Patents by Inventor Srinivas D. Nemani

Srinivas D. Nemani has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220351969
    Abstract: Methods and apparatus for forming an integrated circuit structure, comprising: delivering a process gas to a process volume of a process chamber; applying low frequency RF power to an electrode formed from a high secondary electron emission coefficient material disposed in the process volume; generating a plasma comprising ions in the process volume; bombarding the electrode with the ions to cause the electrode to emit electrons and form an electron beam; and contacting a dielectric material with the electron beam to cure the dielectric material, wherein the dielectric material is a flowable chemical vapor deposition product. In embodiments, the curing stabilizes the dielectric material by reducing the oxygen content and increasing the nitrogen content of the dielectric material.
    Type: Application
    Filed: June 19, 2020
    Publication date: November 3, 2022
    Inventors: Bhargav Sridhar CITLA, Joshua Alan RUBNITZ, Jethro TANNOS, Srinivas D. NEMANI, Kartik RAMASWAMY, Yang YANG
  • Publication number: 20220317579
    Abstract: Embodiments of the present disclosure generally relate to apparatus and methods for verification and re-use of process fluids. The apparatus generally includes a tool for performing lithography, and a recirculation path coupled to the tool. The recirculation path generally includes a collection unit coupled at first end to a first end of the tool, and a probe coupled at a first end to a second end of the collection unit, the probe for determining one or more characteristics of a fluid flowing from the tool. The recirculation path of the apparatus further generally includes a purification unit coupled at a first end to a third end of the collection unit, the purification unit further coupled at a second end to a second end of the probe, the purification unit for changing a characteristic of the fluid.
    Type: Application
    Filed: April 5, 2021
    Publication date: October 6, 2022
    Inventors: Mangesh Ashok BANGAR, Gautam PISHARODY, Lancelot HUANG, Alan L. TSO, Douglas A. BUCHBERGER, JR., Huixiong DAI, Dmitry LUBOMIRSKY, Srinivas D. NEMANI, Christopher Siu Wing Ngai
  • Publication number: 20220310776
    Abstract: Methods and apparatus for processing a substrate are provided herein. For example, a method of processing a substrate in an integrated tool comprising a physical vapor deposition chamber and a thermal atomic layer deposition chamber comprises depositing, in the physical vapor deposition chamber, a bottom layer of titanium nitride on the substrate to a thickness of about 10 nm to about 80 nm, transferring, without vacuum break, the substrate from the physical vapor deposition chamber to the thermal atomic layer deposition chamber for depositing a nanolaminate layer of high-k material atop the bottom layer of titanium nitride to a thickness of about 2 nm to about 10 nm, and transferring, without vacuum break, the substrate from the thermal atomic layer deposition chamber to the physical vapor deposition chamber for depositing a top layer of titanium nitride atop the nanolaminate layer of high-k material to a thickness of about 10 nm to about 80 nm.
    Type: Application
    Filed: March 23, 2021
    Publication date: September 29, 2022
    Inventors: Keith Tatseun WONG, Srinivas D. NEMANI, Ellie YIEH, Tony P. CHIANG
  • Publication number: 20220298636
    Abstract: Methods and apparatus for processing a substrate are provided herein. For example, a method for processing a substrate comprises supplying a vaporized silicon containing precursor from a gas supply into a processing volume of a processing chamber, supplying a first process gas from the gas supply into the processing volume, energizing the first process gas using RF source power at a first duty cycle to react with the vaporized silicon containing precursor, and supplying a process gas mixture from the gas supply while providing RF bias power at a second duty cycle different from the first duty cycle to a substrate support disposed in the processing volume to deposit a SiHx film onto a substrate supported on the substrate support.
    Type: Application
    Filed: March 22, 2021
    Publication date: September 22, 2022
    Inventors: Soham Sunjay ASRANI, Joshua Alan RUBNITZ, Bhargav Sridhar CITLA, Srinivas D. NEMANI, Erica CHEN, Nikolaos BEKIARIS, Douglas Arthur BUCHBERGER, JR., Jethro TANNOS, Ellie YIEH
  • Publication number: 20220301867
    Abstract: Methods and apparatus for processing a substrate are provided herein. For example, a method includes supplying a vaporized precursor into a processing volume, supplying activated elements including ions and radicals from a remote plasma source, energizing the activated elements using RF source power at a first duty cycle to react with the vaporized precursor to deposit an SiNHx film onto a substrate disposed in the processing volume, supplying a first process gas from the remote plasma source while providing RF bias power at a second duty cycle different from the first duty cycle to the substrate support to convert the SiNHx film to an SiOx film, supplying a process gas mixture formed from a second process gas supplied from the remote plasma source and a third process gas supplied from the gas supply while providing RF bias power at the second duty cycle to the substrate support, and annealing the substrate.
    Type: Application
    Filed: March 22, 2021
    Publication date: September 22, 2022
    Inventors: Jethro TANNOS, Bhargav Sridhar CITLA, Srinivas D. NEMANI, Ellie YIEH, Joshua Alan RUBNITZ, Erica CHEN, Soham Sunjay ASRANI, Nikolaos BEKIARIS, Douglas Arthur BUCHBERGER, JR.
  • Patent number: 11446740
    Abstract: An additive manufacturing system includes a platen to support an object to be fabricated, a dispenser assembly positioned above the platen, and an energy source configured to selectively fuse a layer of powder. The dispenser assembly includes a first dispenser, a second dispenser, and a drive system. The first dispenser delivers a first powder in a first linear region that extends along a first axis, and the second dispenser delivers a second powder in a second linear region that extends parallel to the first linear region and is offset from the first linear region along a second axis perpendicular to the first axis. The drive system a drive system moves the support with the first dispenser and second dispenser together along the second axis.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: September 20, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Christopher A. Rowland, Anantha K. Subramani, Kasiraman Krishnan, Kartik Ramaswamy, Thomas B. Brezoczky, Swaminathan Srinivasan, Jennifer Y. Sun, Simon Yavelberg, Srinivas D. Nemani, Nag B. Patibandla, Hou T. Ng
  • Patent number: 11429026
    Abstract: A method for enhancing the depth of focus process window during a lithography process includes applying a photoresist layer comprising a photoacid generator on a material layer disposed on a substrate, exposing a first portion of the photoresist layer unprotected by a photomask to light radiation in a lithographic exposure process, providing a thermal energy to the photoresist layer in a post-exposure baking process, applying an electric field or a magnetic field while performing the post-exposure baking process, and dynamically changing a frequency of the electric field as generated while providing the thermal energy to the photoresist layer.
    Type: Grant
    Filed: March 20, 2020
    Date of Patent: August 30, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Huixiong Dai, Mangesh Ashok Bangar, Srinivas D. Nemani, Christopher S. Ngai, Ellie Y. Yieh
  • Publication number: 20220269180
    Abstract: A method and apparatus for applying an electric field and/or a magnetic field to a photoresist layer without air gap intervention during photolithography processes is provided herein. The method and apparatus include a transfer device and a plurality of modules. The transfer device is configured to rotate a plurality of substrates between each of the modules, wherein one module includes a heating pedestal and another module includes a cooling pedestal. One module is utilized for inserting and removing the substrates from the system. At least the heating module is able to be sealed and filled with a process volume before applying the electric field.
    Type: Application
    Filed: February 9, 2022
    Publication date: August 25, 2022
    Inventors: Douglas A. BUCHBERGER, JR., Dmitry LUBOMIRSKY, John O. DUKOVIC, Srinivas D. NEMANI
  • Publication number: 20220269179
    Abstract: A method and apparatus for applying an electric field and/or a magnetic field to a photoresist layer without air gap intervention during photolithography processes is provided herein. The method and apparatus include an immersion bake head, which includes an electrode and is configured to be alternated between a hot pedestal and a cold pedestal. The immersion bake head serves as a substrate carrier and applies an electric field to the substrate. The immersion bake head additionally serves to provide and remove process fluid from the substrate using a plurality of fluid conduits.
    Type: Application
    Filed: February 9, 2022
    Publication date: August 25, 2022
    Inventors: Douglas A. BUCHBERGER, JR., Dmitry LUBOMIRSKY, John O. DUKOVIC, Srinivas D. NEMANI
  • Publication number: 20220260917
    Abstract: A method and apparatus for applying an electric field and/or a magnetic field to a photoresist layer without air gap intervention during photolithography processes is provided herein. The method and apparatus include an electrode assembly and a base assembly. The electrode assembly includes a permeable electrode. The base assembly includes one or more process fluid channels disposed around a circumference of the substrate support surface and configured to fill a process volume with a process fluid. The electrode assembly is configured to apply an electric field to a substrate disposed within the process volume.
    Type: Application
    Filed: February 15, 2021
    Publication date: August 18, 2022
    Inventors: Douglas A. BUCHBERGER, JR., Dmitry LUBOMIRSKY, John O. DUKOVIC, Srinivas D. NEMANI
  • Publication number: 20220230887
    Abstract: Methods and apparatus for processing a substrate are provided herein. For example, a method includes heating a substrate disposed in an interior volume of a process chamber and having a boron-containing film deposited thereon to a predetermined temperature; and supplying water vapor in a non-plasma state to the interior volume at a predetermined pressure for a predetermined time, while maintaining the substrate at the predetermined temperature to anneal the substrate for the predetermined time and remove the boron-containing film.
    Type: Application
    Filed: January 15, 2021
    Publication date: July 21, 2022
    Inventors: Meiyee SHEK, Maximillian CLEMONS, Srinivas D. NEMANI, Nikolaos BEKIARIS, Ellie YIEH
  • Patent number: 11387071
    Abstract: Apparatus for a multi-source ion beam etching (IBE) system are provided herein. In some embodiments, a multi-source IBE system includes a multi-source lid comprising a multi-source adaptor and a lower chamber adaptor, a plurality of IBE sources coupled to the multi-source adaptor, a rotary shield assembly coupled to a shield motor mechanism configured to rotate the rotary shield, wherein the shield motor mechanism is coupled to a top portion of the multi-source lid, and wherein the rotary shield includes a body that has one IBE source opening formed through the body, and at least one beam conduit that engages the one IBE source opening in the rotary shield on one end, and engages the bottom portion of the IBE sources on the opposite end of the beam conduit.
    Type: Grant
    Filed: January 3, 2020
    Date of Patent: July 12, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Qiwei Liang, Srinivas D Nemani, Ellie Yieh, Douglas Buchberger, Chentsau Chris Ying
  • Publication number: 20220199414
    Abstract: A method and apparatus for applying an electric field and/or a magnetic field to a photoresist layer without air gap intervention during photolithography processes is provided herein. The method and apparatus include a chamber body, which is configured to be filled with a process fluid, and a substrate carrier. The substrate carrier is disposed outside of the process volume while substrates are loaded onto the substrate carrier, but is rotated to a processing position either simultaneously or before entering the process fluid. The substrate carrier is rotated to a process position parallel to an electrode before an electric field is utilized to perform a post-exposure bake process on the substrate.
    Type: Application
    Filed: December 18, 2020
    Publication date: June 23, 2022
    Inventors: Douglas A. BUCHBERGER, JR., Dmitry LUBOMIRSKY, John O. DUKOVIC, Srinivas D. NEMANI
  • Patent number: 11361978
    Abstract: The present disclosure relates to high pressure processing apparatus for semiconductor processing. The apparatus described herein include a high pressure process chamber and a containment chamber surrounding the process chamber. A high pressure fluid delivery module is in fluid communication with the high pressure process chamber and is configured to deliver a high pressure fluid to the process chamber.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: June 14, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Adib M. Khan, Qiwei Liang, Sultan Malik, Srinivas D. Nemani
  • Publication number: 20220172948
    Abstract: A method of forming graphene layers is disclosed. A method of improving graphene deposition is also disclosed. Some methods are advantageously performed at lower temperatures. Some methods advantageously provide graphene layers with lower resistance. Some methods advantageously provide graphene layers in a relatively short period of time.
    Type: Application
    Filed: February 15, 2022
    Publication date: June 2, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Jie Zhou, Erica Chen, Qiwei Liang, Chentsau Chris Ying, Srinivas D. Nemani, Ellie Y. Yieh
  • Publication number: 20220157654
    Abstract: A method of forming an electronic device is disclosed. The method comprises forming depositing a metal on a substrate, the metal comprising one or more of copper (Cu), titanium (Ti), or tantalum (Ta). A metal cap is deposited on the metal. The metal cap comprises one or more of molybdenum (Mo), ruthenium (Ru), iridium (Ir), rhodium (Rh), palladium (Pd), silver (Ag), osmium (Os), platinum (Pt), or gold (Au). The substrate is then exposed to an anneal process, e.g., a hydrogen high-pressure anneal. The formation of the metal cap on the metal minimizes parasitic adsorption of hydrogen by the underlying metal.
    Type: Application
    Filed: January 28, 2022
    Publication date: May 19, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Srinivas Gandikota, Steven C.H. Hung, Srinivas D. Nemani, Yixiong Yang, Susmit Singha Roy, Nikolaos Bekiaris
  • Publication number: 20220139668
    Abstract: A plasma reactor includes a chamber body having an interior space that provides a plasma chamber, a gas distribution port to deliver a processing gas to the plasma chamber, a workpiece support to hold a workpiece, an antenna array comprising a plurality of monopole antennas extending partially into the plasma chamber, and an AC power source to supply a first AC power to the plurality of monopole antennas.
    Type: Application
    Filed: January 10, 2022
    Publication date: May 5, 2022
    Inventors: Qiwei Liang, Srinivas D. Nemani
  • Patent number: 11302549
    Abstract: Embodiments of substrate transfer apparatus are provided herein. In some embodiments, an apparatus for storing and transporting at least one substrate in a vacuum includes a carrying case for storing one or more substrates, wherein the carrying case includes a vacuum port and a plurality of holders to hold one or more substrates within an inner volume of the carrying case; and a vacuum source in fluid connection with the carrying case via the vacuum port.
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: April 12, 2022
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Sriskantharajah Thirunavukarasu, Eng Sheng Peh, Srinivas D. Nemani, Arvind Sundarrajan, Avinash Avula, Ellie Y. Yieh
  • Patent number: 11302519
    Abstract: Methods of patterning low-k dielectric films are described. In an example, a method of patterning a low-k dielectric film involves forming and patterning a mask layer above a low-k dielectric layer, the low-k dielectric layer disposed above a substrate. The method also involves modifying exposed portions of the low-k dielectric layer with a nitrogen-free plasma process. The method also involves removing, with a remote plasma process, the modified portions of the low-k dielectric layer selective to the mask layer and unmodified portions of the low-k dielectric layer.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: April 12, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Srinivas D. Nemani, Jeremiah T. Pender, Qingjun Zhou, Dmitry Lubomirsky, Sergey G. Belostotskiy
  • Publication number: 20220108886
    Abstract: A method to form a 2-Dimensional transistor channel may include depositing an amorphous layer comprising a 2-dimensional material, implanting an implant species into the amorphous layer; and annealing the amorphous layer after the implanting. As such, the amorphous layer may form a doped crystalline layer.
    Type: Application
    Filed: January 15, 2021
    Publication date: April 7, 2022
    Applicant: Applied Materials, Inc.
    Inventors: Keith T. Wong, Hurshvardhan Srivastava, Srinivas D. Nemani, Johannes M. van Meer, Rajesh Prasad