Patents by Inventor Xinhui Wang

Xinhui Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9340608
    Abstract: Isolated monoclonal antibodies are disclosed herein that specifically bind endoplasmin. In some embodiments these antibodies are fully human. Recombinant nucleic acids encoding these antibodies, expression vectors including these nucleic acids, and host cells transformed with these expression vectors are also disclosed herein. In several embodiments the disclosed antibodies are of use for detecting and/or treating tumors that express endoplasmin, such as melanoma, breast cancer, head and neck squamous cell carcinoma, renal cancer, lung cancer, glioma, bladder cancer, ovarian cancer or pancreatic cancer. In one example, the tumor is a melanoma.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: May 17, 2016
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Soldano Ferrone, Xinhui Wang, Thomas P. Conrads, Elvira Favoino, Brian L. Hood
  • Publication number: 20160099249
    Abstract: At least one dielectric pad layer is formed on a semiconductor-on-insulator (SOI) substrate. A deep trench is formed in the SOI substrate, and a combination of an outer electrode, a node dielectric, and an inner electrode are formed such that the top surface of the inner electrode is recessed below the top surface of a buried insulator layer of the SOI substrate. Selective epitaxy is performed to fill a cavity overlying the inner electrode with an epitaxial semiconductor material portion. A top semiconductor material layer and the epitaxial semiconductor material portion are patterned to form a fin structure including a portion of the top semiconductor material layer and a portion of the epitaxial semiconductor material portion. The epitaxial semiconductor material portion functions as a conductive strap structure between the inner electrode and a semiconductor device to be formed on the fin structure.
    Type: Application
    Filed: October 3, 2015
    Publication date: April 7, 2016
    Inventors: Kevin K. Chan, Babar A. Khan, Dae-Gyu Park, Xinhui Wang
  • Patent number: 9296811
    Abstract: Combinations of agents that have a synergistic effect for the treatment of a tumor are disclosed herein. These combinations of agents can be used to treat tumors, wherein the cells of the cancer express a mutated BRAF. Methods are disclosed for treating a subject diagnosed with a tumor that expresses a mutated BRAF. The methods include administering to the subject (1) a therapeutically effective amount of an antibody or antigen binding fragment thereof that specifically binds high molecular weight melanoma associated antigen (HMW-MAA), also known as CSPG4; and (2) a therapeutically effective amount of a BRAF inhibitor. In some embodiments, the tumor is melanoma. In some embodiments the method includes selecting a subject with primary or secondary resistance to a BRAF inhibitor. In further embodiments, treating the tumor comprises decreasing the metastasis of the tumor. In additional embodiments, the BRAF inhibitor comprises PLX4032 or PLX4720.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: March 29, 2016
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Soldano Ferrone, Xinhui Wang, Elvira Favoino, Ling Yu, Yangyang Wang
  • Patent number: 9287136
    Abstract: Field effect transistors fabricated using atomic layer doping processes are disclosed. In accordance with an embodiment of an atomic layer doping method, a semiconducting surface and a dopant gas mixture are prepared. Further, a dopant layer is grown on the semiconducting surface by applying the dopant gas mixture to the semiconducting surface under a pressure that is less than 500 Torr and a temperature that is between 300° C. and 750° C. The dopant layer includes at least 4×1020 active dopant atoms per cm3 that react with atoms on the semiconducting surface such that the reacted atoms increase the conductivity of the semiconducting surface.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: March 15, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Kevin K. Chan, Young-Hee Kim, Isaac Lauer, Ramachandran Muralidhar, Dae-Gyu Park, Xinhui Wang, Min Yang
  • Patent number: 9275907
    Abstract: A method of forming a semiconductor structure includes growing an epitaxial doped layer over an exposed portion of a plurality of fins. The epitaxial doped layer combines the exposed portion of the fins to form a merged source and drain region. An implantation process occurs in the fins through the epitaxial doped layer to change the crystal lattice of the fins to form amorphized fins. A nitride layer is deposited over the semiconductor structure. The nitride layer covers the merged source and drain regions. A thermal treatment is performed in the semiconductor structure to re-crystallize the amorphized fins to form re-crystallized fins. The re-crystallized fins, the epitaxial doped layer and the nitride layer form a strained source and drain region which induces stress to a channel region.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: March 1, 2016
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Kevin K. Chan, Dae-Gyu Park, Xinhui Wang, Yun-Yu Wang, Min Yang, Qi Zhang
  • Publication number: 20160045598
    Abstract: Methods for treating cancer using a combination of an inhibitor of the sonic hedgehog signaling pathway (e.g., LDE225) with radiation and a tumor antigen-specific monoclonal antibody (e.g., heat shock protein (HSP) glucose regulated protein of 94000 daltons (Grp94)-specific mAb W9, or chondroitin sulfate proteoglycan 4 (CSPG4)-targeted mAbs), or with a BRAF inhibitor, e.g., in BRAF inhibitor resistant cancers.
    Type: Application
    Filed: April 3, 2014
    Publication date: February 18, 2016
    Inventors: Francesco Sabbatino, Yangyang Wang, Xinhui Wang, Steven Isakoff, Cristina Ferrone, Joe Schwab, Soldano Ferrone
  • Publication number: 20160038578
    Abstract: Disclosed herein are isolated human monoclonal antibodies, and functional fragments thereof, that specifically bind HMW-MAA. Nucleic acids encoding these antibodies, expression vectors including these nucleic acid molecules, and isolated host cells that express the nucleic acid molecules are also disclosed. The antibodies can be used to detect HMW-MAA in a sample. Methods of diagnosing cancer, or confirming a diagnosis of cancer, are disclosed herein that utilize these antibodies. Methods of treating a subject with cancer are also disclosed.
    Type: Application
    Filed: October 20, 2015
    Publication date: February 11, 2016
    Applicant: University of Pittsburgh - Of the Commonwealth System of Higher Education
    Inventors: Xinhui Wang, Soldano Ferrone
  • Patent number: 9193796
    Abstract: Disclosed herein are isolated human monoclonal antibodies, and functional fragments thereof, that specifically bind HMW-MAA. Nucleic acids encoding these antibodies, expression vectors including these nucleic acid molecules, and isolated host cells that express the nucleic acid molecules are also disclosed. The antibodies can be used to detect HMW-MAA in a sample. Methods of diagnosing cancer, or confirming a diagnosis of cancer, are disclosed herein that utilize these antibodies. Methods of treating a subject with cancer are also disclosed.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: November 24, 2015
    Assignee: University of Pittsburgh—Of the Commonwealth System of Higher Education
    Inventors: Xinhui Wang, Soldano Ferrone
  • Publication number: 20150290308
    Abstract: It is disclosed herein that condroitin sulfate proteoglycan 4 (CSPG4), also known as high molecular weight melanoma associated antigen, is overexpressed on basal breast carcinoma cells (BBC), specifically triple negative basal breast carcinoma cells (TNBC). Methods for detecting basal breast cancer in a subject are disclosed. Methods are also disclosed for inhibiting the growth of a basal breast cancer cell. These methods include contacting the basal breast cancer cell with an effective amount of an antibody that specifically binds CSPG4. Additional treatment methods, and the use of antibody panels, are also described herein.
    Type: Application
    Filed: June 23, 2015
    Publication date: October 15, 2015
    Applicant: University of Pittsburgh - Of the Commonwealth System of Higher Education
    Inventors: Soldano Ferrone, Xinhui Wang
  • Patent number: 9144089
    Abstract: The present invention provides an access method and a system for a Machine-Type Communication (MTC) device, and an MTC device. The method comprises the steps of: an MTC device sending, when performing channel request, a channel request cause value and a random reference value to a Base Station Subsystem (BSS) (100), and the BSS sending the received channel request cause value and random reference value back to the MTC device when completing channel allocation (101). The present invention distinguishes the MTC services from other non-MTC services through the channel request cause value, that is, when the cause values are different, the collision will not occur even if the random reference values are the same, thus reducing the probability of the random reference value collision, implementing the effective management for access operations of large numbers of MTC devices, and avoiding the influence of random reference value collision on the normal implementation of original services.
    Type: Grant
    Filed: April 15, 2011
    Date of Patent: September 22, 2015
    Assignee: ZTE CORPORATION
    Inventors: Jing Li, Xinhui Wang, Changwei Ke
  • Publication number: 20150236118
    Abstract: Field effect transistors fabricated using atomic layer doping processes are disclosed. In accordance with an embodiment of an atomic layer doping method, a semiconducting surface and a dopant gas mixture are prepared. Further, a dopant layer is grown on the semiconducting surface by applying the dopant gas mixture to the semiconducting surface under a pressure that is less than 500 Torr and a temperature that is between 300° C. and 750° C. The dopant layer includes at least 4×1020 active dopant atoms per cm3 that react with atoms on the semiconducting surface such that the reacted atoms increase the conductivity of the semiconducting surface.
    Type: Application
    Filed: April 29, 2015
    Publication date: August 20, 2015
    Inventors: KEVIN K. CHAN, YOUNG-HEE KIM, ISAAC LAUER, RAMACHANDRAN MURALIDHAR, DAE-GYU PARK, XINHUI WANG, MIN YANG
  • Patent number: 9105741
    Abstract: A method of forming a semiconductor structure may include forming at least one fin and forming, over a first portion of the at least one fin structure, a gate. Gate spacers may be formed on the sidewalls of the gate, whereby the forming of the spacers creates recessed regions adjacent the sidewalls of the at least one fin. A first epitaxial region is formed that covers both one of the recessed regions and a second portion of the at least one fin, such that the second portion extends outwardly from one of the gate spacers. A first epitaxial layer is formed within the one of the recessed regions by etching the first epitaxial region and the second portion of the at least one fin. A second epitaxial region is formed at a location adjacent one of the spacers and over the first epitaxial layer within one of the recessed regions.
    Type: Grant
    Filed: September 13, 2012
    Date of Patent: August 11, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Jinghong Li, Dae-Gyu Park, Xinhui Wang, Yun-Yu Wang, Qingyun Yang
  • Patent number: 9096661
    Abstract: It is disclosed herein that condroitin sulfate proteoglycan 4 (CSPG4), also known as high molecular weight melanoma associated antigen, is overexpressed on basal breast carcinoma cells (BBC), specifically triple negative basal breast carcinoma cells (TNBC). Methods for detecting basal breast cancer in a subject are disclosed. Methods are also disclosed for inhibiting the growth of a basal breast cancer cell. These methods include contacting the basal breast cancer cell with an effective amount of an antibody that specifically binds CSPG4. Additional treatment methods, and the use of antibody panels, are also described herein.
    Type: Grant
    Filed: June 18, 2013
    Date of Patent: August 4, 2015
    Assignee: University of Pittsburgh—Of the Commonwwealth System of Higher Education
    Inventors: Soldano Ferrone, Xinhui Wang
  • Patent number: 9059318
    Abstract: A complementary metal-oxide semiconductor (CMOS) structure includes a substrate and a P-type field effect transistor (FET) and an N-type FET disposed adjacent to one another on the substrate. Each FET includes a silicon-on-insulator (SOI) region, a gate electrode disposed on the SOI region, a source stressor, and a drain stressor disposed across from the source stressor relative to the gate electrode, wherein proximities of the source stressor and the drain stressor to a channel of a respective FET are substantially equal.
    Type: Grant
    Filed: August 31, 2009
    Date of Patent: June 16, 2015
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Amlan Majumdar, Xinhui Wang
  • Patent number: 9048261
    Abstract: Field effect transistors fabricated using atomic layer doping processes are disclosed. In accordance with an embodiment of an atomic layer doping method, a semiconducting surface and a dopant gas mixture are prepared. Further, a dopant layer is grown on the semiconducting surface by applying the dopant gas mixture to the semiconducting surface under a pressure that is less than 500 Torr and a temperature that is between 300° C. and 750° C. The dopant layer includes at least 4×1020 active dopant atoms per cm3 that react with atoms on the semiconducting surface such that the reacted atoms increase the conductivity of the semiconducting surface.
    Type: Grant
    Filed: August 4, 2011
    Date of Patent: June 2, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Young-Hee Kim, Isaac Lauer, Ramachandran Muralidhar, Dae-Gyu Park, Xinhui Wang, Min Yang
  • Patent number: 9034748
    Abstract: Embodiments include a method comprising depositing a hard mask layer over a first layer, the hard mask layer including; lower hard mask layer, hard mask stop layer, and upper hard mask. The hard mask layer and the first layer are patterned and a spacer deposited on the patterned sidewall. The upper hard mask layer and top portion of the spacer are removed by selective etching with respect to the hard mask stop layer, the remaining spacer material extending to a first predetermined position on the sidewall. The hard mask stop layer is removed by selective etching with respect to the lower hard mask layer and spacer. The first hard mask layer and top portion of the spacer are removed by selectively etching the lower hard mask layer and the spacer with respect to the first layer, the remaining spacer material extending to a second predetermined position on the sidewall.
    Type: Grant
    Filed: September 4, 2013
    Date of Patent: May 19, 2015
    Assignee: International Business Machines Corporation
    Inventors: Christopher V. Baiocco, Kevin K. Chan, Young-Hee Kim, Masaharu Kobayashi, Effendi Leobandung, Fei Liu, Dae-Gyu Park, Helen Wang, Xinhui Wang, Min Yang
  • Publication number: 20150135156
    Abstract: An integrated FinFET and deep trench capacitor structure and methods of manufacture are disclosed. The method includes forming at least one deep trench capacitor in a silicon on insulator (SOI) substrate. The method further includes simultaneously forming polysilicon fins from material of the at least one deep trench capacitor and SOI fins from the SOI substrate. The method further includes forming an insulator layer on the polysilicon fins. The method further includes forming gate structures over the SOI fins and the insulator layer on the polysilicon fins.
    Type: Application
    Filed: January 21, 2015
    Publication date: May 14, 2015
    Inventors: Kevin K. Chan, Sivananda K. Kanakasabapathy, Babar A. Khan, Masaharu Kobayashi, Effendi Leobandung, Theodorus E. Standaert, Xinhui Wang
  • Patent number: 9023697
    Abstract: A method of forming a semiconductor structure includes growing an epitaxial doped layer over an exposed portion of a plurality of fins. The epitaxial doped layer combines the exposed portion of the fins to form a merged source and drain region. An implantation process occurs in the fins through the epitaxial doped layer to change the crystal lattice of the fins to form amorphized fins. A nitride layer is deposited over the semiconductor structure. The nitride layer covers the merged source and drain regions. A thermal treatment is performed in the semiconductor structure to re-crystallize the amorphized fins to form re-crystallized fins. The re-crystallized fins, the epitaxial doped layer and the nitride layer form a strained source and drain region which induces stress to a channel region.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: May 5, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Dae-Gyu Park, Xinhui Wang, Yun-Yu Wang, Min Yang, Qi Zhang
  • Patent number: 8987800
    Abstract: An integrated FinFET and deep trench capacitor structure and methods of manufacture are disclosed. The method includes forming at least one deep trench capacitor in a silicon on insulator (SOI) substrate. The method further includes simultaneously forming polysilicon fins from material of the at least one deep trench capacitor and SOI fins from the SOI substrate. The method further includes forming an insulator layer on the polysilicon fins. The method further includes forming gate structures over the SOI fins and the insulator layer on the polysilicon fins.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: March 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Kevin K. Chan, Sivananda K. Kanakasabapathy, Babar A. Khan, Masaharu Kobayashi, Effendi Leobandung, Theodorus E. Standaert, Xinhui Wang
  • Publication number: 20150064897
    Abstract: Embodiments include a method comprising depositing a hard mask layer over a first layer, the hard mask layer including; lower hard mask layer, hard mask stop layer, and upper hard mask. The hard mask layer and the first layer are patterned and a spacer deposited on the patterned sidewall. The upper hard mask layer and top portion of the spacer are removed by selective etching with respect to the hard mask stop layer, the remaining spacer material extending to a first predetermined position on the sidewall. The hard mask stop layer is removed by selective etching with respect to the lower hard mask layer and spacer. The first hard mask layer and top portion of the spacer are removed by selectively etching the lower hard mask layer and the spacer with respect to the first layer, the remaining spacer material extending to a second predetermined position on the sidewall.
    Type: Application
    Filed: September 4, 2013
    Publication date: March 5, 2015
    Applicant: International Business Machines Corporation
    Inventors: Christopher V. Baiocco, Kevin K. Chan, Young-Hee Kim, Masaharu Kobayashi, Effendi Leobandung, Fei Liu, Dae-Gyu Park, Helen Wang, Xinhui Wang, Min Yang