Patents by Inventor Vibhor Jain

Vibhor Jain has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220406833
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to photodetectors with buried airgap mirror reflectors. The structure includes a photodetector and at least one airgap in a substrate under the photodetector.
    Type: Application
    Filed: August 26, 2022
    Publication date: December 22, 2022
    Inventors: Siva P. ADUSUMILLI, Vibhor JAIN, Alvin J. JOSEPH, Steven M. SHANK
  • Publication number: 20220399024
    Abstract: Techniques are provided to validate a digitized audio signal that is generated by a conference participant. Reference speech features of the conference participant are obtained, either via samples provided explicitly by the participant, or collected passively via prior conferences. The speech features include one or more of word choices, filler words, common grammatical errors, idioms, common phrases, pace of speech, or other features. The reference speech features are compared to features observed in the digitized audio signal. If the reference speech features are sufficiently similar to the observed speech features, the digitized audio signal is validated and the conference participant is allowed to remain in the conference. If the validation is not successful, a variety of possible actions are taken, including alerting an administrator and/or terminating the participant's attendance in the conference.
    Type: Application
    Filed: June 9, 2021
    Publication date: December 15, 2022
    Inventors: Faisal Siyavudeen, Anupam Mukherjee, Vibhor Jain
  • Patent number: 11515397
    Abstract: Semiconductor structures including electrical isolation and methods of forming a semiconductor structure including electrical isolation. A layer stack is formed on a semiconductor substrate comprised of a single-crystal semiconductor material. The layer stack includes a semiconductor layer comprised of a III-V compound semiconductor material. A polycrystalline layer is formed in the semiconductor substrate. The polycrystalline layer extends laterally beneath the layer stack.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: November 29, 2022
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Anthony K. Stamper, Siva P. Adusumilli, Vibhor Jain, Steven Bentley
  • Publication number: 20220375871
    Abstract: The disclosure provides an integrated circuit (IC) structure with fluorescent materials, and related methods. An IC structure according to the disclosure may include a layer of fluorescent material on an IC component. The layer of fluorescent material defines a portion of an identification marker for the IC structure.
    Type: Application
    Filed: May 18, 2021
    Publication date: November 24, 2022
    Inventors: Sunil K. Singh, Vibhor Jain, Siva P. Adusumilli, Sebastian T. Ventrone, Johnatan A. Kantarovsky, Yves T. Ngu
  • Patent number: 11488950
    Abstract: Aspects of the disclosure provide an integrated circuit (IC) structure with a bipolar transistor stack within a substrate. The bipolar transistor stack may include: a collector, a base on the collector, and an emitter on a first portion of the base. A horizontal width of the emitter is less than a horizontal width of the base, and an upper surface of the emitter is substantially coplanar with an upper surface of the substrate. An extrinsic base structure is on a second portion of the base of the bipolar transistor stack, and horizontally adjacent the emitter. The extrinsic base structure includes an upper surface above the upper surface of the substrate.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: November 1, 2022
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Uzma B. Rana, Vibhor Jain, Anthony K. Stamper, Qizhi Liu, Siva P. Adusumilli
  • Patent number: 11476289
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to photodetectors with buried airgap mirror reflectors. The structure includes a photodetector and at least one airgap in a substrate under the photodetector.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: October 18, 2022
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Siva P. Adusumilli, Vibhor Jain, Alvin J. Joseph, Steven M. Shank
  • Patent number: 11469178
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a metal-free fuse structure and methods of manufacture. The structure includes: a first metal-free fuse structure comprising a top semiconductor material of semiconductor-on-insulator (SOI) technologies, the top semiconductor material including end portions with a first electrical resistance and a fuse portion of a second, higher electrical resistance electrically connected to the end portions; and a second metal-free fuse structure comprising the top semiconductor material of semiconductor-on-insulator (SOI) technologies, the top semiconductor material of the second metal-free fuse structure including at least a fuse portion of a lower electrical resistance than the second, higher electrical resistance.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: October 11, 2022
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Anthony K. Stamper, John J. Ellis-Monaghan, Steven M. Shank, John J. Pekarik, Vibhor Jain
  • Publication number: 20220320015
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a backside structure for optical attack mitigation and methods of manufacture. The structure includes: at least one device on a front side of a semiconductor substrate; and a plurality of grating layers under the at least one device. The plurality of grating layers includes at least a first material having a first refractive index alternating with a second material having a second refractive index.
    Type: Application
    Filed: April 6, 2021
    Publication date: October 6, 2022
    Inventors: Vibhor JAIN, Yusheng BIAN, Yves T. NGU, Sunil K. SINGH, Sebastian T. VENTRONE, Johnatan A. KANTAROVSKY
  • Publication number: 20220291126
    Abstract: A “lab on a chip” includes an optofluidic sensor and components to analyze signals from the optofluidic sensor. The optofluidic sensor includes a substrate, a channel at least partially defined by a portion of a layer of first material on the substrate, input and output fluid reservoirs in fluid communication with the channel, at least a first radiation source coupled to the substrate adapted to generate radiation in a direction toward the channel, and at least one photodiode positioned adjacent and below the channel.
    Type: Application
    Filed: March 9, 2021
    Publication date: September 15, 2022
    Inventors: Vibhor Jain, Steven M. Shank, Anthony K. Stamper, John J. Ellis-Monaghan, John J. Pekarik, Yusheng Bian
  • Publication number: 20220284198
    Abstract: Techniques described herein relate to facilitating end-to-end multilingual communications with automated assistants. In various implementations, speech recognition output may be generated based on voice input in a first language. A first language intent may be identified based on the speech recognition output and fulfilled in order to generate a first natural language output candidate in the first language. At least part of the speech recognition output may be translated to a second language to generate an at least partial translation, which may then be used to identify a second language intent that is fulfilled to generate a second natural language output candidate in the second language. Scores may be determined for the first and second natural language output candidates, and based on the scores, a natural language output may be selected for presentation.
    Type: Application
    Filed: May 26, 2022
    Publication date: September 8, 2022
    Inventors: James Kuczmarski, Vibhor Jain, Amarnag Subramanya, Nimesh Ranjan, Melvin Jose Johnson Premkumar, Vladimir Vuskovic, Luna Dai, Daisuke Ikeda, Nihal Sandeep Balani, Jinna Lei, Mengmeng Niu, Hongjie Chai, Wangqing Yuan
  • Patent number: 11437329
    Abstract: The present disclosure relates to integrated circuits, and more particularly, to an anti-tamper x-ray blocking package for secure integrated circuits and methods of manufacture and operation. In particular, the present disclosure relates to a structure including: one or more devices on a front side of a semiconductor material; a plurality of patterned metal layers under the one or more devices, located and structured to protect the one or more devices from an active intrusion; an insulator layer between the plurality of patterned metal layers; and at least one contact providing an electrical connection through the semiconductor material to a front side of the plurality of metals.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: September 6, 2022
    Assignee: GLOBALFOUNDRIES U.S. Inc.
    Inventors: Johnatan A. Kantarovsky, Vibhor Jain, Siva P. Adusumilli, Ajay Raman, Sebastian T. Ventrone, Yves T. Ngu
  • Publication number: 20220262930
    Abstract: Device structures and fabrication methods for a bipolar junction transistor. The device structure includes a substrate and a trench isolation region in the substrate. The trench isolation region surrounds an active region of the substrate. The device structure further includes a collector in the active region of the substrate, a base layer having a first section positioned on the active region and a second section oriented at an angle relative to the first section, an emitter positioned on the first section of the base layer, and an extrinsic base layer positioned over the trench isolation region and adjacent to the emitter. The second section of the base layer is laterally positioned between the extrinsic base layer and the emitter.
    Type: Application
    Filed: February 16, 2021
    Publication date: August 18, 2022
    Inventors: Vibhor Jain, Judson R. Holt, Tayel Nesheiwat, John J. Pekarik, Christopher Durcan
  • Publication number: 20220254774
    Abstract: Aspects of the disclosure provide an integrated circuit (IC) structure with a bipolar transistor stack within a substrate. The bipolar transistor stack may include: a collector, a base on the collector, and an emitter on a first portion of the base. A horizontal width of the emitter is less than a horizontal width of the base, and an upper surface of the emitter is substantially coplanar with an upper surface of the substrate. An extrinsic base structure is on a second portion of the base of the bipolar transistor stack, and horizontally adjacent the emitter. The extrinsic base structure includes an upper surface above the upper surface of the substrate.
    Type: Application
    Filed: February 11, 2021
    Publication date: August 11, 2022
    Inventors: Uzma B. Rana, Vibhor Jain, Anthony K. Stamper, Qizhi Liu, Siva P. Adusumilli
  • Patent number: 11411081
    Abstract: The disclosure provides a field effect transistor (FET) stack with methods to form the same. The FET stack includes a first transistor over a substrate. The first transistor includes a first active semiconductor material including a first channel region between a first set of source/drain terminals, and a first gate structure over the first channel region. The first gate structure includes a first gate insulator of a first thickness above the first channel region. A second transistor is over the substrate and horizontally separated from the first transistor. A second gate structure of the second transistor may include a second gate insulator of a second thickness above a second channel region, the second thickness being greater than the first thickness. A shared gate node may be coupled to each of the first gate structure and the second gate structure.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: August 9, 2022
    Assignee: GlobalFoundries U.S. Inc.
    Inventors: Steven M. Shank, Anthony K. Stamper, Vibhor Jain, John J. Ellis-Monaghan
  • Publication number: 20220238646
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to airgap structures in a doped region under one or more transistors and methods of manufacture. The structure includes: a semiconductor material comprising a doped region; one or more sealed airgap structures breaking up the doped region of the semiconductor material; and a field effect transistor over the one or more sealed airgap structures and the semiconductor material.
    Type: Application
    Filed: January 25, 2021
    Publication date: July 28, 2022
    Inventors: Mark D. LEVY, Siva P. ADUSUMILLI, Johnatan A. KANTAROVSKY, Vibhor JAIN
  • Publication number: 20220223688
    Abstract: The disclosure provides a field effect transistor (FET) stack with methods to form the same. The FET stack includes a first transistor over a substrate. The first transistor includes a first active semiconductor material including a first channel region between a first set of source/drain terminals, and a first gate structure over the first channel region. The first gate structure includes a first gate insulator of a first thickness above the first channel region. A second transistor is over the substrate and horizontally separated from the first transistor. A second gate structure of the second transistor may include a second gate insulator of a second thickness above a second channel region, the second thickness being greater than the first thickness. A shared gate node may be coupled to each of the first gate structure and the second gate structure.
    Type: Application
    Filed: March 2, 2022
    Publication date: July 14, 2022
    Inventors: Steven M. Shank, Anthony K. Stamper, Vibhor Jain, John J. Ellis-Monaghan
  • Patent number: 11380622
    Abstract: The disclosure provides a method to authenticate an integrated circuit (IC) structure. The method may include forming a first authentication film (AF) material within the IC structure. A composition of the first AF material is different from an adjacent material within the IC structure. The method includes converting the first AF material into a void within the IC structure. Additionally, the method includes creating an authentication map of the IC structure to include a location of the void in the IC structure for authentication of the IC structure.
    Type: Grant
    Filed: November 20, 2020
    Date of Patent: July 5, 2022
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: Vibhor Jain, Sunil K. Singh, Johnatan A. Kantarovsky, Siva P. Adusumilli, Sebastian T. Ventrone, John J. Ellis-Monaghan, Yves T. Ngu
  • Patent number: 11374092
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to virtual bulk in semiconductor on insulator technology and methods of manufacture. The structure includes a heterojunction bipolar transistor formed on a semiconductor on insulator (SOI) wafer with a doped sub-collector material in a buried insulator region under a semiconductor substrate of the SOI wafer.
    Type: Grant
    Filed: February 7, 2020
    Date of Patent: June 28, 2022
    Assignee: GLOBALFOUNDRIES U.S. INC.
    Inventors: John J. Pekarik, Vibhor Jain, Herbert Ho, Claude Ortolland, Qizhi Liu
  • Publication number: 20220199525
    Abstract: The present disclosure relates to semiconductor structures and, more particularly, to a metal-free fuse structure and methods of manufacture. The structure includes: a first metal-free fuse structure comprising a top semiconductor material of semiconductor-on-insulator (SOI) technologies, the top semiconductor material including end portions with a first electrical resistance and a fuse portion of a second, higher electrical resistance electrically connected to the end portions; and a second metal-free fuse structure comprising the top semiconductor material of semiconductor-on-insulator (SOI) technologies, the top semiconductor material of the second metal-free fuse structure including at least a fuse portion of a lower electrical resistance than the second, higher electrical resistance.
    Type: Application
    Filed: December 18, 2020
    Publication date: June 23, 2022
    Inventors: Anthony K. STAMPER, John J. ELLIS-MONAGHAN, Steven M. SHANK, John J. PEKARIK, Vibhor JAIN
  • Publication number: 20220189877
    Abstract: Processing forms an integrated circuit structure having first and second layers on opposite sides of an insulator, and an interconnect structure extending through the insulator between the first layer and the second layer. The interconnect structure is formed in an opening extending through the insulator between the first layer and the second layer and has an electrical conductor in the opening extending between the first layer and the second layer and a thermally conductive electrical insulator liner along sidewalls of the opening extending between the first layer and the second layer. The electrical conductor is positioned to conduct electrical signals between the first layer and the second layer, and the thermally conductive electrical insulator liner is positioned to transfer heat between the first layer and the second layer.
    Type: Application
    Filed: December 15, 2020
    Publication date: June 16, 2022
    Applicant: GLOBALFOUNDRIES U.S. Inc.
    Inventors: Anthony K. Stamper, Vibhor Jain, Steven M. Shank, John J. Ellis-Monaghan, John J. Pekarik