Patents by Inventor Sun Ho Kim

Sun Ho Kim has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160172224
    Abstract: A substrate transfer unit includes a rotation body, an arm member, and first and second blades. The arm member is on the rotation body, and the first and second blades are on the arm member. The arm member includes a first arm including a lower link on the rotation body and an upper link connected on one side of the lower link and a second arm including a first portion and a second portion. The first portion has a first pivot on the other side of the upper link and is connected with the first blade at a first height from the first pivot. The second portion is connected with the first portion and with the second blade at a second height, higher than the first height, from the first pivot.
    Type: Application
    Filed: December 2, 2015
    Publication date: June 16, 2016
    Inventors: Seok Heo, Sun Ho Kim, Chaemook Lim, JaeChul Hwang
  • Patent number: 9306192
    Abstract: A deposition apparatus is configured to form a deposition layer on a substrate. The deposition apparatus includes a deposition source configured to face a first side of the substrate and to spray one or more depositing materials toward the substrate, a cooling stage configured to support a second side of the substrate that is opposite from the first side of the substrate, and a hardening unit configured to harden the one or more depositing materials sprayed from the deposition source and that have reached the substrate. A method of forming a thin film deposition layer on a substrate by using a deposition apparatus is also provided. The method includes spraying one or more depositing materials toward the substrate by using a deposition source of the deposition apparatus while the substrate is on a cooling stage of the deposition apparatus.
    Type: Grant
    Filed: August 12, 2013
    Date of Patent: April 5, 2016
    Assignee: Samsung Display Co., Ltd.
    Inventors: Myung-Soo Huh, Sun-Ho Kim, Hyun-Woo Joo, Jae-Hyun Kim
  • Publication number: 20160064973
    Abstract: Disclosed is a battery protection circuit package capable of ensuring stability of a battery, the package including a substrate having a plurality of external connection terminals and a plurality of internal connection terminals, and a protection integrated chip (IC), one or more field effect transistors (FETs), and one or more passive devices provided on the substrate, wherein the protection IC includes a separate IC structure capable of forcibly blocking discharge or charge of the battery bare cell by switching off the FETs when an electrical signal is input through one of the external connection terminals.
    Type: Application
    Filed: July 31, 2015
    Publication date: March 3, 2016
    Inventors: Hyeok Hwi NA, Ho Seok HWANG, Young Seok KIM, Sung Beom PARK, Sang Hoon AHN, Sun Ho KIM
  • Publication number: 20160057346
    Abstract: A method for sensing proximity by an electronic device is provided. The method includes confirming a phase difference regarding a corresponding subject of an image acquired through a lens of the electronic device by operating a phase-difference autofocus sensor and determining that the corresponding subject is proximate to the electronic device when the confirmed phase difference is larger than a designated first reference value.
    Type: Application
    Filed: August 18, 2015
    Publication date: February 25, 2016
    Inventors: Eun-Soo PARK, Sun-Ho KIM, Jung-Ho KIM
  • Patent number: 9261714
    Abstract: A plasmonic all-optical switch includes a graphene layer, a first dielectric layer located on the graphene layer, a nano-antenna located on the first dielectric layer, and a second dielectric layer located on the nano-antenna. An incident beam is propagated by means of a surface plasmon wave generated at an interface between the graphene layer and the first dielectric layer. Further, localized surface plasmon resonance is selectively generated at an interface between the nano-antenna and the second dielectric layer by means of a pump beam incident to the nano-antenna to decrease an intensity of the incident beam. The plasmonic all-optical switch may operate at an ultrahigh speed just with a small light energy without any electric method, greatly reduce power consumption of an IT device by applying to an all-optical transistor or the like, and increase a processing rate.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: February 16, 2016
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sun Ho Kim, Jae Hun Kim, Chulki Kim, Kyungsun Moon, Min Ah Seo, Deok Ha Woo, Seok Lee, Jong Chang Yi, Taikjin Lee, Youngchul Chung
  • Publication number: 20160043163
    Abstract: A method of manufacturing a capacitor for a semiconductor device includes forming a lower electrode, forming a dielectric layer on the lower electrode, forming a first upper electrode on the dielectric layer, adsorbing an organic silicon source onto a surface of the first upper electrode, and forming a second upper electrode on the first upper electrode onto which the organic silicon source is adsorbed. Related devices and fabrication methods are also discussed.
    Type: Application
    Filed: April 9, 2015
    Publication date: February 11, 2016
    Inventors: Jong Bom Seo, Young Geun Park, Bong Hyun Kim, Sun Ho Kim, Hyun Jun Kim, Se Hyoung Ahn, Chang Mu An
  • Publication number: 20160018675
    Abstract: A plasmonic all-optical switch includes a graphene layer, a first dielectric layer located on the graphene layer, a nano-antenna located on the first dielectric layer, and a second dielectric layer located on the nano-antenna. An incident beam is propagated by means of a surface plasmon wave generated at an interface between the graphene layer and the first dielectric layer. Further, localized surface plasmon resonance is selectively generated at an interface between the nano-antenna and the second dielectric layer by means of a pump beam incident to the nano-antenna to decrease an intensity of the incident beam. The plasmonic all-optical switch may operate at an ultrahigh speed just with a small light energy without any electric method, greatly reduce power consumption of an IT device by applying to an all-optical transistor or the like, and increase a processing rate.
    Type: Application
    Filed: November 5, 2014
    Publication date: January 21, 2016
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sun Ho KIM, Jae Hun KIM, Chulki KIM, Kyungsun MOON, Min Ah SEO, Deok Ha WOO, Seok LEE, Jong Chang YI, Taikjin LEE, Youngchul CHUNG
  • Publication number: 20150360373
    Abstract: A link structure includes a first link, a second link having an end that is connected to an end of the first link, a third link having an end that is connected to the end of the first link, and provided on a portion of the second link, a first rotary shaft partially provided in the first link, a first actuator configured to rotate the first link about the first rotary shaft; a second rotary shaft partially provided in the second link, the second rotary shaft being different from the first rotary shaft, and a second actuator configured to rotate the second link about the second rotary shaft, the first and second actuators being provided in the first link.
    Type: Application
    Filed: March 18, 2015
    Publication date: December 17, 2015
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Sun-Ho KIM, Ki-Hoon NAM, Tae-Min EARMME, Seok HEO, Jae-Chul HWANG
  • Publication number: 20150346029
    Abstract: Disclosed are herein an apparatus and method for extreme ultraviolet (EUV) spectroscope calibration. The apparatus for EUV spectroscope calibration includes an EUV generating module, an Al filter, a diffraction grating, a CCD camera, a spectrum conversion module, and a control module that compares a wavelength value corresponding to a maximum peak among peaks of the spectrum depending on the order of the EUV light converted from the spectrum conversion module with a predetermined reference wavelength value depending on an order of high-order harmonics to calculate a difference value with the closest reference wavelength value, and controls the spectrum depending on the order of the EUV light converted from the spectrum conversion module to be moved in a direction of wavelength axis by the calculated difference value. Thus, it is possible to accurately measure a wavelength of a spectrum of EUV light used in EUV exposure technology and mask inspection technology.
    Type: Application
    Filed: September 19, 2014
    Publication date: December 3, 2015
    Inventors: Sun Ho KIM, Yong Soo KIM, Jae Hun KIM, Min-Chul PARK, Young Tae BYUN, Min Ah SEO, Joon Mo AHN, Deok Ha WOO, Seok LEE, Taik Jin LEE, Young Min JHON
  • Publication number: 20150329356
    Abstract: There are provided a micro electro mechanical systems (MEMS) structure and a method of manufacturing the same. The MEMS structure includes: a middle structure including an insulating layer, a circuit layer formed on the insulating layer, a mass formed beneath the insulating layer, and supports formed so as to be spaced apart from sides of the mass, and having corner portions of sides formed in a concave shape; an upper structure formed so as to enclose an upper portion of the middle structure; and a lower structure formed so as to enclose a lower portion of the middle structure.
    Type: Application
    Filed: May 13, 2015
    Publication date: November 19, 2015
    Inventors: Jong Woo HAN, Sun Ho KIM, Heung Woo PARK
  • Publication number: 20150333547
    Abstract: A battery protection circuit package is provided which is advantageous for integration and miniaturization. The battery protection circuit package includes: a substrate on which a conductive line pattern is disposed; a battery protection circuit element that is mounted on the substrate and includes a protection IC, a field effect transistor (FET), and at least one passive element; and an NFC antenna structure that is mounted on the substrate, and the conductive line pattern constitutes at least a part of an extension antenna that is connected to the NFC antenna structure to form a loop.
    Type: Application
    Filed: May 15, 2015
    Publication date: November 19, 2015
    Inventors: Hyeok Hwi NA, Ho Seok HWANG, Young Seok KIM, Sung Beom Park, Sang Hoon AHN, Hyun Suck Lee, Sun Ho KIM
  • Patent number: 9188484
    Abstract: Provided are an apparatus and method for calibrating an extreme ultraviolet (EUV) spectrometer in which a wavelength of a spectrum of EUV light used for EUV lithography and mask inspection technology can be measured accurately.
    Type: Grant
    Filed: March 26, 2014
    Date of Patent: November 17, 2015
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Young Min Jhon, Yong Soo Kim, Min Ah Seo, Jae Hun Kim, Min Chul Park, Sun Ho Kim, Deok Ha Woo, Seok Lee, Taik Jin Lee, Myung Suk Chun, Woon Jo Cho
  • Patent number: 9188485
    Abstract: Disclosed are herein an apparatus and method for extreme ultraviolet (EUV) spectroscope calibration. The apparatus for EUV spectroscope calibration includes an EUV generating module, an Al filter, a diffraction grating, a CCD camera, a spectrum conversion module, and a control module that compares a wavelength value corresponding to a maximum peak among peaks of the spectrum depending on the order of the EUV light converted from the spectrum conversion module with a predetermined reference wavelength value depending on an order of high-order harmonics to calculate a difference value with the closest reference wavelength value, and controls the spectrum depending on the order of the EUV light converted from the spectrum conversion module to be moved in a direction of wavelength axis by the calculated difference value. Thus, it is possible to accurately measure a wavelength of a spectrum of EUV light used in EUV exposure technology and mask inspection technology.
    Type: Grant
    Filed: September 19, 2014
    Date of Patent: November 17, 2015
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sun Ho Kim, Yong Soo Kim, Jae Hun Kim, Min-Chul Park, Young Tae Byun, Min Ah Seo, Joon Mo Ahn, Deok Ha Woo, Seok Lee, Taik Jin Lee, Young Min Jhon
  • Patent number: 9182120
    Abstract: The disclosure relates to a waste gas purification method, and more particularly, to a waste gas burning method of reducing CO and NOx by burning waste gases using a system for individually controlling CO and NOx. In accordance with the disclosure, there is provided a low-pollution burning method using a system for individually controlling CO and NOx including a waste gas introduction and flame injection step; a first waste gas burning step; and a second waste gas burning step.
    Type: Grant
    Filed: November 28, 2012
    Date of Patent: November 10, 2015
    Assignee: Global Standard Technology Co., Ltd.
    Inventors: Jong Chul Kim, Jong Kook Chung, Sung Wook Lee, Wan Gi Roh, Sun Ho Kim, Suk-Ho Kang
  • Publication number: 20150308831
    Abstract: Disclosed are an apparatus for estimating a pedestrian position based on pedestrian motion recognition, and a method therefor. The method for estimating the pedestrian position based on pedestrian motion recognition includes recognizing a specific motion of a plurality of motions of the pedestrian, performing a unique pedestrian dead-reckoning (PDR) technique corresponding to the recognized specific motion among unique PDR techniques for each of the plurality of motions of the pedestrian, and estimating the pedestrian's position by the performed unique PDR technique.
    Type: Application
    Filed: September 12, 2013
    Publication date: October 29, 2015
    Inventors: Taik Jin LEE, Seok LEE, Sun Ho KIM, Jae Hun KIM, Beom Ju SHIN, Chul Ki KIM, Young Min JHON
  • Patent number: 9123777
    Abstract: A method for fabricating a micro electro device includes forming a conductive pattern on a substrate, forming an organic insulating film on a whole surface of the substrate with an organic insulating material to cover the conductive pattern, preparing a printing plate coated with an insulating film removing material, and forming a contact hole by removing a first portion of the organic insulating film through making the insulating film removing material come in contact with the first portion of the organic insulating film that corresponds to the conductive pattern, and forming a contact in the contact hole.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: September 1, 2015
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Dan Bi Choi, Jung Hun Lee, Sun Ho Kim
  • Patent number: 9124067
    Abstract: Provided is a pulse laser apparatus for generating laser light. The apparatus includes a first mirror and a second mirror which are disposed at both ends of a resonator and configured to reflect the laser light, a gain medium disposed between the first and second mirrors and configured to amplify and output light incident from an outside, an etalon configured to adjust a pulse width of the laser light, and an acousto-optic modulator disposed between the first and second mirrors and configured to form a mode-locked and Q-switched signal from the laser light, in which some of the laser light is output through either the first or second mirror to outside the resonator.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: September 1, 2015
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Young Min Jhon, Joon Mo Ahn, Jae Hun Kim, Seok Lee, Min Chul Park, Deok Ha Woo, Young Tae Byun, Taik Jin Lee, Sun Ho Kim
  • Publication number: 20150243917
    Abstract: A method for forming a PN junction in graphene includes: forming a graphene layer, and forming a DNA molecule layer on a partial region of the graphene layer, the DNA molecule layer having a nucleotide sequence structure designed to provide the graphene layer with a predetermined doping property upon adsorption on the graphene layer. The DNA molecule has a nucleotide sequence structure designed for doping of graphene so that doped graphene has a specific semiconductor property. The DNA molecule is coated on the surface of the graphene layer of which the partial region is exposed by micro patterning, and thereby, PN junctions of various structures may be formed by a region coated with the DNA molecule and a non-coated region in the graphene layer.
    Type: Application
    Filed: May 20, 2014
    Publication date: August 27, 2015
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Chulki KIM, Yeong Jun KIM, Young Mo JUNG, Seong Chan JUN, Taikjin LEE, Seok LEE, Young Tae BYUN, Deok Ha WOO, Sun Ho KIM, Min Ah SEO, Jae Hun KIM, Jong Chang YI
  • Patent number: 9111887
    Abstract: A flexible display apparatus and a method of manufacturing the flexible display apparatus are disclosed. A flexible organic light-emitting display apparatus includes: a thin film transistor formed on a substrate in which a plurality of subpixels are located; an organic light-emitting device electrically connected to the thin film transistor and in one of the subpixels, the organic light-emitting device including a first electrode, an organic layer on the first electrode; and a second electrode on the organic layer; a pixel defining layer having an opening that exposes at least a region of the first electrode, and covering an edge region of the first electrode; a capping layer covering the organic light-emitting device; and at least one clamp unit in a non-organic layer region defined next to the one of the subpixels, wherein the non-organic layer region is a region in which the organic layer is not formed.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: August 18, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Mu-Gyeom Kim, Kyung-Ho Kim, Joon-Hyuk Cho, Sun-Ho Kim, Ji-Won Han
  • Patent number: D736238
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: August 11, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Sun-Ho Kim