Patents by Inventor Yi Shao

Yi Shao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9915630
    Abstract: A biochip includes a substrate, where the substrate includes at least one hole extending from a first surface of the substrate to a second surface of the substrate opposite the first surface, and where the substrate comprises a microfluidic channel pattern. The biochip further includes a surface modification layer over the substrate. Additionally, the biochip includes a sensing wafer bonded to the substrate, where the sensing wafer has one or more modified surface patterns having different surface properties from each other.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: March 13, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi-Shao Liu, Chun-Wen Cheng, Chun-Ren Cheng
  • Publication number: 20180068220
    Abstract: An approach to optimizing predictive model analysis, comprising creating one or more model templates, decomposing a predictive model, wherein model information is extracted from the predictive model, storing the model information in the one or more model templates, creating a plurality of sub-models, associated with the predictive model, using the stored model information, sending the plurality of sub-models to a scoring engine, receiving results based on the plurality of sub-models from the scoring engine and generating predictions based on combining the results received from the scoring engine. The generated predictions can be sent to one or more analytic applications for further processing.
    Type: Application
    Filed: September 6, 2016
    Publication date: March 8, 2018
    Inventors: Yi Shao, Lei Tian, Jing Xu, Peng Xue
  • Patent number: 9910009
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device may include a substrate; a gate structure disposed on a first surface of the substrate and an interface layer formed on the second surface of the substrate. The interface layer may allow for a receptor to be placed on the interface layer to detect the presence of a biomolecule or bio-entity.
    Type: Grant
    Filed: July 27, 2017
    Date of Patent: March 6, 2018
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Alexander Kalnitsky, Yi-Shao Liu, Kai-Chih Liang, Chia-Hua Chu, Chun-Ren Cheng, Chun-Wen Cheng
  • Patent number: 9873100
    Abstract: An integrated circuit includes a plurality of sensing pixels. Each sensing pixel of the plurality of sensing pixels includes a sensing film portion, a potential-sensing device configured to generate a first signal responsive to an electrical characteristic of the sensing film portion, a temperature-sensing device configured to generate a second signal responsive to a temperature of the sensing film portion, and one or more heating elements configured to adjust the temperature of the sensing film portion.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: January 23, 2018
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Tung-Tsun Chen, Yi-Shao Liu, Jui-Cheng Huang, Chin-Hua Wen, Felix Ying-Kit Tsui, Yung-Chow Peng
  • Publication number: 20180015467
    Abstract: An integrated fluidic module includes a fluid manifold, a valve stator, a valve rotor and a valve housing. The fluid manifold includes microchannels connected to a sample reaction unit, and fluid input channels connected to fluid sources. The valve stator includes at least one groove and plural through holes, at least one groove is connected with at least one of the plural through holes, and parts of the groove and through holes are communicated with the microchannels and the fluid input channels. The valve rotor includes at least one groove. The valve housing accommodates the valve rotor and the valve stator. When the valve rotor is rotated to different positions, at least one groove of the valve rotor is connected with at least one through hole or groove of the valve stator to provide at least one fluid path and enable fluids provided by the fluid sources to be directed to corresponding chambers of the sample reaction unit through the fluid path.
    Type: Application
    Filed: July 22, 2016
    Publication date: January 18, 2018
    Inventors: Qian Liang, Revata Utama, Yi-shao Liu
  • Publication number: 20180019005
    Abstract: A charge pump apparatus is provided. A two-phase clock signal and a four-phase clock signal for respectively driving a two-phase charge pump circuit and a four-phase charge pump circuit are generated according to delay signals of coupling nodes between delay circuits of a ring oscillator circuit.
    Type: Application
    Filed: November 16, 2016
    Publication date: January 18, 2018
    Applicant: eMemory Technology Inc.
    Inventor: Chi-Yi Shao
  • Publication number: 20170363704
    Abstract: A device includes a first biosensor of a biosensor array; a second biosensor of a biosensor array; a readout circuit electrically connected to the biosensor array; a decoder electrically connected to the biosensor array; a voltage generator electrically connected to the biosensor array; and a decision system electrically connected to the voltage generator and the readout circuit.
    Type: Application
    Filed: August 30, 2017
    Publication date: December 21, 2017
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chin-Hua WEN, Jui-Cheng Huang, Yi-Shao Liu, Chun-Wen Cheng, Tung-Tsun Chen
  • Publication number: 20170322177
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device may include a substrate; a gate structure disposed on a first surface of the substrate and an interface layer formed on the second surface of the substrate. The interface layer may allow for a receptor to be placed on the interface layer to detect the presence of a biomolecule or bio-entity.
    Type: Application
    Filed: July 27, 2017
    Publication date: November 9, 2017
    Inventors: Alexander Kalnitsky, Yi-Shao Liu, Kai-Chih Liang, Chia-Hua Chu, Chun-Ren Cheng, Chun-Wen Cheng
  • Publication number: 20170315085
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) device and methods of fabricating a BioFET and a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device includes a gate structure disposed on a first surface of a substrate and an interface layer formed on a second surface of the substrate. The substrate is thinned from the second surface to expose a channel region before forming the interface layer.
    Type: Application
    Filed: July 14, 2017
    Publication date: November 2, 2017
    Inventors: Yi-Shao LIU, Chun-Ren CHENG, Ching-Ray CHEN, Yi-Hsien CHANG, Fei-Lung LAI, Chun-Wen CHENG
  • Publication number: 20170315084
    Abstract: A device includes a biosensor, a sensing circuit electrically connected to the biosensor, a quantizer electrically connected to the sensing circuit, a digital filter electrically connected to the quantizer, a selective window electrically connected to the digital filter, and a decision unit electrically connected to the selective window.
    Type: Application
    Filed: July 10, 2017
    Publication date: November 2, 2017
    Inventors: Jui-Cheng Huang, Yi-Shao Liu, Chun-Wen Cheng, Tung-Tsun Chen, Chin-Hua Wen
  • Patent number: 9797976
    Abstract: A device includes a first biosensor of a biosensor array; a second biosensor of a biosensor array; a readout circuit electrically connected to the biosensor array; a decoder electrically connected to the biosensor array; a voltage generator electrically connected to the biosensor array; and a decision system electrically connected to the voltage generator and the readout circuit.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: October 24, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY
    Inventors: Chin-Hua Wen, Jui-Cheng Huang, Yi-Shao Liu, Chun-Wen Cheng, Tung-Tsun Chen
  • Patent number: 9791406
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device may include a substrate; a gate structure disposed on a first surface of the substrate and an interface layer formed on the second surface of the substrate. The interface layer may allow for a receptor to be placed on the interface layer to detect the presence of a biomolecule or bio-entity.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: October 17, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Alexander Kalnitsky, Yi-Shao Liu, Kai-Chih Liang, Chia-Hua Chu, Chun-Ren Cheng, Chun-Wen Cheng
  • Publication number: 20170219520
    Abstract: A device layer of an integrated circuit device includes a semiconductor active layer spanning a plurality of device regions. Each of the device regions has a heating element, a temperature sensor, and bioFETs in the device layer. The bioFETs have source/drain regions and channel regions in the semiconductor active layer and fluid gates exposed on a surface for fluid interfacing on one side of the device layer. A multilayer metal interconnect structure is disposed on the opposite side of the device layer. This structure places the heating elements in proximity to the fluid gates enabling localized heating, precision heating, and multiplexed temperature control for multiplexed bio-sensing applications.
    Type: Application
    Filed: April 20, 2017
    Publication date: August 3, 2017
    Inventors: Yi-Shao Liu, Jui-Cheng Huang, Tung-Tsun Chen
  • Publication number: 20170205371
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device may include a substrate; a gate structure disposed on a first surface of the substrate and an interface layer formed on the second surface of the substrate. The interface layer may allow for a receptor to be placed on the interface layer to detect the presence of a biomolecule or bio-entity. An amplification factor of the BioFET device may be provided by a difference in capacitances associated with the gate structure on the first surface and with the interface layer formed on the second surface.
    Type: Application
    Filed: February 2, 2017
    Publication date: July 20, 2017
    Inventors: Yi-Shao LIU, Rashid Bashir, Fel-Lung Lai, Chun-wen Cheng
  • Patent number: 9709524
    Abstract: A device layer of an integrated circuit device includes a semiconductor active layer spanning a plurality of device regions. Each of the device regions has a heating element, a temperature sensor, and bioFETs in the device layer. The bioFETs have source/drain regions and channel regions in the semiconductor active layer and fluid gates exposed on a surface for fluid interfacing on one side of the device layer. A multilayer metal interconnect structure is disposed on the opposite side of the device layer. This structure places the heating elements in proximity to the fluid gates enabling localized heating, precision heating, and multiplexed temperature control for multiplexed bio-sensing applications.
    Type: Grant
    Filed: May 15, 2015
    Date of Patent: July 18, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yi-Shao Liu, Jui-Cheng Huang, Tung-Tsun Chen
  • Patent number: 9709525
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) device and methods of fabricating a BioFET and a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device includes a gate structure disposed on a first surface of a substrate and an interface layer formed on a second surface of the substrate. The substrate is thinned from the second surface to expose a channel region before forming the interface layer.
    Type: Grant
    Filed: July 14, 2015
    Date of Patent: July 18, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Shao Liu, Chun-Ren Cheng, Ching-Ray Chen, Yi-Hsien Chang, Fei-Lung Lai, Chun-Wen Cheng
  • Patent number: 9702846
    Abstract: A device includes a biosensor, a sensing circuit electrically connected to the biosensor, a quantizer electrically connected to the sensing circuit, a digital filter electrically connected to the quantizer, a selective window electrically connected to the digital filter, and a decision unit electrically connected to the selective window.
    Type: Grant
    Filed: November 8, 2013
    Date of Patent: July 11, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jui-Cheng Huang, Yi-Shao Liu, Chun-Wen Cheng, Tung-Tsun Chen, Chin-Hua Wen
  • Patent number: 9689835
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device may include a substrate; a gate structure disposed on a first surface of the substrate and an interface layer formed on the second surface of the substrate. The interface layer may allow for a receptor to be placed on the interface layer to detect the presence of a biomolecule or bio-entity. An amplification factor of the BioFET device may be provided by a difference in capacitances associated with the gate structure on the first surface and with the interface layer formed on the second surface.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: June 27, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Shao Liu, Rashid Bashir, Fei-Lung Lai, Chun-wen Cheng
  • Publication number: 20170133311
    Abstract: The present disclosure relates to a semiconductor package and a manufacturing method thereof The semiconductor package includes a semiconductor element including a main body, a plurality of conductive vias, and at least one filler. The conductive vias penetrate through the main body. The filler is located in the main body, and a coefficient of thermal expansion (CTE) of the filler is different from that of the main body and the conductive vias. Thus, the CTE of the overall semiconductor element can be adjusted, so as to reduce warpage.
    Type: Application
    Filed: January 19, 2017
    Publication date: May 11, 2017
    Applicant: Advanced Semiconductor Engineering, Inc.
    Inventors: Chin-Li KAO, Chang-Chi LEE, Yi-Shao LAI
  • Patent number: 9625493
    Abstract: The present disclosure provides a biosensor device wafer testing and processing methods, system and apparatus. The biosensor device wafer includes device areas separated by scribe lines. A number of test areas that allow fluidic electrical testing are embedded in scribe lines or in device areas. An integrated electro-microfluidic probe card includes a fluidic mount that may be transparent, a microfluidic channels in the fluidic mount in a testing portion, at least one microfluidic probe and a number of electronic probe tips at the bottom of the fluidic mount, fluidic and electronic input and output ports on the sides of the fluidic mount, and at least one handle lug on the fluidic mount. The method includes aligning a wafer, mounting the integrated electro-microfluidic probe card, flowing one or more test fluids in series, and measuring and analyzing electrical properties to determine process qualities and an acceptance level of the wafer.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: April 18, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yi-Shao Liu, Chun-Ren Cheng, Chun-Wen Cheng