Patents by Inventor Suman Datta

Suman Datta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140361363
    Abstract: A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
    Type: Application
    Filed: August 21, 2014
    Publication date: December 11, 2014
    Inventors: Robert S. Chau, Suman Datta, Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew Metz
  • Publication number: 20140291615
    Abstract: A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
    Type: Application
    Filed: June 11, 2014
    Publication date: October 2, 2014
    Inventors: Suman Datta, Mantu K. Hudait, Mark L. Doczy, Jack T. Kavalieros, Majumdar Amian, Justin K. Brask, Been-Yih Jin, Matthew V. Metz, Robert S. Chau
  • Patent number: 8841180
    Abstract: A method to form a strain-inducing semiconductor region is described. In one embodiment, formation of a strain-inducing semiconductor region laterally adjacent to a crystalline substrate results in a uniaxial strain imparted to the crystalline substrate, providing a strained crystalline substrate. In another embodiment, a semiconductor region with a crystalline lattice of one or more species of charge-neutral lattice-forming atoms imparts a strain to a crystalline substrate, wherein the lattice constant of the semiconductor region is different from that of the crystalline substrate, and wherein all species of charge-neutral lattice-forming atoms of the semiconductor region are contained in the crystalline substrate.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: September 23, 2014
    Assignee: Intel Corporation
    Inventors: Suman Datta, Jack T. Kavalieros, Been-Yih Jin
  • Patent number: 8816394
    Abstract: A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: August 26, 2014
    Assignee: Intel Corporation
    Inventors: Robert S. Chau, Suman Datta, Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew Metz
  • Patent number: 8802517
    Abstract: A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: August 12, 2014
    Assignee: Intel Corporation
    Inventors: Suman Datta, Mantu K. Hudait, Mark L. Doczy, Jack T. Kavalieros, Majumdar Amian, Justin K. Brask, Been-Yih Jin, Matthew V. Metz, Robert S. Chau
  • Patent number: 8803255
    Abstract: A method of manufacturing a semiconductor device and a novel semiconductor device are disclosed herein. An exemplary method includes sputtering a capping layer in-situ on a gate dielectric layer, before any high temperature processing steps are performed.
    Type: Grant
    Filed: February 19, 2013
    Date of Patent: August 12, 2014
    Assignee: Intel Corporation
    Inventors: Gilbert Dewey, Mark L. Doczy, Suman Datta, Justin K. Brask, Matthew V. Metz
  • Publication number: 20140103456
    Abstract: A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
    Type: Application
    Filed: December 20, 2013
    Publication date: April 17, 2014
    Inventors: Robert S. Chau, Suman Datta, Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew Metz
  • Publication number: 20140103458
    Abstract: A method of manufacturing a semiconductor device and a novel semiconductor device are disclosed herein. An exemplary method includes sputtering a capping layer in-situ on a gate dielectric layer, before any high temperature processing steps are performed.
    Type: Application
    Filed: December 20, 2013
    Publication date: April 17, 2014
    Inventors: Gilbert Dewey, Mark L. Doczy, Suman Datta, Justin K. Brask, Matthew V. Metz
  • Publication number: 20140103396
    Abstract: A method to form a strain-inducing semiconductor region is described. In one embodiment, formation of a strain-inducing semiconductor region laterally adjacent to a crystalline substrate results in a uniaxial strain imparted to the crystalline substrate, providing a strained crystalline substrate. In another embodiment, a semiconductor region with a crystalline lattice of one or more species of charge-neutral lattice-forming atoms imparts a strain to a crystalline substrate, wherein the lattice constant of the semiconductor region is different from that of the crystalline substrate, and wherein all species of charge-neutral lattice-forming atoms of the semiconductor region are contained in the crystalline substrate.
    Type: Application
    Filed: December 18, 2013
    Publication date: April 17, 2014
    Inventors: Suman Datta, Jack T. Kavalieros, Been-Yih Jin
  • Patent number: 8664694
    Abstract: A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: March 4, 2014
    Assignee: Intel Corporation
    Inventors: Robert S. Chau, Suman Datta, Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew Metz
  • Publication number: 20140035009
    Abstract: A method of patterning a semiconductor film is described. According to an embodiment of the present invention, a hard mask material is formed on a silicon film having a global crystal orientation wherein the semiconductor film has a first crystal plane and second crystal plane, wherein the first crystal plane is denser than the second crystal plane and wherein the hard mask is formed on the second crystal plane. Next, the hard mask and semiconductor film are patterned into a hard mask covered semiconductor structure. The hard mask covered semiconductor structured is then exposed to a wet etch process which has sufficient chemical strength to etch the second crystal plane but insufficient chemical strength to etch the first crystal plane.
    Type: Application
    Filed: October 8, 2013
    Publication date: February 6, 2014
    Inventors: Justin K. Brask, Jack Kavalieros, Brian S. Doyle, Uday Shah, Suman Datta, Amlan Majumdar, Robert S. Chau
  • Patent number: 8638591
    Abstract: A four transistor (4T) memory device is provided. The device includes a first cell transistor and a second cell transistor, the first and second cell transistors coupled to each other and defining latch circuitry having at least one multi-stable node. The device further includes a first access transistor and a second access transistor, the first and second access transistors coupling the at least one multi-stable node to at least one bit-line. In the device, each of the first and second cell transistors and each of the first and second access transistors is a unidirectional field effect transistor configured for conducting current in a first direction and to be insubstantially incapable of conducting current in a second direction.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: January 28, 2014
    Assignee: The Penn State Research Foundation
    Inventors: Vinay Saripalli, Dheeraj Mohata, Saurabh Mookherjea, Suman Datta, Vijaykrishnan Narayanan
  • Publication number: 20130344668
    Abstract: A method to form a strain-inducing semiconductor region is described. In one embodiment, formation of a strain-inducing semiconductor region laterally adjacent to a crystalline substrate results in a uniaxial strain imparted to the crystalline substrate, providing a strained crystalline substrate. In another embodiment, a semiconductor region with a crystalline lattice of one or more species of charge-neutral lattice-forming atoms imparts a strain to a crystalline substrate, wherein the lattice constant of the semiconductor region is different from that of the crystalline substrate, and wherein all species of charge-neutral lattice-forming atoms of the semiconductor region are contained in the crystalline substrate.
    Type: Application
    Filed: August 20, 2013
    Publication date: December 26, 2013
    Inventors: Suman Datta, Jack T. Kavalieros, Been-Yih Jin
  • Publication number: 20130328015
    Abstract: A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
    Type: Application
    Filed: August 8, 2013
    Publication date: December 12, 2013
    Inventors: Suman Datta, Mantu K. Hudait, Mark L. Doczy, Jack T. Kavalieros, Majumdar Amian, Justin K. Brask, Been-Yih Jin, Matthew V. Metz, Robert S. Chau
  • Patent number: 8581258
    Abstract: A method of patterning a semiconductor film is described. According to an embodiment of the present invention, a hard mask material is formed on a silicon film having a global crystal orientation wherein the semiconductor film has a first crystal plane and second crystal plane, wherein the first crystal plane is denser than the second crystal plane and wherein the hard mask is formed on the second crystal plane. Next, the hard mask and semiconductor film are patterned into a hard mask covered semiconductor structure. The hard mask covered semiconductor structured is then exposed to a wet etch process which has sufficient chemical strength to etch the second crystal plane but insufficient chemical strength to etch the first crystal plane.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: November 12, 2013
    Assignee: Intel Corporation
    Inventors: Justin K. Brask, Jack Kavalieros, Brian S. Doyle, Uday Shah, Suman Datta, Amlan Majumdar, Robert S. Chau
  • Patent number: 8530884
    Abstract: A method to form a strain-inducing semiconductor region is described. In one embodiment, formation of a strain-inducing semiconductor region laterally adjacent to a crystalline substrate results in a uniaxial strain imparted to the crystalline substrate, providing a strained crystalline substrate. In another embodiment, a semiconductor region with a crystalline lattice of one or more species of charge-neutral lattice-forming atoms imparts a strain to a crystalline substrate, wherein the lattice constant of the semiconductor region is different from that of the crystalline substrate, and wherein all species of charge-neutral lattice-forming atoms of the semiconductor region are contained in the crystalline substrate.
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: September 10, 2013
    Assignee: Intel Corporation
    Inventors: Suman Datta, Jack T. Kavalieros, Been-Yih Jin
  • Patent number: 8518768
    Abstract: A CMOS device includes a PMOS transistor with a first quantum well structure and an NMOS device with a second quantum well structure. The PMOS and NMOS transistors are formed on a substrate.
    Type: Grant
    Filed: April 18, 2012
    Date of Patent: August 27, 2013
    Assignee: Intel Corporation
    Inventors: Suman Datta, Mantu K. Hudait, Mark L. Doczy, Jack T. Kavalieros, Majumdar Amian, Justin K. Brask, Been-Yih Jin, Matthew V. Metz, Robert S. Chau
  • Publication number: 20130161766
    Abstract: A method of manufacturing a semiconductor device and a novel semiconductor device are disclosed herein. An exemplary method includes sputtering a capping layer in-situ on a gate dielectric layer, before any high temperature processing steps are performed.
    Type: Application
    Filed: February 19, 2013
    Publication date: June 27, 2013
    Inventors: Gilbert Dewey, Mark L. Doczy, Suman Datta, Justin K. Brask, Matthew V. Metz
  • Publication number: 20130146945
    Abstract: A transistor having a narrow bandgap semiconductor source/drain region is described. The transistor includes a gate electrode formed on a gate dielectric layer formed on a silicon layer. A pair of source/drain regions are formed on opposite sides of the gate electrode wherein said pair of source/drain regions comprise a narrow bandgap semiconductor film formed in the silicon layer on opposite sides of the gate electrode.
    Type: Application
    Filed: January 28, 2013
    Publication date: June 13, 2013
    Inventors: Robert S. Chau, Suman Datta, Jack Kavalieros, Justin K. Brask, Mark L. Doczy, Matthew Metz
  • Patent number: 8421059
    Abstract: A method to form a strain-inducing semiconductor region is described. In one embodiment, formation of a strain-inducing semiconductor region laterally adjacent to a crystalline substrate results in a uniaxial strain imparted to the crystalline substrate, providing a strained crystalline substrate. In another embodiment, a semiconductor region with a crystalline lattice of one or more species of charge-neutral lattice-forming atoms imparts a strain to a crystalline substrate, wherein the lattice constant of the semiconductor region is different from that of the crystalline substrate, and wherein all species of charge-neutral lattice-forming atoms of the semiconductor region are contained in the crystalline substrate.
    Type: Grant
    Filed: October 5, 2010
    Date of Patent: April 16, 2013
    Assignee: Intel Corporation
    Inventors: Suman Datta, Jack T. Kavalieros, Been-Yih Jin