Patents by Inventor William F. Clark

William F. Clark has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20090283828
    Abstract: A method, gated device and design structure are presented for providing reduced floating body effect (FBE) while not impacting performance enhancing stress. One method includes forming damage in a portion of a substrate adjacent to a gate; removing a portion of the damaged portion to form a trench, leaving another portion of the damaged portion at least adjacent to a channel region; and substantially filling the trench with a material to form a source/drain region.
    Type: Application
    Filed: May 15, 2008
    Publication date: November 19, 2009
    Inventors: William F. Clark, JR., Toshiharu Furukawa, Xuefeng Hua, Charles W. Koburger, III, Robert R. Robison
  • Publication number: 20090261415
    Abstract: Disclosed are embodiments of a field effect transistor (FET) and, more particularly, a fully-depleted, thin-body (FDTB) FET that allows for scaling with minimal short channel effects, such as drain induced barrier lowering (DIBL) and saturation threshold voltage (Vtsat) roll-off, at shorter channel lengths. The FDTB FET embodiments are configured with either an edge back-gate or split back-gate that can be biased in order to selectively adjust the potential barrier between the source/drain regions and the channel region for minimizing off-state leakage current between the drain region and the source region and/or for varying threshold voltage. These unique back-gate structures avoid the need for halo doping to ensure linear threshold voltage (Vtlin) roll-up at smaller channel lengths and, thus, avoid across-chip threshold voltage variations due to random doping fluctuations. Also disclosed are method embodiments for forming such FETs.
    Type: Application
    Filed: April 17, 2008
    Publication date: October 22, 2009
    Inventors: James W. Adkisson, Brent A. Anderson, Andres Bryant, William F. Clark, JR., Edward J. Nowak
  • Publication number: 20090230475
    Abstract: A semiconductor structure and a method for fabricating the semiconductor structure provide a field effect device structure. The field effect device structure includes a gate electrode located over a channel region within a semiconductor substrate that separates a plurality of source and drain regions within the semiconductor substrate. The channel region includes a surface layer that comprises a carbon doped semiconductor material. The source and drain regions include a surface layer that comprises a semiconductor material that is not carbon doped. The particular selection of material for the channel region and source and drain regions provide for inhibited dopant diffusion and enhanced mechanical stress within the channel region, and thus enhanced performance of the field effect device.
    Type: Application
    Filed: March 13, 2008
    Publication date: September 17, 2009
    Inventors: William F. Clark, JR., Ephrem G. Gebreselasie, Xuefeng Liu, Robert Russell Robison
  • Publication number: 20090230474
    Abstract: A semiconductor device including at least one capacitor formed in wiring levels on a silicon-on-insulator (SOI) substrate, wherein the at least one capacitor is coupled to an active layer of the SOI substrate. A method of fabricating a semiconductor structure includes forming an SOI substrate, forming a BOX layer over the SOI substrate, and forming at least one capacitor in wiring levels on the BOX layer, wherein the at least one capacitor is coupled to an active layer of the SOI substrate.
    Type: Application
    Filed: March 12, 2008
    Publication date: September 17, 2009
    Inventors: William F. Clark, JR., Stephen E. Luce
  • Publication number: 20090189223
    Abstract: Complementary metal gate dense interconnects and methods of manufacturing the interconnects is provided. The method comprises forming a first metal gate on a wafer and second metal gate on the wafer. A conductive interconnect material is deposited in a space formed between the first metal gate and the second metal gate to provide an electrical connection between the first metal gate and the second metal gate.
    Type: Application
    Filed: January 30, 2008
    Publication date: July 30, 2009
    Inventors: Brent A. Anderson, Andres Bryant, William F. Clark, JR., Edward J. Nowak
  • Patent number: 7560753
    Abstract: A field effect transistor and a method of fabricating the field effect transistor. The field effect transistor includes: a silicon body, a perimeter of the silicon body abutting a dielectric isolation; a source and a drain formed in the body and on opposite sides of a channel formed in the body; and a gate dielectric layer between the body and an electrically conductive gate electrode, a bottom surface of the gate dielectric layer in direct physical contact with a top surface of the body and a bottom surface the gate electrode in direct physical contact with a top surface of the gate dielectric layer, the gate electrode having a first region having a first thickness and a second region having a second thickness, the first region extending along the top surface of the gate dielectric layer over the channel region, the second thickness greater than the first thickness.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: July 14, 2009
    Assignee: International Business Machines Corporation
    Inventors: Brent Alan Anderson, Andres Bryant, William F. Clark, Jr., Edward Joseph Nowak
  • Publication number: 20090127595
    Abstract: Disclosed is semiconductor structure that incorporates a field shield below a semiconductor device (e.g., a field effect transistor (FET) or a diode). The field shield is sandwiched between upper and lower isolation layers on a wafer. A local interconnect extends through the upper isolation layer and connects the field shield to a selected doped semiconductor region of the device (e.g., a source/drain region of a FET or a cathode or anode of a diode). Current that passes into the device, for example, during back-end of the line charging, is shunted by the local interconnect away from the upper isolation layer and down into the field shield. Consequently, an electric charge is not allowed to build up in the upper isolation layer but rather bleeds from the field shield into the lower isolation layer and into the substrate below.
    Type: Application
    Filed: May 28, 2008
    Publication date: May 21, 2009
    Applicant: International Business Machines Corporation
    Inventors: William F. Clark, JR., Edward J. Nowak
  • Publication number: 20090124069
    Abstract: A method for forming a semiconductor structure. The method includes providing a semiconductor structure including a semiconductor substrate. The semiconductor substrate includes (i) a top substrate surface which defines a reference direction perpendicular to the top substrate surface and (ii) a semiconductor body region. The method further includes implanting an adjustment dose of dopants of a first doping polarity into the semiconductor body region by an adjustment implantation process. Ion bombardment of the adjustment implantation process is in the reference direction. The method further includes (i) patterning the semiconductor substrate resulting in side walls of the semiconductor body region being exposed to a surrounding ambient and then (ii) implanting a base dose of dopants of a second doping polarity into the semiconductor body region by a base implantation process. Ion bombardment of the base implantation process is in a direction which makes a non-zero angle with the reference direction.
    Type: Application
    Filed: November 14, 2007
    Publication date: May 14, 2009
    Inventors: William F. Clark, JR., Edward Joseph Nowak
  • Publication number: 20090119626
    Abstract: A design structure including a transistor having a directly contacting gate and body is disclosed. In one embodiment, the transistor includes a gate; a body; and a dielectric layer extending over the body to insulate the gate from the body along an entire surface of the body except along a portion of at least a sidewall of the body, wherein the gate is in direct contact with the body at the portion.
    Type: Application
    Filed: November 6, 2007
    Publication date: May 7, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. Anderson, Andres Bryant, William F. Clark, JR., Edward J. Nowak
  • Publication number: 20090110023
    Abstract: Disclosed are embodiments of an improved on-chip temperature sensing circuit, based on bolometry, which provides self calibration of the on-chip temperature sensors for ideality and an associated method of sensing temperature at a specific on-chip location. The circuit comprises a temperature sensor, an identical reference sensor with a thermally coupled heater and a comparator. The comparator is adapted to receive and compare the outputs from both the temperature and reference sensors and to drive the heater with current until the outputs match. Based on the current forced into the heater, the temperature rise of the reference sensor can be calculated, which in this state, is equal to that of the temperature sensor.
    Type: Application
    Filed: January 6, 2009
    Publication date: April 30, 2009
    Applicant: International Business Machines Corporation
    Inventors: William F. Clark, JR., Edward J. Nowak
  • Publication number: 20090096026
    Abstract: A method of fabricating a high voltage fully depleted silicon-on-insulator (FD SOI) transistor, the FD SOI transistor having a structure including a region within a body on which a gate structure is disposed. The region includes a channel separating the source region and the drain region. Above the source region is disposed a carrier recombination element, which abuts the gate structure and is electrically connected to the region via the channel. The drain region is lightly doped and ballasted to increase breakdown voltage. The FD SOI may be fabricated by forming a body with a thin silicon layer disposed on a buried oxide (BOX). Alternatively, the body may be formed using a partially depleted (PD) SOI where the region formed therein has a reduced thickness in comparison to the overall thickness of the PD SOI.
    Type: Application
    Filed: October 16, 2007
    Publication date: April 16, 2009
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Andres Bryant, William F. Clark, JR., Edward J. Nowak
  • Patent number: 7517806
    Abstract: A method and structure for an integrated circuit structure that utilizes complementary fin-type field effect transistors (FinFETs) is disclosed. The invention has a first-type of FinFET which includes a first fin, and a second-type of FinFET which includes a second fin running parallel to the first fin. The invention also has an insulator fin positioned between the source/drain regions of the first first-type of FinFET and the second-type of FinFET. The insulator fin has approximately the same width dimensions as the first fin and the second fin, such that the spacing between the first-type of FinFET and the second-type of FinFET is approximately equal to the width of one fin. The invention also has a common gate formed over channel regions of the first-type of FinFET and the second-type of FinFET. The gate includes a first impurity doping region adjacent the first-type of FinFET and a second impurity doping region adjacent the second-type of FinFET.
    Type: Grant
    Filed: July 21, 2005
    Date of Patent: April 14, 2009
    Assignee: International Business Machines Corporation
    Inventors: Andres Bryant, William F. Clark, Jr., David M. Fried, Mark D. Jaffe, Edward J. Nowak, John J. Pekarik, Christopher S. Putnam
  • Patent number: 7494850
    Abstract: Disclosed are embodiments of a structure that comprises a first device, having multiple FETs, and a second device, having at least one FET. Sections of a first portion of a semiconductor layer below the first device are doped and contacted to form back gates. A second portion of the semiconductor layer below the second device remains un-doped and un-contacted and, thus, functions as an insulator. Despite the performance degradation of the first device due to back gate capacitance, the back gates result in a net gain for devices such as, SRAM cells, which require precise Vt control. Contrarily, despite marginal Vt control in the second device due to the absence of back gates, the lack of capacitance loading and the added insulation result in a net gain for high performance devices such as, logic circuits.
    Type: Grant
    Filed: February 15, 2006
    Date of Patent: February 24, 2009
    Assignee: International Business Machines Corporation
    Inventors: Brent A. Anderson, Andres Bryant, William F. Clark, Jr., Edward J. Nowak
  • Patent number: 7484886
    Abstract: Disclosed are embodiments of an improved on-chip temperature sensing circuit, based on bolometry, which provides self calibration of the on-chip temperature sensors for ideality and an associated method of sensing temperature at a specific on-chip location. The circuit comprises a temperature sensor, an identical reference sensor with a thermally coupled heater and a comparator. The comparator is adapted to receive and compare the outputs from both the temperature and reference sensors and to drive the heater with current until the outputs match. Based on the current forced into the heater, the temperature rise of the reference sensor can be calculated, which in this state, is equal to that of the temperature sensor.
    Type: Grant
    Filed: May 3, 2006
    Date of Patent: February 3, 2009
    Assignee: International Business Machines Corporation
    Inventors: William F. Clark, Jr., Edward J. Nowak
  • Publication number: 20090020806
    Abstract: Disclosed are embodiments of an asymmetric field effect transistor structure and a method of forming the structure in which both series resistance in the source region (Rs) and gate to drain capacitance (Cgd) are reduced in order to provide optimal performance (i.e., to provide improved drive current with minimal circuit delay). Specifically, different heights of the source and drain regions and/or different distances between the source and drain regions and the gate are tailored to minimize series resistance in the source region (i.e., in order to ensure that series resistance is less than a predetermined resistance value) and in order to simultaneously to minimize gate to drain capacitance (i.e., in order to simultaneously ensure that gate to drain capacitance is less than a predetermined capacitance value).
    Type: Application
    Filed: July 16, 2007
    Publication date: January 22, 2009
    Inventors: Brent A. Anderson, Andres Bryant, William F. Clark, JR., Edward J. Nowak
  • Publication number: 20090020830
    Abstract: Disclosed are embodiments for a design structure of an asymmetric field effect transistor structure and a method of forming the structure in which both series resistance in the source region (Rs) and gate to drain capacitance (Cgd) are reduced in order to provide optimal performance (i.e., to provide improved drive current with minimal circuit delay). Specifically, different heights of the source and drain regions and/or different distances between the source and drain regions and the gate are tailored to minimize series resistance in the source region (i.e., in order to ensure that series resistance is less than a predetermined resistance value) and in order to simultaneously to minimize gate to drain capacitance (i.e., in order to simultaneously ensure that gate to drain capacitance is less than a predetermined capacitance value).
    Type: Application
    Filed: October 9, 2007
    Publication date: January 22, 2009
    Inventors: Brent A. Anderson, Andres Bryant, William F. Clark, JR., Edward J. Nowak
  • Publication number: 20080265316
    Abstract: Disclosed is semiconductor structure that incorporates a field shield below a semiconductor device (e.g., a field effect transistor (FET) or a diode). The field shield is sandwiched between upper and lower isolation layers on a wafer. A local interconnect extends through the upper isolation layer and connects the field shield to a selected doped semiconductor region of the device (e.g., a source/drain region of a FET or a cathode or anode of a diode). Current that passes into the device, for example, during back-end of the line charging, is shunted by the local interconnect away from the upper isolation layer and down into the field shield. Consequently, an electric charge is not allowed to build up in the upper isolation layer but rather bleeds from the field shield into the lower isolation layer and into the substrate below.
    Type: Application
    Filed: May 28, 2008
    Publication date: October 30, 2008
    Applicant: International Business Machines Corporation
    Inventors: William F. Clark, Edward J. Nowak
  • Publication number: 20080265343
    Abstract: A semiconductor structure includes an inverted T shaped gate electrode located over a channel region that separates a plurality of source and drain regions within a semiconductor substrate. The inverted T shaped gate electrode may comprise different gate electrode materials in a horizontal portion thereof and a vertical portion thereof. The semiconductor structure may be passivated with an inter-level dielectric (ILD) layer through which may be located and formed a plurality of vias that contact the plurality of source and drain regions. Due to the inverted T shaped gate electrode, the semiconductor structure exhibits a reduced gate electrode to via capacitance.
    Type: Application
    Filed: April 26, 2007
    Publication date: October 30, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brian J. Greene, William F. Clark, Bruce B. Doris
  • Publication number: 20080217707
    Abstract: A transistor having a directly contacting gate and body and related methods are disclosed. In one embodiment, the transistor includes a gate; a body; and a dielectric layer extending over the body to insulate the gate from the body along an entire surface of the body except along a portion of at least a sidewall of the body, wherein the gate is in direct contact with the body at the portion. One method may include providing the body; forming a sacrificial layer that contacts at least a portion of a sidewall of the body; forming a dielectric layer about the body except at the at least a portion; removing the sacrificial layer; and forming the gate about the body such that the gate contacts the at least a portion of the sidewall of the body.
    Type: Application
    Filed: March 8, 2007
    Publication date: September 11, 2008
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Brent A. Anderson, Andres Bryant, William F. Clark, Edward J. Nowak
  • Publication number: 20080213964
    Abstract: A field effect transistor and a method of fabricating the field effect transistor. The field effect transistor includes: a silicon body, a perimeter of the silicon body abutting a dielectric isolation; a source and a drain formed in the body and on opposite sides of a channel formed in the body; and a gate dielectric layer between the body and an electrically conductive gate electrode, a bottom surface of the gate dielectric layer in direct physical contact with a top surface of the body and a bottom surface the gate electrode in direct physical contact with a top surface of the gate dielectric layer, the gate electrode having a first region having a first thickness and a second region having a second thickness, the first region extending along the top surface of the gate dielectric layer over the channel region, the second thickness greater than the first thickness.
    Type: Application
    Filed: February 26, 2008
    Publication date: September 4, 2008
    Inventors: Brent Alan Anderson, Andres Bryant, William F. Clark, Edward Joseph Nowak