Patents by Inventor Wen Liu

Wen Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8389402
    Abstract: A method of via formation in a semiconductor device includes the following steps of providing a photoresist with a photoresist pattern defining an opening of a via, wherein the photoresist comprising a thermally cross-linking material is disposed on a structure layer; dry-etching the structure layer to a first depth through the opening; baking the thermally cross-linking material to reduce the opening; and dry-etching the structure layer to a second depth through the reduced opening, wherein the second depth is greater than the first depth.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: March 5, 2013
    Assignee: Nanya Technology Corporation
    Inventors: Chih Ching Lin, Yi Nan Chen, Hsien Wen Liu
  • Publication number: 20130052820
    Abstract: A method of forming conductive pattern is provided. A seeding layer is formed on an underlayer. By using an energy ray, an irradiation treatment is performed on a portion of a surface of the seeding layer. The seeding layer thus includes a plurality of irradiated regions and a plurality of unirradiated regions. A conversion treatment is performed on the irradiated regions of the seeding layer. A selective growth process is performed, so as to form a conductive pattern on each unirradiated region of the seeding layer. The irradiated regions of the seeding layer are removed, so that the conductive patterns are insulated from each other.
    Type: Application
    Filed: August 22, 2011
    Publication date: February 28, 2013
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Kuo-Hui Su, Yi-Nan Chen, Hsien-Wen Liu
  • Publication number: 20130049846
    Abstract: A circuit structure with a capacitor or a resistor includes a semiconductor substrate, a first conductive region positioned in the semiconductor substrate, a plurality of second conductive regions and third conductive regions positioned in the first conductive region, a first depletion region positioned between the first conductive region and the third conductive region, a second depletion region positioned between the second conductive region and the third conductive region, and a plurality of separating regions positioned in the first conductive region, configured to separate the second and the third conductive regions. In operation, a first voltage is applied to the separating region to control the capacitance or the resistance of the circuit structure. A second voltage is applied to the first conductive region and a third voltage is applied to the second conductive region to measure the capacitance and the resistance of the circuit structure.
    Type: Application
    Filed: August 23, 2011
    Publication date: February 28, 2013
    Applicant: Nan Ya Technology Corporation
    Inventors: Jeng Hsing Jang, Yi Nan Chen, Hsien Wen Liu
  • Publication number: 20130052425
    Abstract: A micro-nano composite structure and production method thereof, whereby a micro structure is fabricated by a first layer material, and then a second layer material (such as: aluminum) covers the micro structure which conducts current through the second layer material forming an anodized aluminum to produce a nanostructure, and this nanostructure is layered on the micro structure. This structure, when completed, can be used as a mold, moreover by using nano-imprinting technology this structure can be transferred onto a transparent polymer material in a one-time production process to produce one micro-nano composite structure, and achieving a reduction of the reflection coefficients and an increased transmittance, as well as raising the usage rate of the integrated light.
    Type: Application
    Filed: November 15, 2011
    Publication date: February 28, 2013
    Inventors: Hung-Yin TSAI, Cheng-Kuo Sung, Cheng-Huan Chen, Ching-Wen Liu
  • Patent number: 8383938
    Abstract: A sliding cover faceplate and an electronic device using the same are provided. The sliding cover faceplate includes a sliding cover, a cover plate, and a sliding structure. The cover plate is provided on the electronic device, and the sliding cover is disposed on one side of the cover plate. The sliding structure includes a guiding portion and an elastic positioning portion. The guiding portion is disposed on the cover plate and is connected to the sliding cover to guide the sliding cover to slide between a first location and a second location on the cover plate. The elastic positioning portion connects the cover plate with the sliding cover to provide an elastic force to the sliding cover, such that when the sliding cover slides close to the first location or the second location, the sliding cover is automatically positioned on the first location or the second location.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: February 26, 2013
    Assignee: ASUSTek Computer Inc.
    Inventors: Chin-Lai Lin, Chih-Ming Fan, Chi-Wen Liu
  • Publication number: 20130043470
    Abstract: The present invention in a first aspect proposes a semiconductor structure with a crack stop structure. The semiconductor structure includes a matrix, an integrated circuit and a scribe line. The matrix includes a scribe line region and a circuit region. The integrated circuit is disposed within the circuit region. The scribe line is disposed within the scribe line region and includes a crack stop trench which is disposed in the matrix and adjacent to the circuit region. The crack stop trench is parallel with one side of the circuit region and filled with a composite material in the form of a grid to form a crack stop structure.
    Type: Application
    Filed: August 21, 2011
    Publication date: February 21, 2013
    Inventors: Tse-Yao Huang, Yi-Nan Chen, Hsien-Wen Liu
  • Publication number: 20130043529
    Abstract: A circuit structure including a semiconductor substrate having a depression; a first insulating layer positioned on the surface of the depression; a bottom conductor positioned in a bottom portion of the depression, wherein the bottom conductor is connected to an external bias through a plurality of longer vertical contact plugs; an upper conductor positioned in an upper portion of the depression, wherein the upper conductor is connected to a plurality of shorter vertical contact plugs, and a top surface of the upper conductor is higher than a depression-bearing surface of the semiconductor substrate; and a second insulating layer positioned between the bottom conductor and the upper conductor.
    Type: Application
    Filed: August 19, 2011
    Publication date: February 21, 2013
    Applicant: Nan Ya Technology Corporation
    Inventors: Jeng Hsing Jang, Yi Nan Chen, Hsien Wen Liu
  • Publication number: 20130045600
    Abstract: A method for fabricating a fin-shaped semiconductor structure is provided, including: providing a semiconductor substrate with a semiconductor island and a dielectric layer formed thereover; forming a mask layer over the semiconductor island and the dielectric layer; forming an opening in the mask layer, exposing a top surface of the semiconductor island and portions of the dielectric layer adjacent to the semiconductor island; performing an etching process, simultaneously etching portions of the mask layer, and portions of the semiconductor island and the dielectric layer exposed by the opening; and removing the mask layer and the dielectric layer, leaving an etched semiconductor island with curved top surfaces and various thicknesses over the semiconductor substrate.
    Type: Application
    Filed: August 15, 2011
    Publication date: February 21, 2013
    Applicant: Nanya Technology Corporation
    Inventors: Chih-Ching Lin, Yi-Nan Chen, Hsien-Wen Liu
  • Patent number: 8377632
    Abstract: The present invention provides a method of reducing microloading effect by using a photoresist layer as a buffer. The method includes: providing a substrate defined with a dense region and an isolated region. Then, a dense feature pattern and an isolated feature pattern are formed on the dense region and the isolated region respectively. After that, a photoresist layer is formed to cover the isolated region. Finally, the substrate and the photoresist layer are etched by taking the dense feature pattern and the isolated feature pattern as a mask.
    Type: Grant
    Filed: May 29, 2011
    Date of Patent: February 19, 2013
    Assignee: Nanya Technology Corp.
    Inventors: Hsiu-Chun Lee, Yi-Nan Chen, Hsien-Wen Liu
  • Publication number: 20130038264
    Abstract: In a method of fan speed control, a flow value corresponding to airflow amount through a fan during operation of the fan is detected with a fan controller. The flow value and a preset value are subsequently compared, and when the flow value is less than the preset value, a pulse-width-modulation (PWM) signal is outputted to increase rotation speed of the fan.
    Type: Application
    Filed: August 11, 2011
    Publication date: February 14, 2013
    Applicant: YEN SUN TECHNOLOGY CORP.
    Inventors: Chien-Jung CHEN, Hsien-Wen LIU, Tzu-Wen TSAI
  • Patent number: 8373254
    Abstract: A crack prevention structure that reduces integrated circuit corner peeling and reduces cracking is disclosed. The crack prevention structure comprises a semiconductor substrate; a first plurality of dielectric layers of a first material disposed over the semiconductor substrate; a second plurality of dielectric layers of a second material different than the first material, disposed on the first plurality of dielectric layers, wherein the first plurality of dielectric layers and the second plurality of dielectric layers meet at an interface; and a plurality of metal structures and a plurality of via structures formed through the interface of the first plurality of dielectric layers and the second plurality of dielectric layers.
    Type: Grant
    Filed: July 29, 2008
    Date of Patent: February 12, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsien-Wei Chen, Yu-Wen Liu, Hao-Yi Tsai
  • Publication number: 20130034966
    Abstract: A method of semiconductor fabrication including providing a semiconductor wafer and dispensing a first chemical spray onto the wafer using a first nozzle and dispensing a second chemical spray using a second nozzle onto the wafer. These dispensing may be performed simultaneously. The method may further include moving the first and second nozzle. The first and second nozzle may provide the first and second chemical spray having at least one different property. For example, different chemical compositions, concentrations, temperatures, angles of dispensing, or flow rate. A chemical dispersion apparatus providing two nozzles which are operable to be separately controlled is also provided.
    Type: Application
    Filed: August 4, 2011
    Publication date: February 7, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd., ("TSMC")
    Inventors: Ming-Hsi Yeh, Kuo-Sheng Chuang, Ying-Hsueh Chang Chien, Chi-Ming Yang, Chi-Wen Liu, Chin-Hsiang Lin
  • Patent number: 8367509
    Abstract: A method for forming a contact of a semiconductor device with reduced step height is disclosed, comprising forming a plurality of gates, forming a buffer layer on each of the gates, forming an insulating layer to fill spaces between the gates, forming strip-shaped photoresist patterns which cross the gates, etching the insulating layer to form first openings using a self-aligning process with the gates and the strip-shaped photoresist patterns as a mask, forming a conductive contact layer to fill the first openings, performing a first chemical mechanical polish (CMP) process to the conductive contact layer, removing the buffer layer, and forming a second chemical mechanical polish (CMP) process to the conductive contact layer.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: February 5, 2013
    Assignee: Nanya Technology Corporation
    Inventors: Jeng-Hsing Jang, Yi-Nan Chen, Hsien-Wen Liu
  • Patent number: 8364205
    Abstract: A mobile phone includes at least two subscriber identity module (SIM) cards. The mobile phone queries a number portability database (NPDB) for at least two telecom operators of the at least two SIM cards. The mobile phone queries the NPDB for a telecom operator of an outgoing number dialed using the mobile phone. The mobile phone selects one SIM card with one telecom operator same as the telecom operator of the outgoing number from the at least two SIM cards.
    Type: Grant
    Filed: June 13, 2011
    Date of Patent: January 29, 2013
    Assignee: Hon Hai Precision Industry Co., Ltd.
    Inventors: Hish-Hsien Tsai, Yi-Wen Liu
  • Patent number: 8362541
    Abstract: A manufacturing method of DRAM is provided. A substrate having a deep trench is provided, and then a deep trench capacitor including a bottom electrode, an upper electrode and a capacitor dielectric layer is formed in the deep trench. A part of the upper electrode of the deep trench capacitor is removed to form a first trench. A buried strap is formed in the substrate on one side of the upper electrode. An isolation structure is formed in the first trench to define an active region. A part of the substrate adjacent to the isolation structure is removed to form a second trench. A first heavily doped region is formed on the bottom of the second trench, and the first heavily doped region is electrically connected to the buried strap. A dielectric layer is formed on the bottom of the second trench.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: January 29, 2013
    Assignee: Nanya Technology Corporation
    Inventor: Shih-Wen Liu
  • Publication number: 20130017687
    Abstract: A method for forming an opening in a semiconductor device is provided, including: providing a semiconductor substrate with a silicon oxide layer, a polysilicon layer and a silicon nitride layer sequentially formed thereover; patterning the silicon nitride layer, forming a first opening in the silicon nitride layer, wherein the first opening exposes a top surface of the polysilicon layer; performing a first etching process, using gasous etchants including hydrogen bromide (HBr), oxygen (O2), and fluorocarbons (CxFy), forming a second opening in the polysilicon layer, wherein a sidewall of the polysilicon layer adjacent to the second opening is substantially perpendicular to a top surface of the silicon oxide layer, wherein x is between 1-5 and y is between 2-8; removing the silicon nitride layer; and performing a second etching process, forming a third opening in the silicon oxide layer exposed by the second opening.
    Type: Application
    Filed: July 14, 2011
    Publication date: January 17, 2013
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Chih-Ching Lin, Yi-Nan Chen, Hsien-Wen Liu
  • Publication number: 20130017684
    Abstract: A process of forming a slit in a substrate is provided. A mask layer is formed on a substrate, wherein the mask layer does not include carbon. An etching process is performed to be substrate by using the mask layer as a mask, so as to form a slit in the substrate. The etching gas includes Cl2, CF4 and CHF3, a molar ratio of CF4 to CHF3 is about 0.5-0.8, and a molar ratio of F to Cl is about 0.4-0.8, for example. Further, the step of performing the etching process simultaneously removes the mask layer.
    Type: Application
    Filed: July 11, 2011
    Publication date: January 17, 2013
    Applicant: NANYA TECHNOLOGY CORPORATION
    Inventors: Wen-Chieh Wang, Yi-Nan Chen, Hsien-Wen Liu
  • Patent number: 8349628
    Abstract: An embodiment of the disclosure includes a method of fabricating a plurality of light emitting diode devices. A plurality of LED dies is provided. The LED dies are bonded to a carrier substrate. A patterned mask layer comprising a plurality of openings is formed on the carrier substrate. Each one of the plurality of LED dies is exposed through one of the plurality of the openings respectively. Each of the plurality of openings is filled with a phosphor. The phosphor is cured. The phosphor and the patterned mask layer are polished to thin the phosphor covering each of the plurality of LED dies. The patterned mask layer is removed after polishing the phosphor.
    Type: Grant
    Filed: March 22, 2011
    Date of Patent: January 8, 2013
    Assignee: TSMC Solid State Lighting Ltd.
    Inventors: Yung-Chang Chen, Hsin-Hsien Wu, Chyi Shyuan Chern, Ching-Wen Hsiao, Fu-Wen Liu, Kuang-Huan Hsu
  • Patent number: 8334582
    Abstract: A semiconductor chip includes a semiconductor substrate; a plurality of low-k dielectric layers over the semiconductor substrate; a first passivation layer over the plurality of low-k dielectric layers; and a second passivation layer over the first passivation layer. A first seal ring is adjacent to an edge of the semiconductor chip, wherein the first seal ring has an upper surface substantially level to a bottom surface of the first passivation layer. A second seal ring is adjacent to the first seal ring and on an inner side of the semiconductor chip than the first seal ring. The second seal ring includes a pad ring in the first passivation layer and the second passivation layer. A trench ring includes at least a portion directly over the first seal ring. The trench ring extends from a top surface of the second passivation layer down to at least an interface between the first passivation layer and the second passivation layer.
    Type: Grant
    Filed: December 31, 2008
    Date of Patent: December 18, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shin-Puu Jeng, Hsien-Wei Chen, Shang-Yun Hou, Hao-Yi Tsai, Anbiarshy N. F. Wu, Yu-Wen Liu
  • Patent number: 8335119
    Abstract: A method of inspecting a memory cell is provided, including: providing a semiconductor substrate with a capacitor formed therein and a transistor formed thereon, wherein the transistor is electrically connected to the capacitor; inspecting a size of a top surface of the capacitor and a pitch between the capacitor and the transistor electrically connected thereto by an optical measuring system, thereby obtaining a first measurement data and a second measurement data; and comparing the first and second measurement data with designed specifications of the capacitor and transistor, thereby determining functionality of the memory cell comprising the capacitor and the transistor.
    Type: Grant
    Filed: October 19, 2011
    Date of Patent: December 18, 2012
    Assignee: Nanya Technology Corporation
    Inventors: Tzu-Ching Tsai, Yi-Nan Chen, Hsien-Wen Liu