Patents by Inventor Tsung-Yu Yang

Tsung-Yu Yang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9252219
    Abstract: The present invention discloses an insulated gate bipolar transistor (IGBT) and a manufacturing method thereof. The IGBT includes: a gallium nitride (GaN) substrate, a first GaN layer with a first conductive type, a second GaN layer with a first conductive type, a third GaN layer with a second conductive type or an intrinsic conductive type, and a gate formed on the GaN substrate. The first GaN layer is formed on the GaN substrate and has a side wall vertical to the GaN substrate. The second GaN layer is formed on the GaN substrate and is separated from the first GaN layer by the gate. The third GaN layer is formed on the first GaN layer and is separated from the GaN substrate by the first GaN layer. The gate has a side plate adjacent to the side wall in a lateral direction to control a channel.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: February 2, 2016
    Assignee: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chih-Fang Huang, Tsung-Yi Huang, Chien-Wei Chiu, Tsung-Yu Yang, Ting-Fu Chang, Tsung-Chieh Hsiao, Ya-Hsien Liu, Po-Chin Peng
  • Patent number: 9230988
    Abstract: Embodiments of mechanisms of forming a radio frequency area of an integrated circuit are provided. The radio frequency area of an integrated circuit structure includes a substrate, a buried oxide layer formed over the substrate, and an interface layer formed between the substrate and the buried oxide layer. The radio frequency area of an integrated circuit structure also includes a silicon layer formed over the buried oxide layer and an interlayer dielectric layer formed in a deep trench. The radio frequency area of an integrated circuit structure further includes the interlayer dielectric layer extending through the silicon layer, the buried oxide layer and the interface layer. The radio frequency area of an integrated circuit structure includes an implant region formed below the interlayer dielectric layer in the deep trench and a polysilicon layer formed below the implant region.
    Type: Grant
    Filed: October 31, 2013
    Date of Patent: January 5, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Yu Cheng, Keng-Yu Chen, Wei-Kung Tsai, Kuan-Chi Tsai, Tsung-Yu Yang, Chung-Long Chang, Chun-Hung Chen, Chih-Ping Chao
  • Publication number: 20150270143
    Abstract: The present disclosure relates to a silicon-on-insulator (SOI) substrate having a trap-rich layer, with crystal defects, which is disposed within a handle wafer, and an associated method of formation. In some embodiments, the SOI substrate has a handle wafer. A trap-rich layer, having a plurality of crystal defects that act to trap carriers, is disposed within the handle wafer at a position abutting a top surface of the handle wafer. An insulating layer is disposed onto the handle wafer. The insulating layer has a first side abutting the top surface of the handle wafer and an opposing second side abutting a thin layer of active silicon. By forming the trap-rich layer within the handle wafer, fabrication costs associated with depositing a trap-rich material (e.g., polysilicon) onto a handle wafer are reduced and thermal instability issues are prevented.
    Type: Application
    Filed: March 24, 2014
    Publication date: September 24, 2015
    Inventors: Alex Kalnitsky, Chung-Long Chang, Yung-Chih Tsai, Tsung-Yu Yang, Keng-Yu Chen, Yong-En Syu
  • Patent number: 9105757
    Abstract: The present invention discloses a junction barrier Schottky (JBS) diode and a manufacturing method thereof. The JBS diode includes: an N-type gallium nitride (GaN) substrate; an aluminum gallium nitride (AlGaN) barrier layer, which is formed on the N-type GaN substrate; a P-type gallium nitride (GaN) layer, which is formed on or above the N-type GaN substrate; an anode conductive layer, which is formed at least partially on the AlGaN barrier layer, wherein a Schottky contact is formed between part of the anode conductive layer and the AlGaN barrier layer; and a cathode conductive layer, which is formed on the N-type GaN substrate, wherein an ohmic contact is formed between the cathode conductive layer and the N-type GaN substrate, and the cathode conductive layer is not directly connected to the anode conductive layer.
    Type: Grant
    Filed: September 28, 2013
    Date of Patent: August 11, 2015
    Assignee: Richtek Technology Corporation, R.O.C.
    Inventors: Chih-Fang Huang, Tsung-Yi Huang, Chien-Wei Chiu, Tsung-Yu Yang, Ting-Fu Chang, Tsung-Chieh Hsiao, Ya-Hsien Liu, Po-Chin Peng
  • Patent number: 9093613
    Abstract: An electrode structure includes at least one reflection layer, a barrier layer, and a conductive pad. The barrier layer includes a first barrier layer and a second barrier layer. The first and second barrier layers are stacked on the reflection layer in sequence. The first and second barrier layers are made of different materials. The conductive pad is located on the barrier layer.
    Type: Grant
    Filed: April 8, 2014
    Date of Patent: July 28, 2015
    Assignee: LEXTAR ELECTRONICS CORPORATION
    Inventors: Tsung-Yu Yang, Tzong-Liang Tsai
  • Publication number: 20150206902
    Abstract: Embodiments for forming a semiconductor device structure are provided. The semiconductor device structure includes a substrate and a buried oxide layer formed over the substrate. An interface layer is formed between the substrate and the buried oxide layer. The semiconductor device structure also includes a silicon layer formed over the buried oxide layer; and a polysilicon layer formed over the substrate and in a deep trench. The polysilicon layer extends through the silicon layer, the buried oxide layer and the interface layer.
    Type: Application
    Filed: January 17, 2014
    Publication date: July 23, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Yu CHENG, Keng-Yu CHEN, Wei-Kung TSAI, Kuan-Chi TSAI, Tsung-Yu YANG, Chung-LONG CHANG, Chun-Hung CHEN, Chih-Ping CHAO
  • Publication number: 20150132918
    Abstract: An embodiment radio frequency area of an integrated circuit is disclosed. The radio frequency area includes a substrate having an implant region. The substrate has a first resistance. A buried oxide layer is disposed over the substrate and an interface layer is disposed between the substrate and the buried oxide layer. The interface layer has a second resistance lower than the first resistance. A silicon layer is disposed over the buried oxide layer and an interlevel dielectric is disposed in a deep trench. The deep trench extends through the silicon layer, the buried oxide layer, and the interface layer over the implant region. The deep trench may also extend through a polysilicon layer disposed over the silicon layer.
    Type: Application
    Filed: January 23, 2015
    Publication date: May 14, 2015
    Inventors: Kuo-Yu Cheng, Wei-Kung Tsai, Kuan-Chi Tsai, Tsung-Yu Yang, Chung-Long Chang, Chun-Hong Chen, Chih-Ping Chao, Chen-Yao Tang, Yu Hung Chen
  • Publication number: 20150130067
    Abstract: This invention provides an ohmic contact structure including: a semiconductor substrate having a top surface which includes a plurality of micro-structures; and a conductive layer, which is formed on the micro-structures. An ohmic contact is formed by the conductive layer and the semiconductor substrate. The present invention also provides a semiconductor device having the ohmic contact structure.
    Type: Application
    Filed: November 11, 2013
    Publication date: May 14, 2015
    Applicant: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chien-Wei Chiu, Ting-Wei Liao, Chieh-Hsiung Kuan, Tsung-Yi Huang, Tsung-Yu Yang
  • Publication number: 20150115301
    Abstract: An electrode structure includes at least one reflection layer, a barrier layer, and a conductive pad. The barrier layer includes a first barrier layer and a second barrier layer. The first and second barrier layers are stacked on the reflection layer in sequence. The first and second barrier layers are made of different materials. The conductive pad is located on the barrier layer.
    Type: Application
    Filed: April 8, 2014
    Publication date: April 30, 2015
    Applicant: Lextar Electronics Corporation
    Inventors: Tsung-Yu YANG, Tzong-Liang TSAI
  • Publication number: 20150115381
    Abstract: Embodiments of mechanisms of forming a radio frequency area of an integrated circuit are provided. The radio frequency area of an integrated circuit structure includes a substrate, a buried oxide layer formed over the substrate, and an interface layer formed between the substrate and the buried oxide layer. The radio frequency area of an integrated circuit structure also includes a silicon layer formed over the buried oxide layer and an interlayer dielectric layer formed in a deep trench. The radio frequency area of an integrated circuit structure further includes the interlayer dielectric layer extending through the silicon layer, the buried oxide layer and the interface layer. The radio frequency area of an integrated circuit structure includes an implant region formed below the interlayer dielectric layer in the deep trench and a polysilicon layer formed below the implant region.
    Type: Application
    Filed: October 31, 2013
    Publication date: April 30, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Yu CHENG, Keng-Yu CHEN, Wei-Kung TSAI, Kuan-Chi TSAI, Tsung-Yu YANG, Chung-LONG CHANG, Chun-Hung CHEN, Chih-Ping CHAO
  • Publication number: 20150084060
    Abstract: The present invention discloses an insulated gate bipolar transistor (IGBT) and a manufacturing method thereof. The IGBT includes: a gallium nitride (GaN) substrate, a first GaN layer with a first conductive type, a second GaN layer with a first conductive type, a third GaN layer with a second conductive type or an intrinsic conductive type, and a gate formed on the GaN substrate. The first GaN layer is formed on the GaN substrate and has a side wall vertical to the GaN substrate. The second GaN layer is formed on the GaN substrate and is separated from the first GaN layer by the gate. The third GaN layer is formed on the first GaN layer and is separated from the GaN substrate by the first GaN layer. The gate has a side plate adjacent to the side wall in a lateral direction to control a channel.
    Type: Application
    Filed: August 20, 2014
    Publication date: March 26, 2015
    Applicant: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chih-Fang Huang, Tsung-Yi Huang, Chien-Wei Chiu, Tsung-Yu Yang, Ting-Fu Chang, Tsung-Chieh Hsiao, Ya-Hsien Liu, Po-Chin Peng
  • Patent number: 8981429
    Abstract: The present invention discloses a high electron mobility transistor (HEMT) and a manufacturing method thereof. The HEMT device includes: a substrate, a first gallium nitride (GaN) layer; a P-type GaN layer, a second GaN layer, a barrier layer, a gate, a source, and a drain. The first GaN layer is formed on the substrate, and has a stepped contour from a cross-section view. The P-type GaN layer is formed on an upper step surface of the stepped contour, and has a vertical sidewall. The second GaN layer is formed on the P-type GaN layer. The barrier layer is formed on the second GaN layer. two dimensional electron gas regions are formed at junctions between the barrier layer and the first and second GaN layers. The gate is formed on an outer side of the vertical sidewall.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: March 17, 2015
    Assignee: Richtek Technology Corporation, R.O.C.
    Inventors: Chih-Fang Huang, Po-Chin Peng, Tsung-Chieh Hsiao, Ya-Hsien Liu, K. C. Chang, Hung-Der Su, Chien-Wei Chiu, Tsung-Yi Huang, Tsung-Yu Yang, Ting-Fu Chang
  • Patent number: 8941211
    Abstract: An embodiment radio frequency area of an integrated circuit is disclosed. The radio frequency area includes a substrate having an implant region. The substrate has a first resistance. A buried oxide layer is disposed over the substrate and an interface layer is disposed between the substrate and the buried oxide layer. The interface layer has a second resistance lower than the first resistance. A silicon layer is disposed over the buried oxide layer and an interlevel dielectric is disposed in a deep trench. The deep trench extends through the silicon layer, the buried oxide layer, and the interface layer over the implant region. The deep trench may also extend through a polysilicon layer disposed over the silicon layer.
    Type: Grant
    Filed: March 1, 2013
    Date of Patent: January 27, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Yu Cheng, Wei-Kung Tsai, Kuan-Chi Tsai, Tsung-Yu Yang, Chung-Long Chang, Chun-Hong Chen, Chih-Ping Chao, Chen-Yao Tang, Yu Hung Chen
  • Publication number: 20150021615
    Abstract: The present invention discloses a junction barrier Schottky (JBS) diode and a manufacturing method thereof. The JBS diode includes: an N-type gallium nitride (GaN) substrate; an aluminum gallium nitride (AlGaN) barrier layer, which is formed on the N-type GaN substrate; a P-type gallium nitride (GaN) layer, which is formed on or above the N-type GaN substrate; an anode conductive layer, which is formed at least partially on the AlGaN barrier layer, wherein a Schottky contact is formed between part of the anode conductive layer and the AlGaN barrier layer; and a cathode conductive layer, which is formed on the N-type GaN substrate, wherein an ohmic contact is formed between the cathode conductive layer and the N-type GaN substrate, and the cathode conductive layer is not directly connected to the anode conductive layer.
    Type: Application
    Filed: September 28, 2013
    Publication date: January 22, 2015
    Applicant: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chih-Fang Huang, Tsung-Yi Huang, Chien-Wei Chiu, Tsung-Yu Yang, Ting-Fu Chang, Tsung-Chieh Hsiao, Ya-Hsien Liu, Po-Chin Peng
  • Publication number: 20140225150
    Abstract: The disclosure provides a light-emitting diode and a method for manufacturing the same. The light-emitting diode comprises a N-type metal electrode, a N-type semiconductor layer contacted with the N-type metal electrode, a P-type semiconductor layer, a light-emitting layer interposed between the N-type semiconductor layer and the P-type semiconductor layer, a low-contact-resistance material layer positioned on the P-type semiconductor layer, a transparent conductive layer covered the low-contact-resistance material layer and the P-type semiconductor layer, and a P-type metal electrode positioned on the transparent conductive layer.
    Type: Application
    Filed: October 15, 2013
    Publication date: August 14, 2014
    Applicant: Lextar Electronics Corporation
    Inventors: Chia-Lin HSIAO, Nai-Wei Hsu, Te-Chung Wang, Tsung-Yu Yang
  • Publication number: 20140187003
    Abstract: The present invention discloses a high electron mobility transistor (HEMT) and a manufacturing method thereof. The HEMT includes a semiconductor layer, a barrier layer on the semiconductor layer, a piezoelectric layer on the barrier layer, a gate on the piezoelectric layer, and a source and a drain at two sides of the gate respectively, wherein each bandgap of the semiconductor layer, the barrier layer, and the piezoelectric layer partially but not entirely overlaps the other two bandgaps. The gate is formed for receiving a gate voltage. A two dimensional electron gas (2DEG) is formed in a portion of a junction between the semiconductor layer and the barrier layer but not below at least a portion of the piezoelectric layer, wherein the 2DEG is electrically connected to the source and the drain.
    Type: Application
    Filed: March 9, 2014
    Publication date: July 3, 2014
    Applicant: RICHTEK TECHNOLOGY CORPORATION, R.O.C
    Inventors: Chih-Fang Huang, Chien-Wei Chiu, Ting-Fu Chang, Tsung-Yu Yang, Tsung-Yi Huang
  • Publication number: 20140159048
    Abstract: The present invention discloses a high electron mobility transistor (HEMT) and a manufacturing method thereof. The HEMT device includes: a substrate, a first gallium nitride (GaN) layer; a P-type GaN layer, a second GaN layer, a barrier layer, a gate, a source, and a drain. The first GaN layer is formed on the substrate, and has a stepped contour from a cross-section view. The P-type GaN layer is formed on an upper step surface of the stepped contour, and has a vertical sidewall. The second GaN layer is formed on the P-type GaN layer. The barrier layer is formed on the second GaN layer. two dimensional electron gas regions are formed at junctions between the barrier layer and the first and second GaN layers. The gate is formed on an outer side of the vertical sidewall.
    Type: Application
    Filed: May 20, 2013
    Publication date: June 12, 2014
    Applicant: RICHTEK TECHNOLOGY CORPORATION
    Inventors: Chih-Fang Huang, Po-Chin Peng, Tsung-Chieh Hsiao, Ya-Hsien Liu, K.C. Chang, Hung-Der Su, Chien-Wei Chiu, Tsung-Yi Huang, Tsung-Yu Yang, Ting-Fu Chang
  • Patent number: 8710551
    Abstract: The present invention discloses a high electron mobility transistor (HEMT) and a manufacturing method thereof. The HEMT includes a semiconductor layer, a barrier layer on the semiconductor layer, a piezoelectric layer on the barrier layer, a gate on the piezoelectric layer, and a source and a drain at two sides of the gate respectively, wherein each bandgap of the semiconductor layer, the barrier layer, and the piezoelectric layer partially but not entirely overlaps the other two bandgaps. The gate is formed for receiving a gate voltage. A two dimensional electron gas (2DEG) is formed in a portion of a junction between the semiconductor layer and the barrier layer but not below at least a portion of the piezoelectric layer, wherein the 2DEG is electrically connected to the source and the drain.
    Type: Grant
    Filed: August 29, 2012
    Date of Patent: April 29, 2014
    Assignee: Richtek Technology Corporation, R.O.C.
    Inventors: Chih-Fang Huang, Chien-Wei Chiu, Ting-Fu Chang, Tsung-Yu Yang, Tsung-Yi Huang
  • Publication number: 20140061724
    Abstract: The present invention discloses a high electron mobility transistor (HEMT) and a manufacturing method thereof. The HEMT includes a semiconductor layer, a barrier layer on the semiconductor layer, a piezoelectric layer on the barrier layer, a gate on the piezoelectric layer, and a source and a drain at two sides of the gate respectively, wherein each bandgap of the semiconductor layer, the barrier layer, and the piezoelectric layer partially but not entirely overlaps the other two bandgaps. The gate is formed for receiving a gate voltage. A two dimensional electron gas (2DEG) is formed in a portion of a junction between the semiconductor layer and the barrier layer but not below at least a portion of the piezoelectric layer, wherein the 2DEG is electrically connected to the source and the drain.
    Type: Application
    Filed: August 29, 2012
    Publication date: March 6, 2014
    Inventors: Chih-Fang Huang, Chien-Wei Chiu, Ting-Fu Chang, Tsung-Yu Yang, Tsung-Yi Huang
  • Publication number: 20140048815
    Abstract: A Schottky barrier diode (SBD) is disclosed, which includes: a gallium nitride (GaN) layer, formed on a substrate; an aluminum gallium nitride (AlGaN), formed on the GaN layer; an insulation layer, formed on the AlGaN layer; an anode conducive layer, formed on the insulation layer, wherein Schottky contact is formed between a part of the anode conductive layer and the AlGaN layer or between a part of the anode conductive layer and the GaN layer, and another part of the anode conductive layer is separated from the AlGaN layer by the insulation layer; and a cathode conductive layer, formed on the AlGaN layer, wherein an ohmic contact is formed between the cathode conductive layer and the GaN layer or between the cathode conductive layer and the AlGaN layer, and wherein the anode conductive layer is not directly connected to the cathode conductive layer.
    Type: Application
    Filed: August 20, 2012
    Publication date: February 20, 2014
    Inventors: Tsung-Yi Huang, Chien-Wei Chiu, Chih-Fang Huang, Tsung-Yu Yang