Patents by Inventor Wen Liu

Wen Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9653545
    Abstract: A MOSFET disposed between shallow trench isolation (STI) structures includes an epitaxial silicon layer formed over a substrate surface and extending over inwardly extending ledges of the STI structures. The gate width of the MOSFET is therefore the width of the epitaxial silicon layer and greater than the width of the original substrate surface between the STI structures. The epitaxial silicon layer is formed over the previously doped channel and is undoped upon deposition. A thermal activation operation may be used to drive dopant impurities into the transistor channel region occupied by the epitaxial silicon layer but the dopant concentration at the channel location where the epitaxial silicon layer intersects with the gate dielectric, is minimized.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: May 16, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Mahaveer Sathaiya Dhanyakumar, Wei-Hao Wu, Tsung-Hsing Yu, Chia-Wen Liu, Tzer-Min Shen, Ken-Ichi Goto, Zhiqiang Wu
  • Publication number: 20170133508
    Abstract: A method for forming a semiconductor device includes forming a fin extending upwards from a semiconductor substrate and forming a sacrificial layer on sidewalls of a portion of the fin. The method further includes forming a spacer layer over the sacrificial layer and recessing the portion of the fin past a bottom surface of the sacrificial layer. The recessing forms a trench disposed between sidewall portions of the spacer layer. At least a portion of the sacrificial layer is removed, and a source/drain region is formed in the trench.
    Type: Application
    Filed: January 24, 2017
    Publication date: May 11, 2017
    Inventors: Kuo-Cheng Ching, Chi-Wen Liu
  • Patent number: 9647122
    Abstract: A semiconductor device includes a substrate, at least one semiconductor fin, and at least one epitaxy structure. The semiconductor fin is present on the substrate. The semiconductor fin has at least one recess thereon. The epitaxy structure is present in the recess of the semiconductor fin. A topmost location of the epitaxy structure has an n-type impurity concentration lower than an n-type impurity concentration of a location of the epitaxy structure below the topmost location.
    Type: Grant
    Filed: May 14, 2016
    Date of Patent: May 9, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Ming Chang, Chi-Wen Liu, Hsin-Chieh Huang, Cheng-Chien Li
  • Patent number: 9646954
    Abstract: An integrated circuit system comprising a first integrated and at least one of a second integrated circuit, interposer or printed circuit board. The first integrated circuit further comprising a wiring stack, bond pads electrically connected to the wiring stack, and bump balls formed on the bond pads. First portions of the wiring stack and the bond pads form a functional circuit, and second portions of the wiring stack and the bond pads form a test circuit. A portion of the bump balls comprising dummy bump balls. The dummy bump balls electrically connected to the second portions of the wiring stack and the bond pads. The at least one of the second integrated circuit, interposer or printed circuit board forming a portion of the test circuit.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: May 9, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Shih-Wei Liang, Yu-Wen Liu, Hsien-Wei Chen
  • Publication number: 20170125259
    Abstract: Provided are improved semiconductor memory devices and methods for manufacturing such semiconductor memory devices. The methods may include two or more nitride removal steps during formation of gate layers in vertical memory cells. The two or more nitride removal steps may allow for wider gate layers increasing the gate fill-in, reducing the occurrence of voids, and thereby improving the word line resistance.
    Type: Application
    Filed: November 4, 2015
    Publication date: May 4, 2017
    Inventors: Jr-Meng WANG, Chih-Yuan WU, Kuanf-Wen LIU, Jung-Yi GUO, Chun-Min CHENG
  • Publication number: 20170125537
    Abstract: A semiconductor device includes a n-type gate structure over a first semiconductor fin, in which the n-type gate structure includes a n-type work function metal layer overlying the first high-k dielectric layer. The n-type work function metal layer includes a TiAl (titanium aluminum) alloy, in which an atom ratio of Ti (titanium) to Al (aluminum) is in a range substantially from 1 to 3. The semiconductor device further includes a p-type gate structure over a second semiconductor fin, in which the p-type gate structure includes a p-type work function metal layer overlying the second high-k dielectric layer. The p-type work function metal layer includes titanium nitride (TiN), in which an atom ratio of Ti to N (nitrogen) is in a range substantially from 1:0.9 to 1:1.1.
    Type: Application
    Filed: December 29, 2015
    Publication date: May 4, 2017
    Inventors: Shiu-Ko JANGJIAN, Chi-Cheng HUNG, Chi-Wen LIU, Horng-Huei TSENG
  • Publication number: 20170116497
    Abstract: Intelligent multi-scale image parsing determines the optimal size of each observation by an artificial agent at a given point in time while searching for the anatomical landmark. The artificial agent begins searching image data with a coarse field-of-view and iteratively decreases the field-of-view to locate the anatomical landmark. After searching at a coarse field-of view, the artificial agent increases resolution to a finer field-of-view to analyze context and appearance factors to converge on the anatomical landmark. The artificial agent determines applicable context and appearance factors at each effective scale.
    Type: Application
    Filed: January 3, 2017
    Publication date: April 27, 2017
    Inventors: Bogdan Georgescu, Florin Cristian Ghesu, Yefeng Zheng, Dominik Neumann, Tommaso Mansi, Dorin Comaniciu, Wen Liu, Shaohua Kevin Zhou
  • Publication number: 20170117377
    Abstract: Semiconductor devices and methods for forming semiconductor devices are provided. A vertical channel structure extends from a substrate and is formed as a channel between a source region and a drain region. A first metal gate surrounds a portion of the vertical channel structure and has a gate length. The first metal gate has a first gate section with a first workfunction and a first thickness. The first metal gate also has a second gate section with a second workfunction and a second thickness. The first thickness is different from the second thickness, and the sum of the first thickness and the second thickness is equal to the gate length. A ratio of the first thickness to the second thickness is chosen to achieve a desired threshold voltage level for the semiconductor device.
    Type: Application
    Filed: January 9, 2017
    Publication date: April 27, 2017
    Inventors: Jean-Pierre Colinge, Chia-Wen Liu, Wei-Hao Wu, Chih-Hao Wang, Carlos H. Diaz
  • Patent number: 9634132
    Abstract: A semiconductor device is provided having a channel formed from a nanowire with multi-level band gap energy. The semiconductor device comprises a nanowire structure formed between source and drain regions. The nanowire structure has a first band gap energy section joined with a second band gap energy section. The first band gap energy section is coupled to the source region and has a band gap energy level greater than the band gap energy level of the second band gap energy section. The second band gap energy section is coupled to the drain region. The first band gap energy section comprises a first material and the second band gap energy section comprises a second material wherein the first material is different from the second material. The semiconductor device further comprises a gate region around the junction between the first band gap energy section and the second band gap energy section.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: April 25, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Tsung-Hsing Yu, Chia-Wen Liu, Yeh Hsu, Jean-Pierre Colinge
  • Publication number: 20170110559
    Abstract: A method for forming a tunneling field-effect transistor (TFET) is disclosed. The method includes etching a semiconductor substrate to form a semiconductor protrusion that protrudes out from a top surface of the semiconductor substrate, forming a drain region in lower portion of the semiconductor protrusion, and patterning a gate stack layer to form a gate stack. The gate stack has a gating surface that directly contacts and wraps around a middle portion of the semiconductor protrusion. The method further includes forming a source region in an upper portion of the semiconductor protrusion and forming a source contact over the source region, the source contact have a first width that is larger than a width of the source region.
    Type: Application
    Filed: December 28, 2016
    Publication date: April 20, 2017
    Inventors: Harry-Hak-Lay Chuang, Cheng-Cheng Kuo, Chi-Wen Liu, Ming Zhu
  • Patent number: 9627220
    Abstract: Provided are improved semiconductor memory devices and methods for manufacturing such semiconductor memory devices. The methods may include two or more nitride removal steps during formation of gate layers in vertical memory cells. The two or more nitride removal steps may allow for wider gate layers increasing the gate fill-in, reducing the occurrence of voids, and thereby improving the word line resistance.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: April 18, 2017
    Assignee: Macronix International Co., Ltd.
    Inventors: Jr-Meng Wang, Chih-Yuan Wu, Kuanf-Wen Liu, Jung-Yi Guo, Chun-Min Cheng
  • Patent number: 9626575
    Abstract: In an approach for visual liveness detection, a video-audio signal related to a speaker speaking a text is obtained. The video-audio signal is split into a video signal which records images of the speaker and an audio signal which records a speech spoken by the speaker. Then a first sequence indicating visual mouth openness is obtained from the video signal, and a second sequence indicating acoustic mouth openness is obtained based on the text and the audio signal. Synchrony between the first and second sequences is measured, and the liveness of the speaker is determined based on the synchrony.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: April 18, 2017
    Assignee: International Business Machines Corporation
    Inventors: Min Li, Wen Liu, Yong Qin, Zhong Su, Shi Lei Zhang, Shiwan Zhao
  • Publication number: 20170104061
    Abstract: Transistor structures and methods of forming transistor structures are provided. The transistor structures include alternating layers of a first epitaxial material and a second epitaxial material. In some embodiments, one of the first epitaxial material and the second epitaxial material may be removed for one of an n-type or p-type transistor. A bottommost layer of the first epitaxial material and the second epitaxial material maybe be removed, and sidewalls of one of the first epitaxial material and the second epitaxial material may be indented or recessed.
    Type: Application
    Filed: November 6, 2015
    Publication date: April 13, 2017
    Inventors: Cheng-Yi Peng, Hung-Li Chiang, Yu-Lin Yang, Chih Chieh Yeh, Yee-Chia Yeo, Chi-Wen Liu
  • Publication number: 20170103918
    Abstract: A method of forming a contact structure of a gate structure is provided. In the method, an oxidation layer and a first sidewall layer disposed between a first metal gate and a second metal gate are etched to expose an underlying silicon substrate. A silicide portion defined by a contact profile is deposited in the exposed portion of the silicon substrate. A second sidewall layer substantially covers the first sidewall layer and at least partially covering the silicide portion is formed after depositing the silicide portion. A metal glue layer is deposited around the first metal gate and the second metal gate defining a trench above the silicide portion. A metal plug is deposited within the trench.
    Type: Application
    Filed: December 20, 2016
    Publication date: April 13, 2017
    Inventors: Audrey Hsiao-Chiu Hsu, Fu-Kai Yang, Mei-Yun Wang, Hsien-Cheng Wang, Shih-Wen Liu, Hsin-Ying Lin
  • Publication number: 20170103532
    Abstract: Intelligent image parsing for anatomical landmarks and/or organs detection and/or segmentation is provided. A state space of an artificial agent is specified for discrete portions of a test image. A set of actions is determined, each specifying a possible change in a parametric space with respect to the test image. A reward system is established based on applying each action of the set of actions and based on at least one target state. The artificial agent learns an optimal action-value function approximator specifying the behavior of the artificial agent to maximize a cumulative future reward value of the reward system. The behavior of the artificial agent is a sequence of actions moving the agent towards at least one target state. The learned artificial agent is applied on a test image to automatically parse image content.
    Type: Application
    Filed: December 21, 2016
    Publication date: April 13, 2017
    Inventors: Florin Cristian Ghesu, Bogdan Georgescu, Dominik Neumann, Tommaso Mansi, Dorin Comaniciu, Wen Liu, Shaohua Kevin Zhou
  • Patent number: 9620591
    Abstract: A semiconductor device with multi-level work function and multi-valued channel doping is provided. The semiconductor device comprises a nanowire structure and a gate region. The nanowire structure is formed as a channel between a source region and a drain region. The nanowire structure has a first doped channel section joined with a second doped channel section. The first doped channel section is coupled to the source region and has a doping concentration greater than the doping concentration of the second doped channel section. The second doped channel section is coupled to the drain region. The gate region is formed around the junction at which the first doped section and the second doped section are joined. The gate region has a first work function gate section joined with a second work function gate section. The first work function gate section is located adjacent to the source region and has a work function greater than the work function of the second work function gate section.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: April 11, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Tsung-Hsing Yu, Yeh Hsu, Chia-Wen Liu, Jean-Pierre Colinge
  • Patent number: 9620610
    Abstract: A semiconductor device includes a n-type gate structure over a first semiconductor fin, in which the n-type gate structure includes a n-type work function metal layer overlying the first high-k dielectric layer. The n-type work function metal layer includes a TiAl (titanium aluminum) alloy, in which an atom ratio of Ti (titanium) to Al (aluminum) is in a range substantially from 1 to 3. The semiconductor device further includes a p-type gate structure over a second semiconductor fin, in which the p-type gate structure includes a p-type work function metal layer overlying the second high-k dielectric layer. The p-type work function metal layer includes titanium nitride (TiN), in which an atom ratio of Ti to N (nitrogen) is in a range substantially from 1:0.9 to 1:1.1.
    Type: Grant
    Filed: December 29, 2015
    Date of Patent: April 11, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., LTD.
    Inventors: Shiu-Ko Jangjian, Chi-Cheng Hung, Chi-Wen Liu, Horng-Huei Tseng
  • Publication number: 20170098613
    Abstract: A semiconductor device includes a semiconductor substrate, an epitaxy structure present in the semiconductor substrate, and a silicide present on a textured surface of the epitaxy structure. A plurality of sputter ions are present between the silicide and the epitaxy structure. Since the surface of the epitaxy structure is textured, the contact area provided by the silicide is increased accordingly, thus the resistance of a interconnection structure in the semiconductor device is reduced.
    Type: Application
    Filed: December 16, 2016
    Publication date: April 6, 2017
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Hung LIN, Chi-Wen LIU, Horng-Huei TSENG
  • Patent number: 9611235
    Abstract: Provided herein are methods and compositions related to a retinoid receptor-selective pathway. As described herein, this pathway can be targeted to manipulate a tumor microenvironment. For example, the methods and compositions described herein can be used to induce apoptosis in a cancer cell. Further, the compositions described herein, including Sulindac and analogs thereof, can be used to target this pathway for the treatment or prevention of cancer in human patients.
    Type: Grant
    Filed: May 6, 2011
    Date of Patent: April 4, 2017
    Assignees: SANFORD-BURNHAM MEDICAL RESEARCH INSTITUTE, XIAMEN UNIVERSITY
    Inventors: Xiao-kun Zhang, Ying Su, Hu Zhou, Wen Liu, Pei-Qiang Huang
  • Patent number: D785145
    Type: Grant
    Filed: July 24, 2015
    Date of Patent: April 25, 2017
    Inventor: Ching-Wen Liu