Patents by Inventor Wen Su

Wen Su has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220068826
    Abstract: A structure includes a first conductive feature in a first dielectric layer; a second dielectric layer over the first dielectric layer; and a second conductive feature extending through the second dielectric layer to physically contact the first conductive feature, wherein the second conductive feature includes a metal adhesion layer over and physically contacting the first conductive feature; a barrier layer extending along sidewalls of the second dielectric layer; and a conductive filling material extending over the metal adhesion layer and the barrier layer, wherein a portion of the conductive filling material extends between the barrier layer and the metal adhesion layer.
    Type: Application
    Filed: August 25, 2020
    Publication date: March 3, 2022
    Inventors: Chia-Pang Kuo, Chih-Yi Chang, Ming-Hsiao Hsieh, Wei-Hsiang Chan, Ya-Lien Lee, Chien Chung Huang, Chun-Chieh Lin, Hung-Wen Su
  • Publication number: 20220069102
    Abstract: A gate structure includes a substrate divided into an N-type transistor region and a P-type transistor region. An interlayer dielectric covers the substrate. A first trench is embedded in the interlayer dielectric within the N-type transistor region. A first gate electrode having a bullet-shaped profile is disposed in the first trench. A gate dielectric contacts the first trench. An N-type work function layer is disposed between the gate dielectric layer and the first gate electrode. A second trench is embedded in the interlayer dielectric within the P-type transistor region. A second gate electrode having a first mushroom-shaped profile is disposed in the second trench. The gate dielectric layer contacts the second trench. The N-type work function layer is disposed between the gate dielectric layer and the second gate electrode. A first P-type work function layer is disposed between the gate dielectric layer and the N-type work function layer.
    Type: Application
    Filed: November 11, 2021
    Publication date: March 3, 2022
    Applicant: UNITED MICROELECTRONICS CORP.
    Inventors: Jie-Ning Yang, Wen-Tsung Chang, Po-Wen Su, Kuan-Ying Lai, Bo-Yu Su, Chun-Mao Chiou, Yao-Jhan Wang
  • Publication number: 20220068413
    Abstract: The present disclosure provides semiconductor device and methods of forming the same. A semiconductor device according to the present disclosure includes a gate structure, a source/drain feature adjacent the gate structure, a dielectric layer disclosed over the gate structure and the source/drain feature, a gate contact disposed in the dielectric layer and over the gate structure, and a source/drain contact disposed in the dielectric layer and over the source/drain feature. The dielectric layer is doped with a dopant and the dopant includes germanium or tin.
    Type: Application
    Filed: August 31, 2020
    Publication date: March 3, 2022
    Inventors: Hsin-Wen Su, Shih-Hao Lin, Jui-Lin Chen, Lien Jung Hung, Ping-Wei Wang
  • Patent number: 11257817
    Abstract: Various embodiments of the present disclosure are directed towards an integrated chip (IC) having a device section and a pick-up section. The IC includes a semiconductor substrate. A first fin of the semiconductor substrate is disposed in the device section. A second fin of the semiconductor substrate is disposed in the pick-up section and laterally spaced from the first fin in a first direction. A gate structure is disposed in the device section and laterally spaced from the second fin in the first direction. The gate structure extends laterally over the semiconductor substrate and the first fin in a second direction perpendicular to the first direction. A pick-up region is disposed on the second fin. The pick-up region continuously extends from a first sidewall of the second fin to a second sidewall of the second fin. The first sidewall is laterally spaced from the second sidewall in the first direction.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: February 22, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Hsin-Wen Su, Lien Jung Hung, Ping-Wei Wang, Wen-Chun Keng, Chih-Chuan Yang, Shih-Hao Lin
  • Patent number: 11243092
    Abstract: One or more processors track internet usage of a user. The tracking includes tracking a first user input into one or more websites using a keylogging subprogram. One or more processors analyze the first user input. Analyzing the first user input includes using machine learning to gain knowledge of one or more interests of the first user based on the first user input. One or more processors determine a proximity of the first user to at least one point of interest within a first threshold distance of the first user while the first user is mobile, match at least one interest of the one or more interests of the first user with one or more interests associated with the at least one point of interest, and provide a notification that the first user is within the first threshold distance of the at least one point of interest.
    Type: Grant
    Filed: September 23, 2019
    Date of Patent: February 8, 2022
    Assignee: International Business Machines Corporation
    Inventors: Li-Ju Chen, Jeff H C Kuo, Chih-Wen Su, Ying-Chen Yu
  • Publication number: 20220037203
    Abstract: An opening is formed through a dielectric material layer to physically expose a top surface of a conductive material portion in, or over, a substrate. A metallic nitride liner is formed on a sidewall of the opening and on the top surface of the conductive material portion. A metallic adhesion layer including an alloy of copper and at least one transition metal that is not copper is formed on an inner sidewall of the metallic nitride liner. A copper fill material portion may be formed on an inner sidewall of the metallic adhesion layer. The metallic adhesion layer is thermally stable, and remains free of holes during subsequent thermal processes, which may include reflow of the copper fill material portion. An additional copper fill material portion may be optionally deposited after a reflow process.
    Type: Application
    Filed: July 29, 2020
    Publication date: February 3, 2022
    Inventors: Cheng-Lun TSAI, Huei-Wen HSIEH, Chun-Sheng CHEN, Kai-Shiang KUO, Jen-Wei LIU, Cheng-Hui WENG, Chun-Chieh LIN, Hung-Wen SU
  • Patent number: 11205705
    Abstract: A gate structure includes a substrate divided into an N-type transistor region and a P-type transistor region. An interlayer dielectric covers the substrate. A first trench is embedded in the interlayer dielectric within the N-type transistor region. A first gate electrode having a bullet-shaped profile is disposed in the first trench. A gate dielectric contacts the first trench. An N-type work function layer is disposed between the gate dielectric layer and the first gate electrode. A second trench is embedded in the interlayer dielectric within the P-type transistor region. A second gate electrode having a first mushroom-shaped profile is disposed in the second trench. The gate dielectric layer contacts the second trench. The N-type work function layer is disposed between the gate dielectric layer and the second gate electrode. A first P-type work function layer is disposed between the gate dielectric layer and the N-type work function layer.
    Type: Grant
    Filed: November 29, 2018
    Date of Patent: December 21, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Jie-Ning Yang, Wen-Tsung Chang, Po-Wen Su, Kuan-Ying Lai, Bo-Yu Su, Chun-Mao Chiou, Yao-Jhan Wang
  • Patent number: 11205710
    Abstract: A fabricating method of a semiconductor structure includes the following steps. A gate material layer is formed on a semiconductor substrate. A patterned mask layer is formed on the gate material layer. The pattern mask layer includes at least one opening exposing a part of the gate material layer. An impurity treatment is performed to the gate material layer partially covered by the pattern mask layer for forming at least one doped region in the gate material layer. An etching process is performed to remove the gate material layer including the doped region. A dummy gate may be formed by patterning the gate material layer, and the impurity treatment may be performed after the step of forming the dummy gate. The performance of the etching processes for removing the gate material layer and/or the dummy gate may be enhanced, and the gate material residue issue may be solved accordingly.
    Type: Grant
    Filed: March 19, 2019
    Date of Patent: December 21, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Wen-Chien Hsieh, En-Chiuan Liou, Chih-Wei Yang, Yu-Cheng Tung, Po-Wen Su
  • Publication number: 20210391275
    Abstract: A method includes forming an insulating layer over a conductive feature; etching the insulating layer to expose a first surface of the conductive feature; covering the first surface of the conductive feature with a sacrificial material, wherein the sidewalls of the insulating layer are free of the sacrificial material; covering the sidewalls of the insulating layer with a barrier material, wherein the first surface of the conductive feature is free of the barrier material, wherein the barrier material includes tantalum nitride (TaN) doped with a transition metal; removing the sacrificial material; and covering the barrier material and the first surface of the conductive feature with a conductive material.
    Type: Application
    Filed: June 11, 2020
    Publication date: December 16, 2021
    Inventors: Chia-Pang Kuo, Huan-Yu Shih, Wen-Hsuan Chen, Cheng-Lun Tsai, Ya-Lien Lee, Cheng-Hui Weng, Chun-Chieh Lin, Hung-Wen Su, Yao-Min Liu
  • Publication number: 20210391341
    Abstract: A memory device includes a substrate, first semiconductor layers and second semiconductor layers alternately stacked over the substrate, a first gate structure and a second gate structure crossing the first semiconductor layers and the second semiconductor layers, a first via and a second via over the first gate structure and the second gate structure, and a first word line and a second word line over the first via and the second via. Along a lengthwise direction of the first and second gate structures, a width of the first semiconductor layers is narrower than a width of the second semiconductor layers.
    Type: Application
    Filed: June 12, 2020
    Publication date: December 16, 2021
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Hsin-Wen SU, Yu-Kuan LIN, Shih-Hao LIN, Lien-Jung HUNG, Ping-Wei WANG
  • Patent number: 11187843
    Abstract: An electronic device is provided. The electronic device includes a backlight module. The backlight module includes a light-guiding plate and a light-guiding element, and the light-guiding element is disposed under the light-guiding plate. In addition, the light-guiding element has a protruding structure, and the protruding structure faces the light-guiding plate.
    Type: Grant
    Filed: June 30, 2020
    Date of Patent: November 30, 2021
    Assignee: INNOLUX CORPORATION
    Inventors: Wei-Tsung Hsu, Hui-Wen Su, Chun-Fang Chen
  • Patent number: 11177168
    Abstract: A method includes forming a trench in a low-K dielectric layer, where the trench exposes an underlying contact area of a substrate. A first tantalum nitride (TaN) layer is conformally deposited within the trench, where the first TaN layer is deposited using atomic layer deposition (ALD) or chemical vapor deposition (CVD). A tantalum (Ta) layer is deposited on the first TaN layer conformally within the trench, where the Ta layer is deposited using physical vapor deposition (PVD). An electroplating process is performed to deposit a conductive layer over the Ta layer. A via is formed over the conductive layer, where forming the via includes depositing a second TaN layer within the via and in contact with the conductive layer.
    Type: Grant
    Filed: April 29, 2019
    Date of Patent: November 16, 2021
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Ya-Lien Lee, Hung-Wen Su, Kuei-Pin Lee, Yu-Hung Lin, Yu-Min Chang
  • Publication number: 20210343535
    Abstract: An interconnect structure and a method of forming an interconnect structure are disclosed. The interconnect structure includes a conductive plug over a substrate; a conductive feature over the conductive plug, wherein the conductive feature has a first sidewall, a second sidewall facing the first sidewall, and a bottom surface; and a carbon-containing barrier layer having a first portion along the first sidewall of the conductive feature, a second portion along the second sidewall of the conductive feature, and a third portion along the bottom surface of the conductive feature.
    Type: Application
    Filed: July 12, 2021
    Publication date: November 4, 2021
    Inventors: Rueijer Lin, Ya-Lien Lee, Chun-Chieh Lin, Hung-Wen Su
  • Publication number: 20210343601
    Abstract: A method of forming an integrated circuit, including forming a n-type doped well (N-well) and a p-type doped well (P-well) disposed side by side on a semiconductor substrate, forming a first fin active region extruded from the N-well and a second fin active region extruded from the P-well, forming a first isolation feature inserted between and vertically extending through the N-well and the P-well, and forming a second isolation feature over the N-well and the P-well and laterally contacting the first and the second fin active regions.
    Type: Application
    Filed: July 12, 2021
    Publication date: November 4, 2021
    Inventors: Kuo-Hsiu Hsu, Yu-Kuan Lin, Feng-Ming Chang, Hsin-Wen Su, Lien Jung Hung, Ping-Wei Wang
  • Patent number: 11145733
    Abstract: The present invention discloses a method for forming a semiconductor device with a reduced silicon horn structure. After a pad nitride layer is removed from a substrate, a hard mask layer is conformally deposited over the substrate. The hard mask layer is then etched and trimmed to completely remove a portion of the hard mask layer from an active area and a portion of the hard mask layer from an oblique sidewall of a protruding portion of a trench isolation region around the active area. The active area is then etched to form a recessed region. A gate dielectric layer is formed in the recessed region and a gate electrode layer is formed on the gate dielectric layer.
    Type: Grant
    Filed: September 27, 2020
    Date of Patent: October 12, 2021
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chin-Hung Chen, Chih-Kai Hsu, Ssu-I Fu, Chia-Jung Hsu, Chun-Ya Chiu, Yu-Hsiang Lin, Po-Wen Su, Chung-Fu Chang, Guang-Yu Lo, Chun-Tsen Lu
  • Publication number: 20210312997
    Abstract: A semiconductor memory device includes a first word line formed over a first active region. In some embodiments, a first metal line is disposed over and perpendicular to the first word line, where the first metal line is electrically connected to the first word line using a first conductive via, and where the first conductive via is disposed over the first active region. In some examples, the semiconductor memory device further includes a second metal line and a third metal line both parallel to the first metal line and disposed on opposing sides of the first metal line, where the second metal line is electrically connected to a source/drain region of the first active region using a second conductive via, and where the third metal line is electrically connected to the source/drain region of the first active region using a third conductive via.
    Type: Application
    Filed: April 1, 2020
    Publication date: October 7, 2021
    Inventors: Hsin-Wen SU, Kian-Long LIM, Wen-Chun KENG, Chang-Ta YANG, Shih-Hao LIN
  • Publication number: 20210313463
    Abstract: A semiconductor device comprises a memory macro including a well pick-up (WPU) area oriented lengthwise along a first direction, and memory bit areas adjacent to the WPU area. In the WPU area, the memory macro includes n-type and p-type wells arranged alternately along the first direction with well boundaries between adjacent wells; gate structures over the wells and oriented lengthwise along the first direction; a first dielectric layer disposed at each of the well boundaries; first contact features disposed over one of the p-type wells; and second contact features disposed over one of the n-type wells. From a top view, the first dielectric layer extends along a second direction perpendicular to the first direction and separates all the gate structures in the first WPU area, the first contact features are disposed between the gate structures, and the second contact features are disposed between the gate structures.
    Type: Application
    Filed: June 21, 2021
    Publication date: October 7, 2021
    Inventors: Hsin-Wen Su, Yu-Kuan Lin, Chih-Chuan Yang, Chang-Ta Yang, Shih-Hao Lin
  • Patent number: D931760
    Type: Grant
    Filed: September 9, 2020
    Date of Patent: September 28, 2021
    Assignee: ENERMAX TECHNOLOGY CORPORATION
    Inventor: Yen-Wen Su
  • Patent number: D934172
    Type: Grant
    Filed: May 24, 2019
    Date of Patent: October 26, 2021
    Assignee: Gogoro Inc.
    Inventors: Shih-Yuan Lin, Hsin-Wen Su, Kuang-I Yen, Chi-Wang Lien, Jye Rong
  • Patent number: D939604
    Type: Grant
    Filed: June 1, 2020
    Date of Patent: December 28, 2021
    Assignee: ARASHI VISION INC.
    Inventors: Wen Su, Lei Zhang, Hui Xu, Jingkang Liu, Fei Gao