Ru-Gun Liu, Minfeng Chen
  • Patent number: 11145519
    Abstract: The present disclosure provides a method for forming patterns in a semiconductor device. In accordance with some embodiments, the method includes providing a substrate and a patterning-target layer formed over the substrate; forming a first cut pattern in a first hard mask layer formed over the patterning-target layer; forming a second cut pattern in a second hard mask layer formed over the patterning layer, the first hard mask layer having a different etching selectivity from the second hard mask layer; selectively removing a portion of the second cut pattern in the second hard mask layer and a portion of the patterning-target layer within a first trench; and selectively removing a portion of the first cut pattern in the first hard mask layer and a portion of the patterning-target layer within a second trench.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: October 12, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventor: Shih-Ming Chang
  • Publication number: 20210311402
    Abstract: A method of adjusting a layout pattern includes shifting or rotating an entire layout pattern based on information of a plurality of defects of a mask-blank to avoid an impact of first defects of the plurality of defects when the layout pattern is produced as a mask on the mask-blank. The method includes adjusting the layout pattern of the mask at a first location based on information of a second defect of a remaining of the plurality of defects to reduce an impact of the second defect when the layout pattern in projected on a wafer. The method also includes adjusting the layout pattern of the mask at a second location based on information of a third defect of the remaining of the plurality of defects and distinct from the second defect to shift an impact position of the third defect when the layout pattern in projected on the wafer.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 7, 2021
    Inventors: Shih-Ming CHANG, Wei-Hsuan LIANG
  • Patent number: 11137691
    Abstract: A method of adjusting a layout pattern includes shifting or rotating an entire layout pattern based on information of a plurality of defects of a mask-blank to avoid an impact of first defects of the plurality of defects when the layout pattern is produced as a mask on the mask-blank. The method includes adjusting the layout pattern of the mask at a first location based on information of a second defect of a remaining of the plurality of defects to reduce an impact of the second defect when the layout pattern in projected on a wafer. The method also includes adjusting the layout pattern of the mask at a second location based on information of a third defect of the remaining of the plurality of defects and distinct from the second defect to shift an impact position of the third defect when the layout pattern in projected on the wafer.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: October 5, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Ming Chang, Wei-Hsuan Liang
  • Patent number: 11126774
    Abstract: An integrated circuit device includes first and second features, each including an end portion arranged along a common axis, and separated by a space. The end portion of the first feature includes a first indention adjacent to the space. The end portion of the second feature includes a first indention adjacent to the space, mirroring the first indention of the first feature about the space. The end portions are substantially similar in shape.
    Type: Grant
    Filed: December 18, 2019
    Date of Patent: September 21, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Ming Chang, Kuei-Liang Lu
  • Publication number: 20210286274
    Abstract: A method of performing a lithography process includes providing a test pattern. The test pattern includes a first set of lines arranged at a first pitch, a second set of lines arranged at the first pitch, and further includes at least one reference line between the first set of lines and the second set of lines. The test pattern is exposed with a radiation source providing an asymmetric, monopole illumination profile to form a test pattern structure on a substrate. The test pattern structure is then measured and a measured distance correlated to an offset of a lithography parameter. A lithography process is adjusted based on the offset of the lithography parameter.
    Type: Application
    Filed: March 29, 2021
    Publication date: September 16, 2021
    Inventors: Chih-Jie LEE, Shih-Chun HUANG, Shih-Ming CHANG, Ken-Hsien HSIEH, Yung-Sung YEN, Ru-Gun LIU
  • Publication number: 20210272808
    Abstract: Methods of forming line-end extensions and devices having line-end extensions are provided. In some embodiments, a method includes forming a patterned photoresist on a first region of a hard mask layer. A line-end extension region is formed in the hard mask layer. The line-end extension region extends laterally outward from an end of the first region of the hard mask layer. The line-end extension region may be formed by changing a physical property of the hard mask layer at the line-end extension region.
    Type: Application
    Filed: March 2, 2020
    Publication date: September 2, 2021
    Inventors: Chih-Min HSIAO, Chien-Wen LAI, Ru-Gun LIU, Chih-Ming LAI, Shih-Ming CHANG, Yung-Sung YEN, Yu-Chen CHANG
  • Patent number: 11106140
    Abstract: A method for taking heat away from the photomask includes driving a working fluid to flow between a photomask and a fluid retaining structure and through a first slit of the fluid retaining structure, such that a boundary of the working fluid is confined between the photomask and the fluid retaining structure; and generating a light to irradiate the photomask through a light transmission region of the fluid retaining structure.
    Type: Grant
    Filed: July 16, 2019
    Date of Patent: August 31, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Ming Chang, Chiu-Hsiang Chen, Ru-Gun Liu
  • Patent number: 11087994
    Abstract: An integrated circuit structure includes a first metal feature formed into a first dielectric layer, a second metal feature formed into a second dielectric layer, the second dielectric layer being disposed on said first dielectric layer, and a via connecting the first metal feature to the second metal feature, wherein a top portion of the via is offset from a bottom portion of the via.
    Type: Grant
    Filed: December 17, 2019
    Date of Patent: August 10, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Ming Chang, Chih-Ming Lai, Ru-Gun Liu, Tsai-Sheng Gau, Chung-Ju Lee, Tien-I Bao, Shau-Lin Shue
  • Publication number: 20210242212
    Abstract: An integrated circuit includes a semiconductor substrate, an isolation region extending into, and overlying a bulk portion of, the semiconductor substrate, a buried conductive track comprising a portion in the isolation region, and a transistor having a source/drain region and a gate electrode. The source/drain region or the gate electrode is connected to the buried conductive track.
    Type: Application
    Filed: April 19, 2021
    Publication date: August 5, 2021
    Inventors: Pochun Wang, Ting-Wei Chiang, Chih-Ming Lai, Hui-Zhong Zhuang, Jung-Chan Yang, Ru-Gun Liu, Shih-Ming Chang, Ya-Chi Chou, Yi-Hsiung Lin, Yu-Xuan Huang, Guo-Huei Wu, Yu-Jung Chang
  • Publication number: 20210225649
    Abstract: A method for forming a semiconductor device structure is provided. The method includes forming a first layer over a substrate. The first layer has a trench. The method includes forming a first spacer and a second spacer respectively over opposite inner walls of the trench. The first spacer and the second spacer are spaced apart from each other. The method includes removing a first portion of the first spacer to form a first gap in the first spacer, wherein a first part and a second part of the first spacer are spaced apart by the first gap, and the first gap communicates with the trench. The method includes forming a filling layer into the trench and the first gap to cover the first spacer and the second spacer. The filling layer, the first spacer, and the second spacer together form a strip structure. The method includes removing the first layer.
    Type: Application
    Filed: April 1, 2021
    Publication date: July 22, 2021
    Inventors: Chih-Ming LAI, Shih-Ming CHANG, Wei-Liang LIN, Chin-Yuan TSENG, Ru-Gun LIU
  • Patent number: 11054748
    Abstract: An electron beam lithography system and an electron beam lithography process are disclosed herein for improving throughput. An exemplary method for increasing throughput achieved by an electron beam lithography system includes receiving an integrated circuit (IC) design layout that includes a target pattern, wherein the electron beam lithography system implements a first exposure dose to form the target pattern on a workpiece based on the IC design layout. The method further includes inserting a dummy pattern into the IC design layout to increase a pattern density of the IC design layout to greater than or equal to a threshold pattern density, thereby generating a modified IC design layout. The electron beam lithography system implements a second exposure dose that is less than the first exposure dose to form the target pattern on the workpiece based on the modified IC design layout.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: July 6, 2021
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Shih-Ming Chang, Wen Lo, Chun-Hung Liu, Chia-Hua Chang, Hsin-Wei Wu, Ta-Wei Ou, Chien-Chih Chen, Chien-Cheng Chen
  • Publication number: 20210175081
    Abstract: The present disclosure provides a method of patterning a target material layer over a semiconductor substrate. The method includes steps of forming a spacer feature over the target material layer using a first sub-layout and performing a photolithographic patterning process using a second sub-layout to form a first feature. A portion of the first feature extends over the spacer feature. The method further includes steps of removing the portion of the first feature extending over the spacer feature and removing the spacer feature. Other methods and associated patterned semiconductor wafers are also provided herein.
    Type: Application
    Filed: February 22, 2021
    Publication date: June 10, 2021
    Inventors: Tsong-Hua Ou, Ken-Hsien Hsieh, Shih-Ming Chang, Wen-Chun Huang, Chih-Ming Lai, Ru-Gun Liu, Tsai-Sheng Gau
  • Patent number: 11004855
    Abstract: An integrated circuit includes a semiconductor substrate, an isolation region extending into, and overlying a bulk portion of, the semiconductor substrate, a buried conductive track comprising a portion in the isolation region, and a transistor having a source/drain region and a gate electrode. The source/drain region or the gate electrode is connected to the buried conductive track.
    Type: Grant
    Filed: July 18, 2019
    Date of Patent: May 11, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Pochun Wang, Ting-Wei Chiang, Chih-Ming Lai, Hui-Zhong Zhuang, Jung-Chan Yang, Ru-Gun Liu, Shih-Ming Chang, Ya-Chi Chou, Yi-Hsiung Lin, Yu-Xuan Huang, Guo-Huei Wu, Yu-Jung Chang
  • Publication number: 20210132504
    Abstract: In one example, an apparatus includes an extreme ultraviolet illumination source and an illuminator. The extreme ultraviolet illumination source is arranged to generate a beam of extreme ultraviolet illumination to pattern a resist layer on a substrate. The illuminator is arranged to direct the beam of extreme ultraviolet illumination onto a surface of a photomask. In one example, the illuminator includes a field facet mirror and a pupil facet mirror. The field facet mirror includes a first plurality of facets arranged to split the beam of extreme ultraviolet illumination into a plurality of light channels. The pupil facet mirror includes a second plurality of facets arranged to direct the plurality of light channels onto the surface of the photomask. The distribution of the second plurality of facets is denser at a periphery of the pupil facet mirror than at a center of the pupil facet mirror.
    Type: Application
    Filed: May 28, 2020
    Publication date: May 6, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Ken-Hsien HSIEH, Shih-Ming CHANG, Wen LO, Wei-Shuo SU, Hua-Tai LIN