Patents by Inventor Wei Hwang

Wei Hwang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200091006
    Abstract: Embodiments disclosed herein relate to a pre-deposition treatment of materials utilized in metal gates of different transistors on a semiconductor substrate. In an embodiment, a method includes exposing a first metal-containing layer of a first device and a second metal-containing layer of a second device to a reactant to form respective monolayers on the first and second metal-containing layers. The first and second devices are on a substrate. The first device includes a first gate structure including the first metal-containing layer. The second device includes a second gate structure including the second metal-containing layer different from the second metal-containing layer. The monolayers on the first and second metal-containing layers are exposed to an oxidant to provide a hydroxyl group (—OH) terminated surface for the monolayers. Thereafter, a third metal-containing layer is formed on the —OH terminated surfaces of the monolayers on the first and second metal-containing layers.
    Type: Application
    Filed: November 18, 2019
    Publication date: March 19, 2020
    Inventors: Cheng-Yen Tsai, Chung-Chiang Wu, Tai-Wei Hwang, Hung-Chin Chung, Wei-Chin Lee, Da-Yuan Lee, Ching-Hwanq Su, Yin-Chuan Chuang, Kuan-Ting Liu
  • Publication number: 20200083108
    Abstract: Embodiments disclosed herein relate to a pre-deposition treatment of materials utilized in metal gates of different transistors on a semiconductor substrate. In an embodiment, a method includes exposing a first metal-containing layer of a first device and a second metal-containing layer of a second device to a reactant to form respective monolayers on the first and second metal-containing layers. The first and second devices are on a substrate. The first device includes a first gate structure including the first metal-containing layer. The second device includes a second gate structure including the second metal-containing layer different from the second metal-containing layer. The monolayers on the first and second metal-containing layers are exposed to an oxidant to provide a hydroxyl group (—OH) terminated surface for the monolayers. Thereafter, a third metal-containing layer is formed on the —OH terminated surfaces of the monolayers on the first and second metal-containing layers.
    Type: Application
    Filed: November 18, 2019
    Publication date: March 12, 2020
    Inventors: Cheng-Yen Tsai, Chung-Chiang Wu, Tai-Wei Hwang, Hung-Chin Chung, Wei-Chin Lee, Da-Yuan Lee, Ching-Hwanq Su, Yin-Chuan Chuang, Kuan-Ting Liu
  • Patent number: 10561830
    Abstract: Certain embodiments according to the present invention provide sleeve devices suitable for a wide range of therapeutic uses. In accordance with certain embodiments, the therapeutic sleeve device includes a nanofiber fabric assembly, which defines a plurality of pores, and at least one layer of cells embedded in the nanofiber fabric assembly.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: February 18, 2020
    Assignee: The Johns Hopkins University
    Inventors: Chao-Wei Hwang, Zhiyong Xia, Virginia E. Bogdan, Jeffrey A. Brinker, Gary Gerstenblith, Peter V. Johnston, Steven P. Schulman, Gordon Tomaselli, Robert G. Weiss
  • Patent number: 10504789
    Abstract: Embodiments disclosed herein relate to a pre-deposition treatment of materials utilized in metal gates of different transistors on a semiconductor substrate. In an embodiment, a method includes exposing a first metal-containing layer of a first device and a second metal-containing layer of a second device to a reactant to form respective monolayers on the first and second metal-containing layers. The first and second devices are on a substrate. The first device includes a first gate structure including the first metal-containing layer. The second device includes a second gate structure including the second metal-containing layer different from the second metal-containing layer. The monolayers on the first and second metal-containing layers are exposed to an oxidant to provide a hydroxyl group (—OH) terminated surface for the monolayers. Thereafter, a third metal-containing layer is formed on the —OH terminated surfaces of the monolayers on the first and second metal-containing layers.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: December 10, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Cheng-Yen Tsai, Chung-Chiang Wu, Tai-Wei Hwang, Hung-Chin Chung, Wei-Chin Lee, Da-Yuan Lee, Ching-Hwanq Su, Yin-Chuan Chuang, Kuan-Ting Liu
  • Publication number: 20190371675
    Abstract: Embodiments disclosed herein relate to a pre-deposition treatment of materials utilized in metal gates of different transistors on a semiconductor substrate. In an embodiment, a method includes exposing a first metal-containing layer of a first device and a second metal-containing layer of a second device to a reactant to form respective monolayers on the first and second metal-containing layers. The first and second devices are on a substrate. The first device includes a first gate structure including the first metal-containing layer. The second device includes a second gate structure including the second metal-containing layer different from the second metal-containing layer. The monolayers on the first and second metal-containing layers are exposed to an oxidant to provide a hydroxyl group (—OH) terminated surface for the monolayers. Thereafter, a third metal-containing layer is formed on the —OH terminated surfaces of the monolayers on the first and second metal-containing layers.
    Type: Application
    Filed: May 30, 2018
    Publication date: December 5, 2019
    Inventors: Cheng-Yen Tsai, Chung-Chiang Wu, Tai-Wei Hwang, Hung-Chin Chung, Wei-Chin Lee, Da-Yuan Lee, Ching-Hwanq Su, Yin-Chuan Chuang, Kuan-Ting Liu
  • Publication number: 20190314416
    Abstract: A method for promoting healing of tissue by delivering a bioreactor into a subject is provided. The bioreactor is an enclosed housing with paracrine factor producing cells enclosed within the housing. The housing is impermeable to the paracrine factor producing cells, impermeable to immunological cells outside of the housing, and permeable to paracrine factors produced by the paracrine factor producing cells. The paracrine factors produced by the paracrine factor producing cells are released out of the housing to promote healing of the tissue.
    Type: Application
    Filed: February 21, 2019
    Publication date: October 17, 2019
    Inventors: Gary Gerstenblith, Jason Benkoski, George Coles, Chao-Wei Hwang, Peter Johnston, Gordon Tomaselli, Robert G. Weiss, Steven P. Schulman
  • Publication number: 20190273145
    Abstract: Certain embodiments of a semiconductor device and a method of forming a semiconductor device comprise forming a high-k gate dielectric layer over a short channel semiconductor fin. A work function metal layer is formed over the high-k gate dielectric layer. A seamless metal fill layer is conformally formed over the work function metal layer.
    Type: Application
    Filed: March 1, 2018
    Publication date: September 5, 2019
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Shih-Hang CHIU, Chung-Chiang WU, Ching-Hwanq SU, Da-Yuan LEE, Ji-Cheng CHEN, Kuan-Ting LIU, Tai-Wei HWANG, Chung-Yi SU
  • Patent number: 10376682
    Abstract: Implantable pressure-actuated systems to deliver a drug and/or other substance in response to a pressure difference between a system cavity and an exterior environment, and methods of fabrication and use. A pressure-rupturable membrane diaphragm may be tuned to rupture at a desired rupture threshold, rupture site, with a desired rupture pattern, and/or within a desired rupture time. Tuning may include material selection, thickness control, surface patterning, substrate support patterning. The cavity may be pressurized above or evacuated below the rupture threshold, and a diaphragm-protective layer may be provided to prevent premature rupture in an ambient environment and to dissipate within an implant environment. A drug delivery system may be implemented within a stent to release a substance upon a decrease in blood pressure. The cavity may include a thrombolytic drug to or other substance to treat a blood clot.
    Type: Grant
    Filed: October 11, 2016
    Date of Patent: August 13, 2019
    Assignee: The Johns Hopkins University
    Inventors: Chao-Wei Hwang, Hala J. Tomey, Jon R. Resar, Robert C. Matteson, III, George L. Coles, Jr., Jason J. Benkoski, Morgana M. Trexler
  • Publication number: 20180160917
    Abstract: The present application relates to systems and methods for non-invasively determining at least one of left ventricular end diastolic pressure (LVEDP) or pulmonary capillary wedge pressure (PCWP) in a subject's heart, comprising: receiving, by a computer, a plurality of signals from a plurality of non-invasive sensors that measure a plurality of physiological effects that are correlated with functioning of said subject's heart, said plurality of physiological effects including at least one signal correlated with left ventricular blood pressure and at least one signal correlated with timing of heartbeat cycles of said subject's heart; training a machine learning model on said computer using said plurality of signals for periods of time in which said plurality of signals were being generated during a heart failure event of said subject's heart; determining said LVEDP or PCWP using said machine learning model at a time subsequent to said training and subsequent to said heart failure event.
    Type: Application
    Filed: May 5, 2016
    Publication date: June 14, 2018
    Applicants: The Johns Hopkins University, Boston Scientific Scimed Inc.
    Inventors: Qian Liu, Nichaluk Leartprapun, Jackline Wanjala, Soumyadipta Acharya, Andrew Bicek, Viachaslau Barodka, Umang Anand, Majd Alghatrif, David Kass, B. Westbrook Bernier, Chao-Wei Hwang, Peter Johnston, Trent Langston
  • Patent number: 9877662
    Abstract: A vessel sensing device with automatic amendment function includes an analog processing circuit, a signal generating circuit and a DC voltage detecting circuit. The analog processing circuit includes an optical sensing module. An optical sensor of the optical sensing module generates an analog signal with a skin characteristic signal and a vessel characteristic signal according to an optical reflecting signal. The skin characteristic signal and the vessel characteristic signal respectively correspond to a skin feature and a vessel feature of the user. The signal generating circuit is coupled to the analog processing circuit to transform the analog signal into a compensation signal. The DC voltage detecting circuit is coupled to the signal generating circuit and adapted to compensate the analog processing circuit according to the compensation signal, so as to decrease the skin characteristic signal within the analog signal.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: January 30, 2018
    Assignee: PixArt Imaging Inc.
    Inventors: Peng-Sheng Chen, Hsiang-Wei Hwang, Jui-Te Chiu
  • Publication number: 20170245976
    Abstract: An implantable bioreactor containing a barrier which is designed to allow the release of cell-derived biomolecules, but restricts the entry of immunologic and other cells, or the egress of the cells contained within the bioreactor. Two broad classes of implantable bioreactors are envisioned, encompassing devices for both systemic delivery of the bio-products and local delivery at the target tissue. Bioreactors of both classes can be implanted via surgery, through percutaneous techniques, or other techniques which effect implantation.
    Type: Application
    Filed: March 23, 2017
    Publication date: August 31, 2017
    Inventors: Gary Gerstenblith, Jason Benkoski, Jeffrey Brinker, George Coles, Chao-Wei Hwang, Peter Johnston, Gordon Tomaselli, Robert G. Weiss, Steven P. Schulman
  • Patent number: 9608575
    Abstract: A signal amplifying circuit with noise suppression function includes a first circuit module and a second circuit module. The first circuit module includes a current source and a switch. The current source is connected to an input stage for inputting a current. The switch is connected to a first output terminal and adapted to switch the input stage and the first output terminal according to a chopping frequency. The second circuit module includes an equivalent capacitance disposed between an output stage and a second input terminal connected to the first output terminal. The signal amplifying circuit controls current volume of the current source and capacity value of the equivalent capacitance to accordingly adjust an interior frequency bandwidth of the signal amplifying circuit, and the interior frequency bandwidth is smaller than the chopping frequency and greater than an input signal of the input stage.
    Type: Grant
    Filed: November 3, 2015
    Date of Patent: March 28, 2017
    Assignee: PixArt Imaging Inc.
    Inventors: Hsiang-Wei Hwang, Jui-Te Chiu
  • Publication number: 20170028181
    Abstract: Implantable pressure-actuated systems to deliver a drug and/or other substance in response to a pressure difference between a system cavity and an exterior environment, and methods of fabrication and use. A pressure-rupturable membrane diaphragm may be tuned to rupture at a desired rupture threshold, rupture site, with a desired rupture pattern, and/or within a desired rupture time. Tuning may include material selection, thickness control, surface patterning, substrate support patterning. The cavity may be pressurized above or evacuated below the rupture threshold, and a diaphragm-protective layer may be provided to prevent premature rupture in an ambient environment and to dissipate within an implant environment. A drug delivery system may be implemented within a stent to release a substance upon a decrease in blood pressure. The cavity may include a thrombolytic drug to or other substance to treat a blood clot.
    Type: Application
    Filed: October 11, 2016
    Publication date: February 2, 2017
    Inventors: Chao-Wei Hwang, Hala J. Tomey, Jon R. Resar, Robert C. Matteson, III, George L. Coles, JR., Jason J. Benkoski, Morgana M. Trexler
  • Publication number: 20170019073
    Abstract: A signal amplifying circuit with noise suppression function includes a first circuit module and a second circuit module. The first circuit module includes a current source and a switch. The current source is connected to an input stage for inputting a current. The switch is connected to a first output terminal and adapted to switch the input stage and the first output terminal according to a chopping frequency. The second circuit module includes an equivalent capacitance disposed between an output stage and a second input terminal connected to the first output terminal. The signal amplifying circuit controls current volume of the current source and capacity value of the equivalent capacitance to accordingly adjust an interior frequency bandwidth of the signal amplifying circuit, and the interior frequency bandwidth is smaller than the chopping frequency and greater than an input signal of the input stage.
    Type: Application
    Filed: November 3, 2015
    Publication date: January 19, 2017
    Inventors: Hsiang-Wei Hwang, Jui-Te Chiu
  • Patent number: 9504586
    Abstract: Implantable pressure-actuated systems to deliver a drug and/or other substance in response to a pressure difference between a system cavity and an exterior environment, and methods of fabrication and use. A pressure-rupturable membrane diaphragm may be tuned to rupture at a desired rupture threshold, rupture site, with a desired rupture pattern, and/or within a desired rupture time. Tuning may include material selection, thickness control, surface patterning, substrate support patterning. The cavity may be pressurized above or evacuated below the rupture threshold, and a diaphragm-protective layer may be provided to prevent premature rupture in an ambient environment and to dissipate within an implant environment. A drug delivery system may be implemented within a stent to release a substance upon a decrease in blood pressure. The cavity may include a thrombolytic drug to or other substance to treat a blood clot.
    Type: Grant
    Filed: February 13, 2014
    Date of Patent: November 29, 2016
    Assignee: The Johns Hopkins University
    Inventors: Chao-Wei Hwang, Hala J. Tomey, Jon R. Resar, Robert C. Matteson, III, George L. Coles, Jr., Jason J. Benkoski, Morgana M. Trexler
  • Patent number: 9425812
    Abstract: A circuit calibrating method, applied to an ACS generating circuit, which comprises a plurality of ACS generating units and activates the ACS generating unit corresponding to different DCCs to generate difference ACSs. The circuit calibrating method comprises: (a) determining which one of the ACSs has a large difference from an ideal value thereof; (b) adjusting a number of the ACS generating units, which are activated by a DCC corresponding to the ACS acquired in the step (a), or a next stage of the DCC corresponding to the ACS acquired in the step (a); and (c) generating the ACS to a target circuit, according to the number of the ACS generating circuits adjusted in the step (b).
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: August 23, 2016
    Assignee: PixArt Imaging Inc.
    Inventors: Hsiang-Wei Hwang, Yung-Hung Chen, Han-Chi Liu
  • Publication number: 20160235956
    Abstract: Certain embodiments according to the present invention provide sleeve devices suitable for a wide range of therapeutic uses. In accordance with certain embodiments, the therapeutic sleeve device includes a nanofiber fabric assembly, which defines a plurality of pores, and at least one layer of cells embedded in the nanofiber fabric assembly.
    Type: Application
    Filed: October 7, 2014
    Publication date: August 18, 2016
    Inventors: Chao-Wei Hwang, Zhiyong Xia, Virginia E. Bogdan, Jeffrey A. Brinker, Gary Gerstenblith, Peter V. Johnston, Steven P. Schulman, Gordon Tomaselli, Robert G. Weiss
  • Publication number: 20160173116
    Abstract: A circuit calibrating method, applied to an ACS generating circuit, which comprises a plurality of ACS generating units and activates the ACS generating unit corresponding to different DCCs to generate difference ACSs. The circuit calibrating method comprises: (a) determining which one of the ACSs has a large difference from an ideal value thereof; (b) adjusting a number of the ACS generating units, which are activated by a DCC corresponding to the ACS acquired in the step (a), or a next stage of the DCC corresponding to the ACS acquired in the step (a); and (c) generating the ACS to a target circuit, according to the number of the ACS generating circuits adjusted in the step (b).
    Type: Application
    Filed: June 29, 2015
    Publication date: June 16, 2016
    Inventors: Hsiang-Wei Hwang, Yung-Hung Chen, Han-Chi Liu
  • Publication number: 20160128146
    Abstract: A current-steering DAC circuit for switching a light emitting diode, the current-steering DAC circuit including a current-steering DAC and a resistor. The current-steering DAC outputs a stable current and includes a plurality of current-steering units with a first output end and a second output end. The first output end is electrically connected to the light emitting diode, and the second output end is electrically connected to the resistor. Each of the current-steering units includes a current source and a switching circuit. A first end of the switching circuit is electrically connected to the current source. A second end and a third end of the switching circuit are electrically connected to the first output end and the second output end of the current-steering DAC, respectively. The switching circuit is controlled by a switching signal so as to selectively connect one of the second end and the third end to the first end.
    Type: Application
    Filed: March 2, 2015
    Publication date: May 5, 2016
    Inventors: CHIA-HSUN WU, PENG-SHENG CHEN, HSIANG-WEI HWANG, JUI-TE CHIU
  • Publication number: 20160120463
    Abstract: A vessel sensing device with automatic amendment function includes an analog processing circuit, a signal generating circuit and a DC voltage detecting circuit. The analog processing circuit includes an optical sensing module. An optical sensor of the optical sensing module generates an analog signal with a skin characteristic signal and a vessel characteristic signal according to an optical reflecting signal. The skin characteristic signal and the vessel characteristic signal respectively correspond to a skin feature and a vessel feature of the user. The signal generating circuit is coupled to the analog processing circuit to transform the analog signal into a compensation signal. The DC voltage detecting circuit is coupled to the signal generating circuit and adapted to compensate the analog processing circuit according to the compensation signal, so as to decrease the skin characteristic signal within the analog signal.
    Type: Application
    Filed: June 22, 2015
    Publication date: May 5, 2016
    Inventors: Peng-Sheng Chen, Hsiang-Wei Hwang, Jui-Te Chiu