Patents by Inventor Wen Liao

Wen Liao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10388865
    Abstract: The present disclosure, in some embodiments, relates to a resistive random access memory (RRAM) cell. The RRAM cell has a bottom electrode disposed over a lower interconnect layer and a data storage layer having a first thickness over the bottom electrode. A capping layer is disposed over the data storage layer. The capping layer has a second thickness that is in a range of between approximately 2 and approximately 3 times thicker than the first thickness. A top electrode is disposed over the capping layer and an upper interconnect layer is disposed over the top electrode.
    Type: Grant
    Filed: January 15, 2018
    Date of Patent: August 20, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Trinh Hai Dang, Hsing-Lien Lin, Cheng-Yuan Tsai, Chin-Chieh Yang, Yu-Wen Liao, Wen-Ting Chu, Chia-Shiung Tsai
  • Patent number: 10373916
    Abstract: A semiconductor device package includes a substrate, a component on a surface of the substrate, a package body encapsulating the component, and an electromagnetic interference (EMI) shield conformally formed on the package body, where the EMI shield has a side portion defining an opening.
    Type: Grant
    Filed: July 28, 2016
    Date of Patent: August 6, 2019
    Assignee: UNIVERSAL SCIENTIFIC INDUSTRIAL (SHANGHAI) CO., LTD.
    Inventors: Ji-Min Lin, Ming-Wen Liao, Chun-Ying Huang
  • Publication number: 20190233336
    Abstract: Methods, apparatus and systems using heat exchanger reactors to form polymer derived ceramic materials, including methods for making polysilocarb (SiOC) precursors.
    Type: Application
    Filed: July 22, 2018
    Publication date: August 1, 2019
    Applicant: Melior Innovations, Inc.
    Inventors: Richard Landtiser, Wen Liao, Connor Kilgallen, Douglas Dukes, Isabel Burlingame
  • Patent number: 10365408
    Abstract: An anti-glare and anti-reflection device including a base and an anti-reflection film is provided. The base includes a plurality of micro protrusions. The micro protrusions are connected to each other to form a rough surface. The rough surface has a first point furthest from a display surface and a second point closest to the display surface. A distance between the first point and the second point in a normal direction of the display surface is HD, and 1 ?m?HD?20 ?m. A normal projection of each of the micro protrusions on the display surface has a first axis length R1 and a second axis length R2, 1 ?m?R1?20 ?m, and 1 ?m?R2?20 ?m. The anti-reflection film is disposed on the rough surface. The anti-reflection film has a thickness T in a normal direction of the rough surface, and T/H?0.1.
    Type: Grant
    Filed: January 14, 2018
    Date of Patent: July 30, 2019
    Assignee: Au Optronics Corporation
    Inventors: Kuan-Yu Tung, Shu-Wen Liao, Wang-Shuo Kao
  • Publication number: 20190229265
    Abstract: Some embodiments relate to a device. The device includes a top electrode and a via disposed over the top electrode. A peripheral upper surface of the top electrode is above a central upper surface of the top electrode, and a tapered inner sidewall of the top electrode connects the peripheral upper surface to the central upper surface. The via establishes electrical contact with the tapered inner sidewall but is spaced apart from the central upper surface.
    Type: Application
    Filed: April 2, 2019
    Publication date: July 25, 2019
    Inventors: Hsia-Wei Chen, Wen-Ting Chu, Kuo-Chi Tu, Chih-Yang Chang, Chin-Chieh Yang, Yu-Wen Liao, Wen-Chun You, Sheng-Hung Shih
  • Patent number: 10359921
    Abstract: The invention introduces a method for operating interactive whiteboards, performed by a processing unit of a control node, which contains at least the following steps. A connected-device display region, a multi-screen layout region and a whiteboard display region are provided on an interactive display device. After detecting that an icon of the connected-device display region is dragged and dropped into a block of the multi-screen layout region, a network address associated with the icon is obtained. A TCP port number associated with the block of the connected-device display region, which contains the dropped icon, is obtained. A ready notification containing the TCP port number is transmitted to the network address. Screen data with the TCP port number is received. The screen data is displayed on a block of the whiteboard display region, which is associated with the block of the connected-device display region.
    Type: Grant
    Filed: December 12, 2014
    Date of Patent: July 23, 2019
    Assignee: WISTRON CORP.
    Inventors: Fang-Wen Liao, Pen-Tai Miao, Ping-Hung Chen
  • Patent number: 10327027
    Abstract: The invention introduces a screencasting method, executed by a processing unit of a screencasting source, which contains at least the following steps. After the screencasting source connects to a screencasting receiver, a first screen image displayed on a display unit of the screencasting source is captured. Then, the first screen image and display area information of a first input component of the first screen image is transmitted to the screencasting receiver, thereby enabling the screencasting receiver to render a second screen image according to the first screen image and the display area information, where the second screen image contains at least a second input component including at least an input string.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: June 18, 2019
    Assignee: WISTRON CORP.
    Inventors: Fang-Wen Liao, Ping-Hung Chen, Pen-Tai Miao
  • Patent number: 10276485
    Abstract: Various embodiments of the present application are directed towards an integrated circuit comprising a memory cell on a homogeneous bottom electrode via (BEVA) top surface. In some embodiments, the integrated circuit comprises a conductive wire, a via dielectric layer, a via, and a memory cell. The via dielectric layer overlies the conductive wire. The via extends through the via dielectric layer to the conductive wire, and has a first sidewall, a second sidewall, and a top surface. The first and second sidewalls of the via are respectively on opposite sides of the via, and directly contact sidewalls of the via dielectric layer. The top surface of the via is homogenous and substantially flat. Further, the top surface of the via extends laterally from the first sidewall of the via to the second sidewall of the via. The memory cell is directly on the top surface of the via.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: April 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsia-Wei Chen, Wen-Ting Chu, Yu-Wen Liao
  • Patent number: 10276790
    Abstract: Some embodiments relate to an integrated circuit device, which includes a bottom electrode, a dielectric layer, and top electrode. The dielectric layer is disposed over the bottom electrode. The top electrode is disposed over the dielectric layer, and an upper surface of the top electrode exhibits a recess. A via is disposed over the top electrode. The via makes electrical contact with only a tapered sidewall of the recess without contacting a bottom surface of the recess.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: April 30, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Hsia-Wei Chen, Wen-Ting Chu, Kuo-Chi Tu, Chih-Yang Chang, Chin-Chieh Yang, Yu-Wen Liao, Wen-Chun You, Sheng-Hung Shih
  • Publication number: 20190123274
    Abstract: A memory cell and method including a first electrode formed through a first opening in a first dielectric layer, a resistive layer formed on the first electrode, a spacing layer formed on the resistive layer, a second electrode formed on the resistive layer, and a second dielectric layer formed on the second electrode, the second dielectric layer including a second opening. The first dielectric layer formed on a substrate including a first metal layer. The first electrode and the resistive layer collectively include a first lip region that extends a first distance beyond the first opening. The second electrode and the second dielectric layer collectively include a second lip region that extends a second distance beyond the first opening. The spacing layer extends from the second distance to the first distance. The second electrode is coupled to a second metal layer using a via that extends through the second opening.
    Type: Application
    Filed: December 12, 2018
    Publication date: April 25, 2019
    Inventors: Chih-Yang Chang, Hsia-Wei Chen, Chin-Chieh Yang, Kuo-Chi Tu, Wen-Ting Chu, Yu-Wen Liao
  • Publication number: 20190123271
    Abstract: The present disclosure, in some embodiments, relates to a memory device. The memory device includes a bottom electrode via and a bottom electrode over a top of the bottom electrode via. A data storage layer is over the bottom electrode and a top electrode is over the data storage layer. A top electrode via is on an upper surface of the top electrode and is centered along a first line that is laterally offset from a second line centered upon a bottommost surface of the bottom electrode via. The first line is perpendicular to the upper surface of the top electrode and parallel to the second line.
    Type: Application
    Filed: December 20, 2018
    Publication date: April 25, 2019
    Inventors: Chih-Yang Chang, Wen-Ting Chu, Kuo-Chi Tu, Yu-Wen Liao, Hsia-Wei Chen, Chin-Chieh Yang, Sheng-Hung Shih, Wen-Chun You
  • Publication number: 20190123264
    Abstract: The present disclosure, in some embodiments, relates to an integrated circuit. The integrated circuit includes a dielectric protection layer disposed over a dielectric structure that laterally surrounds one or more conductive interconnect layers. The dielectric protection layer has a protrusion extending outward from an upper surface of the dielectric protection layer. A bottom electrode is disposed over the dielectric protection layer and has sidewalls extending outward from a lower surface of the bottom electrode through the dielectric protection layer. The bottom electrode has a substantially planar upper surface over the protrusion. A data storage element is over the substantially planar upper surface of the bottom electrode, and a top electrode is over the data storage element.
    Type: Application
    Filed: December 17, 2018
    Publication date: April 25, 2019
    Inventors: Harry-Hak-Lay Chuang, Hung Cho Wang, Tong-Chern Ong, Wen-Ting Chu, Yu-Wen Liao, Kuei-Hung Shen, Kuo-Yuan Tu, Sheng-Huang Huang
  • Publication number: 20190111040
    Abstract: In accordance with the present invention, the immunoregulatory activity of low doses of P4N was investigated. Unlike previously described antitumor drugs, low dose P4N, in doses of about 1 to 10 mg/kg, or at concentrations of about 10 to 100 nM, was surprisingly found to contribute to humoral immunity by raising the titers and activities of autoantibodies against GRP78 and F1F0 ATP synthase on the surface of CT26 cells, and inducing B cell proliferation and differentiation of plasma cells. Methods for inducing endogenous antitumor autoantibodies (EAA) in a subject having a neoplasia comprising administering to the subject an effective amount of the nordihydroguaiaretic acid (NDGA) derivative P4N, or salts, solvates and stereoisomers thereof, as well as methods for inducing B cell proliferation, inducing BAFF stimulated B cell proliferation, and suppressing or inhibition growth of a neoplasia are also provided.
    Type: Application
    Filed: March 30, 2017
    Publication date: April 18, 2019
    Inventors: Ru Chih C. Huang, David Mold, Tiffany Jackson, Yu-Ling Lin, Kuang-Wen Liao
  • Publication number: 20190109178
    Abstract: In some embodiments, the present disclosure relates to a method of forming a memory circuit. The method may be performed by forming an interconnect wire within an inter-level dielectric (ILD) layer over a substrate. A conjunct electrode structure is formed over the interconnect wire, a data storage film is formed over the conjunct electrode structure, and a disjunct electrode structure is formed over the data storage film. The data storage film, the disjunct electrode structure, and the conjunct electrode structure are patterned to form a first data storage layer between the interconnect wire and a first disjunct electrode and to form a second data storage layer between the interconnect wire and a second disjunct electrode.
    Type: Application
    Filed: November 28, 2018
    Publication date: April 11, 2019
    Inventors: Chin-Chieh Yang, Chih-Yang Chang, Wen-Ting Chu, Yu-Wen Liao
  • Publication number: 20190096795
    Abstract: Various embodiments of the present application are directed towards an integrated circuit comprising a memory cell on a homogeneous bottom electrode via (BEVA) top surface. In some embodiments, the integrated circuit comprises a conductive wire, a via dielectric layer, a via, and a memory cell. The via dielectric layer overlies the conductive wire. The via extends through the via dielectric layer to the conductive wire, and has a first sidewall, a second sidewall, and a top surface. The first and second sidewalls of the via are respectively on opposite sides of the via, and directly contact sidewalls of the via dielectric layer. The top surface of the via is homogenous and substantially flat. Further, the top surface of the via extends laterally from the first sidewall of the via to the second sidewall of the via. The memory cell is directly on the top surface of the via.
    Type: Application
    Filed: November 28, 2018
    Publication date: March 28, 2019
    Inventors: Hsia-Wei Chen, Wen-Ting Chu, Yu-Wen Liao
  • Publication number: 20190067373
    Abstract: In some embodiments, the present disclosure relates to a memory circuit having a first resistive random access memory (RRAM) element and a second RRAM element arranged within a dielectric structure over a substrate. The first RRAM element has a first conjunct electrode separated from a first disjunct electrode by a first data storage layer. The second RRAM element has a second conjunct electrode separated from a second disjunct electrode by a second data storage layer. A control device is disposed within the substrate and has first terminal coupled to the first conjunct electrode and the second conjunct electrode and a second terminal coupled to a word-line.
    Type: Application
    Filed: February 26, 2018
    Publication date: February 28, 2019
    Inventors: Chin-Chieh Yang, Chih-Yang Chang, Wen-Ting Chu, Yu-Wen Liao
  • Publication number: 20190058109
    Abstract: Various embodiments of the present application are directed towards a method for forming a flat via top surface for memory, as well as an integrated circuit (IC) resulting from the method. In some embodiments, an etch is performed into a dielectric layer to form an opening. A liner layer is formed covering the dielectric layer and lining the opening. A lower body layer is formed covering the dielectric layer and filling a remainder of the opening over the liner layer. A top surface of the lower body layer and a top surface of the liner layer are recessed to below a top surface of the dielectric layer to partially clear the opening. A homogeneous upper body layer is formed covering the dielectric layer and partially filling the opening. A planarization is performed into the homogeneous upper body layer until the dielectric layer is reached.
    Type: Application
    Filed: November 27, 2017
    Publication date: February 21, 2019
    Inventors: Hsia-Wei Chen, Chih-Yang Chang, Chin-Chieh Yang, Jen-Sheng Yang, Sheng-Hung Shih, Tung-Sheng Hsiao, Wen-Ting Chu, Yu-Wen Liao, I-Ching Chen
  • Publication number: 20190051702
    Abstract: A resistive random access memory (RRAM) structure includes a resistive memory element formed on a semiconductor substrate. The resistive element includes a top electrode, a bottom electrode, and a resistive material layer positioned between the top electrode and the bottom electrode. The RRAM structure further includes a field effect transistor (FET) formed on the semiconductor substrate, the FET having a source and a drain. The drain of the FET has a higher doping concentration than the source of the FET. The resistive memory element is coupled with the drain via a portion of an interconnect structure.
    Type: Application
    Filed: October 15, 2018
    Publication date: February 14, 2019
    Inventors: Chin-Chieh Yang, Hsia-Wei Chen, Chih-Yang Chang, Kuo-Chi Tu, Wen-Ting Chu, Yu-Wen Liao
  • Publication number: 20190043795
    Abstract: Various embodiments of the present application are directed towards an integrated circuit comprising a memory cell on a homogeneous bottom electrode via (BEVA) top surface. In some embodiments, the integrated circuit comprises a conductive wire, a via dielectric layer, a via, and a memory cell. The via dielectric layer overlies the conductive wire. The via extends through the via dielectric layer to the conductive wire, and has a first sidewall, a second sidewall, and a top surface. The first and second sidewalls of the via are respectively on opposite sides of the via, and directly contact sidewalls of the via dielectric layer. The top surface of the via is homogenous and substantially flat. Further, the top surface of the via extends laterally from the first sidewall of the via to the second sidewall of the via. The memory cell is directly on the top surface of the via.
    Type: Application
    Filed: September 26, 2017
    Publication date: February 7, 2019
    Inventors: Hsia-Wei Chen, Wen-Ting Chu, Yu-Wen Liao
  • Patent number: 10199575
    Abstract: The present disclosure relates to a resistive random access memory (RRAM) device. The RRAM device has a bottom electrode arranged over a bottom electrode via. A variable resistive dielectric layer is arranged over the bottom electrode. The variable resistive dielectric layer extends to within a recess in an upper surface of the bottom electrode. A top electrode is disposed over the variable resistive dielectric layer. A top electrode via extends outward from an upper surface of the top electrode at a position centered along a first axis that is laterally offset from a second axis centered upon the recess within the upper surface of the bottom electrode. The top electrode via has a smaller total width than the top electrode.
    Type: Grant
    Filed: July 29, 2016
    Date of Patent: February 5, 2019
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Yang Chang, Wen-Ting Chu, Kuo-Chi Tu, Yu-Wen Liao, Hsia-Wei Chen, Chin-Chieh Yang, Sheng-Hung Shih, Wen-Chun You