Patents by Inventor Whonchee Lee

Whonchee Lee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7112121
    Abstract: A method and apparatus for removing conductive material from a microelectronic substrate. In one embodiment, the method can include engaging a microelectronic substrate with a polishing surface of a polishing pad, electrically coupling a conductive material of the microelectronic substrate to a source of electrical potential, and oxidizing at least a portion of the conductive material by passing an electrical current through the conductive material from the source of electrical potential. For example, the method can include positioning first and second electrodes apart from a face surface of the microelectronic substrate and disposing an electrolytic fluid between the face surface and the electrodes with the electrodes in fluid communication with the electrolytic fluid. The method can further include removing the portion of conductive material from the microelectronic substrate by moving at least one of the microelectronic and the polishing pad relative to the other.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: September 26, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Whonchee Lee, Scott G. Meikle, Scott E. Moore, Trung T. Doan
  • Publication number: 20060208322
    Abstract: A microelectronic substrate and method for removing adjacent conductive and nonconductive materials from a microelectronic substrate. In one embodiment, the microelectronic substrate includes a substrate material (such as borophosphosilicate glass) having an aperture with a conductive material (such as platinum) disposed in the aperture and a fill material (such as phosphosilicate glass) in the aperture adjacent to the conductive material. The fill material can have a hardness of about 0.04 GPa or higher, and a microelectronics structure, such as an electrode, can be disposed in the aperture, for example, after removing the fill material from the aperture. Portions of the conductive and fill material external to the aperture can be removed by chemically-mechanically polishing the fill material, recessing the fill material inwardly from the conductive material, and electrochemically-mechanically polishing the conductive material.
    Type: Application
    Filed: April 28, 2006
    Publication date: September 21, 2006
    Applicant: Micron Technology, Inc.
    Inventors: Whonchee Lee, Scott Meikle, Guy Blalock
  • Publication number: 20060199351
    Abstract: A microelectronic substrate and method for removing adjacent conductive and nonconductive materials from a microelectronic substrate. In one embodiment, the microelectronic substrate includes a substrate material (such as borophosphosilicate glass) having an aperture with a conductive material (such as platinum) disposed in the aperture and a fill material (such as phosphosilicate glass) in the aperture adjacent to the conductive material. The fill material can have a hardness of about 0.04 GPa or higher, and a microelectronics structure, such as an electrode, can be disposed in the aperture, for example, after removing the fill material from the aperture. Portions of the conductive and fill material external to the aperture can be removed by chemically-mechanically polishing the fill material, recessing the fill material inwardly from the conductive material, and electrochemically-mechanically polishing the conductive material.
    Type: Application
    Filed: April 28, 2006
    Publication date: September 7, 2006
    Applicant: Micron Technology, Inc.
    Inventors: Whonchee Lee, Scott Meikle, Guy Blalock
  • Publication number: 20060189139
    Abstract: Methods and apparatuses for removing material from a microfeature workpiece are disclosed. In one embodiment, the microfeature workpiece is contacted with a polishing surface of a polishing medium, and is placed in electrical communication with first and second electrodes, at least one of which is spaced apart from the workpiece. A polishing liquid is disposed between the polishing surface and the workpiece and at least one of the workpiece and the polishing surface is moved relative to the other. Material is removed from the microfeature workpiece and at least a portion of the polishing liquid is passed through at least one recess in the polishing surface so that a gap in the polishing liquid is located between the microfeature workpiece and the surface of the recess facing toward the microfeature workpiece.
    Type: Application
    Filed: April 3, 2006
    Publication date: August 24, 2006
    Applicant: Micron Technology, Inc.
    Inventor: Whonchee Lee
  • Patent number: 7094131
    Abstract: A microelectronic substrate and method for removing conductive material from a microelectronic substrate. In one embodiment, the microelectronic substrate includes a conductive or semiconductive material with a recess having an initially sharp corner at the surface of the conductive material. The corner can be blunted or rounded, for example, by applying a voltage to an electrode in fluid communication with an electrolytic fluid disposed adjacent to the corner. Electrical current flowing through the corner from the electrode can oxidize the conductive material at the corner, and the oxidized material can be removed with a chemical etch process.
    Type: Grant
    Filed: June 21, 2001
    Date of Patent: August 22, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Whonchee Lee, Scott G. Meikle, Scott E. Moore
  • Patent number: 7083700
    Abstract: Methods and apparatuses for planarizing microelectronic substrate assemblies on fixed-abrasive polishing pads with non-abrasive lubricating planarizing solutions. One aspect of the invention is to deposit a lubricating planarizing solution without abrasive particles onto a fixed-abrasive polishing pad having a body, a planarizing surface on the body, and a plurality of abrasive particles fixedly attached to the body at the planarizing surface. The front face of a substrate assembly is pressed against the lubricating planarizing solution and at least a portion of the fixed abrasive particles on the planarizing surface of the polishing pad. At least one of the polishing pad or the substrate assembly is then moved with respect to the other to impart relative motion therebetween. As the substrate assembly moves relative to the polishing pad, regions of the front face are separated from the abrasive particles in the polishing pad by a lubricant-additive in the lubricating planarizing solution.
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: August 1, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Gundu M. Sabde, Whonchee Lee
  • Patent number: 7078308
    Abstract: A microelectronic substrate and method for removing adjacent conductive and nonconductive materials from a microelectronic substrate. In one embodiment, the microelectronic substrate includes a substrate material (such as borophosphosilicate glass) having an aperture with a conductive material (such as platinum) disposed in the aperture and a fill material (such as phosphosilicate glass) in the aperture adjacent to the conductive material. The fill material can have a hardness of about 0.04 GPa or higher, and a microelectronics structure, such as an electrode, can be disposed in the aperture, for example, after removing the fill material from the aperture. Portions of the conductive and fill material external to the aperture can be removed by chemically-mechanically polishing the fill material, recessing the fill material inwardly from the conductive material, and electrochemically-mechanically polishing the conductive material.
    Type: Grant
    Filed: August 29, 2002
    Date of Patent: July 18, 2006
    Assignee: Micron Technology, Inc.
    Inventors: Whonchee Lee, Scott G. Meikle, Guy Blalock
  • Publication number: 20060102586
    Abstract: An organic acid/fluoride-containing solution etchant having high selectivity for BPSG to TEOS. In an exemplary situation, a TEOS layer may be used to prevent contamination of other components in a semiconductor device by the boron and phosphorous in a layer of BPSG deposited over the TEOS layer. The etchant of the present invention may be used to etch desired areas in the BPSG layer, wherein the high selectivity for BPSG to TEOS of etchant would result in the TEOS layer acting as an etch stop. A second etch with a known etchant may be utilized to etch the TEOS layer. The known etchant for the second etch can be less aggressive and, thus, not damage the components underlying the TEOS layer.
    Type: Application
    Filed: December 29, 2005
    Publication date: May 18, 2006
    Inventors: Whonchee Lee, Kevin Torek
  • Publication number: 20060042953
    Abstract: A method of selectively electroplating metal features on a semiconductor substrate having a conductive surface. An electrode assembly that includes a plurality of adjacent, mutually spaced and electrically isolated electrodes connected in series so as to be oppositely polarized when a voltage is applied thereacross is positioned over the substrate and an electrolyte solution is applied to the conductive surface. The electrode assembly and the conductive surface may be positioned in close proximity to, but without contacting, one another. A voltage is applied to the electrode assembly, which causes a metal film to selectively form on portions of the conductive surface that are positioned beneath an electrode exhibiting a positive polarity and, thus, negatively charged. Portions of the conductive surface positioned beneath electrodes exhibiting a negative polarity remain unplated.
    Type: Application
    Filed: September 2, 2004
    Publication date: March 2, 2006
    Inventors: Suresh Ramarajan, Whonchee Lee
  • Publication number: 20060042956
    Abstract: Methods and systems for removing materials from microfeature workpieces are disclosed. A method in accordance with one embodiment of the invention includes providing a microfeature workpiece having a substrate material and a conductive material that includes a refractory metal (e.g., tantalum, tantalum nitride, titanium, and/or titanium nitride). First and second electrodes are positioned in electrical communication with the conductive material via a generally organic and/or non-aqueous electrolytic medium. At least one of the electrodes is spaced apart from the workpiece. At least a portion of the conductive material is removed by passing an electrical current along an electrical path that includes the first electrode, the electrolytic medium, and the second electrode. Electrolytically removing the conductive material can reduce the downforce applied to the workpiece.
    Type: Application
    Filed: September 1, 2004
    Publication date: March 2, 2006
    Inventors: Whonchee Lee, Gundu Sabde
  • Publication number: 20050196963
    Abstract: Methods and apparatuses for removing material from a microfeature workpiece are disclosed. In one embodiment, the microfeature workpiece is contacted with a polishing surface of a polishing medium, and is placed in electrical communication with first and second electrodes, at least one of which is spaced apart from the workpiece. A polishing liquid is disposed between the polishing surface and the workpiece and at least one of the workpiece and the polishing surface is moved relative to the other. Material is removed from the microfeature workpiece and at least a portion of the polishing liquid is passed through at least one recess in the polishing surface so that a gap in the polishing liquid is located between the microfeature workpiece and the surface of the recess facing toward the microfeature workpiece.
    Type: Application
    Filed: February 20, 2004
    Publication date: September 8, 2005
    Inventor: Whonchee Lee
  • Patent number: 6903018
    Abstract: Methods and apparatuses for planarizing microelectronic substrate assemblies on fixed-abrasive polishing pads with non-abrasive lubricating planarizing solutions. One aspect of the invention is to deposit a lubricating planarizing solution without abrasive particles onto a fixed-abrasive polishing pad having a body, a planarizing surface on the body, and a plurality of abrasive particles fixedly attached to the body at the planarizing surface. The front face of a substrate assembly is pressed against the lubricating planarizing solution and at least a portion of the fixed abrasive particles on the planarizing surface of the polishing pad. At least one of the polishing pad or the substrate assembly is then moved with respect to the other to impart relative motion therebetween. As the substrate assembly moves relative to the polishing pad, regions of the front face are separated from the abrasive particles in the polishing pad by a lubricant-additive in the lubricating planarizing solution.
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: June 7, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Gundu M. Sabde, Whonchee Lee
  • Patent number: 6881127
    Abstract: Methods and apparatuses for planarizing microelectronic substrate assemblies on fixed-abrasive polishing pads with non-abrasive lubricating planarizing solutions. One aspect of the invention is to deposit a lubricating planarizing solution without abrasive particles onto a fixed-abrasive polishing pad having a body, a planarizing surface on the body, and a plurality of abrasive particles fixedly attached to the body at the planarizing surface. The front face of a substrate assembly is pressed against the lubricating planarizing solution and at least a portion of the fixed abrasive particles on the planarizing surface of the polishing pad. At least one of the polishing pad or the substrate assembly is then moved with respect to the other to impart relative motion therebetween. As the substrate assembly moves relative to the polishing pad, regions of the front face are separated from the abrasive particles in the polishing pad by a lubricant-additive in the lubricating planarizing solution.
    Type: Grant
    Filed: July 25, 2001
    Date of Patent: April 19, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Gundu M. Sabde, Whonchee Lee
  • Publication number: 20050059324
    Abstract: A method and apparatus for removing conductive material from a microelectronic substrate is disclosed. One method includes disposing an electrolytic liquid between a conductive material of a substrate and at least one electrode, with the electrolytic liquid having about 80% water or less. The substrate can be contacted with a polishing pad material, and the conductive material can be electrically coupled to a source of varying electrical signals via the electrolytic liquid and the electrode. The method can further include applying a varying electrical signal to the conductive material, moving at least one of the polishing pad material and the substrate relative to the other, and removing at least a portion of the conductive material while the electrolytic liquid is adjacent to the conductive material. By limiting/controlling the amount of water in the electrolytic liquid, an embodiment of the method can remove the conductive material with a reduced downforce.
    Type: Application
    Filed: September 17, 2003
    Publication date: March 17, 2005
    Inventors: Whonchee Lee, Scott Moore, Brian Vaartstra
  • Publication number: 20050056550
    Abstract: A method and apparatus for removing conductive material from a microelectronic substrate is disclosed. One method includes disposing an electrolytic liquid between a conductive material of a substrate and at least one electrode, with the electrolytic liquid having about 80% water or less. The substrate can be contacted with a polishing pad material, and the conductive material can be electrically coupled to a source of varying electrical signals via the electrolytic liquid and the electrode. The method can further include applying a varying electrical signal to the conductive material, moving at least one of the polishing pad material and the substrate relative to the other, and removing at least a portion of the conductive material while the electrolytic liquid is adjacent to the conductive material. By limiting/controlling the amount of water in the electrolytic liquid, an embodiment of the method can remove the conductive material with a reduced downforce.
    Type: Application
    Filed: August 20, 2004
    Publication date: March 17, 2005
    Inventors: Whonchee Lee, Scott Moore, Brian Vaartstra
  • Patent number: 6867448
    Abstract: A method of patterning a metal surface by electro-mechanical polishing is disclosed. A metal surface is placed in fluid communication with an abrasive surface of a pad. The two surfaces are moved relative to each other, in acidic fluid which contains abrasive particles. An electrical circuit is formed between the metal surface and abrasive pad and a current is supplied to the circuit. The patterned surface then is processed into a useful feature such as a bottom electrode for a DRAM capacitor.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: March 15, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Whonchee Lee, Scott Meikle
  • Publication number: 20050034999
    Abstract: A method and apparatus for removing conductive material from a microelectronic substrate. In one embodiment, a support member supports a microelectronic substrate relative to a material removal medium, which can include first and second electrodes and a polishing pad. One or more electrolytes are disposed between the electrodes and the microelectronic substrate to electrically link the electrodes to the microelectronic substrate. The electrodes are then coupled to a source of varying current that electrically removes the conductive material from the substrate. The microelectronic substrate and/or the electrodes can be moved relative to each other to position the electrodes relative to a selected portion of the microelectronic substrate, and/or to polish the microelectronic substrate. The material removal medium can remove gas formed during the process from the microelectronic substrate and/or the electrodes.
    Type: Application
    Filed: August 24, 2004
    Publication date: February 17, 2005
    Inventors: Whonchee Lee, Scott Meikle, Scott Moore
  • Publication number: 20050035000
    Abstract: A method and apparatus for removing conductive material from a microelectronic substrate. In one embodiment, a support member supports a microelectronic substrate relative to a material removal medium, which can include first and second electrodes and a polishing pad. One or more electrolytes are disposed between the electrodes and the microelectronic substrate to electrically link the electrodes to the microelectronic substrate. The electrodes are then coupled to a source of varying current that electrically removes the conductive material from the substrate. The microelectronic substrate and/or the electrodes can be moved relative to each other to position the electrodes relative to a selected portion of the microelectronic substrate, and/or to polish the microelectronic substrate. The material removal medium can remove gas formed during the process from the microelectronic substrate and/or the electrodes.
    Type: Application
    Filed: August 27, 2004
    Publication date: February 17, 2005
    Inventors: Whonchee Lee, Scott Meikle, Scott Moore
  • Publication number: 20050020192
    Abstract: Method and apparatus for chemically, mechanically and/or electrolytically removing material from microelectronic substrates. A polishing medium for removing material can include a liquid carrier, an electrolyte disposed in the liquid carrier, and abrasives disposed in the liquid carrier, with the abrasives forming up to about 1% of the polishing liquid by weight. The polishing medium can further include a chelating agent. An electrical current can be selectively applied to the microelectronic substrate via the polishing liquid, and a downforce applied to the microelectronic substrate can be selected based on the level of current applied electrolytically to the microelectronic substrate. The microelectronic substrate can undergo an electrolytic and nonelectrolytic processing on the same polishing pad, or can be moved from one polishing pad to another while being supported by a single substrate carrier.
    Type: Application
    Filed: August 20, 2004
    Publication date: January 27, 2005
    Inventors: Whonchee Lee, Scott Meikle
  • Publication number: 20050000942
    Abstract: An etching method for use in integrated circuit fabrication includes providing a metal nitride layer on a substrate assembly, providing regions of cobalt silicide on first portions of the metal nitride layer, and providing regions of cobalt on second portions of the metal nitride layer. The regions of cobalt and the second portions of the metal nitride layer are removed with at least one solution including a mineral acid and a peroxide. The mineral acid may be selected from the group including HCl, H2SO4, H3PO4, HNO3, and dilute HF (preferably the mineral acid is HCl) and the peroxide may be hydrogen peroxide. Further, the removal of the regions of cobalt and the second portions of the metal nitride layer may include a one step process or a two step process. In the one step process, the regions of cobalt and the second portions of the metal nitride layer are removed with a single solution including the mineral acid and the peroxide.
    Type: Application
    Filed: June 29, 2004
    Publication date: January 6, 2005
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Whonchee Lee, Yongjun Hu