Patents by Inventor Yi Shao

Yi Shao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9616617
    Abstract: The present disclosure provides a biochip and methods of fabricating. The biochip includes a fluidic part and a sensing part bonded together using a polymer. The fluidic part has microfluidic channel pattern on one side and fluidic inlet and fluidic outlet on the other side that are fluidly connected to the microfluidic channel pattern. The fluidic inlet and fluidic outlet are formed by laser drilling after protecting the microfluidic channel pattern with a sacrificial protective layer. The polymer bonding is performed at low temperature without damaging patterned surface chemistry on a sensing surface of the sensing part.
    Type: Grant
    Filed: March 8, 2013
    Date of Patent: April 11, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Cheng Shen, Yi-Shao Liu, Yi-Hsien Chang, Chun-Ren Cheng
  • Publication number: 20170065958
    Abstract: The present disclosure relates to a method of depositing a fluid onto a substrate. In some embodiments, the method may be performed by mounting a substrate to a micro-fluidic probe card, so that the substrate abuts a cavity within the micro-fluidic probe card that is in communication with a fluid inlet and a fluid outlet. A first fluidic chemical is selectively introduced into the cavity via the fluid inlet of the micro-fluidic probe card.
    Type: Application
    Filed: November 18, 2016
    Publication date: March 9, 2017
    Inventors: Chun-Wen Cheng, Jung-Huei Peng, Yi-Shao Liu, Fei-Lung Lai, Shang-Ying Tsai
  • Patent number: 9589840
    Abstract: The present disclosure relates to a semiconductor package and a manufacturing method thereof. The semiconductor package includes a semiconductor element including a main body, a plurality of conductive vias, and at least one filler. The conductive vias penetrate through the main body. The filler is located in the main body, and a coefficient of thermal expansion (CTE) of the filler is different from that of the main body and the conductive vias. Thus, the CTE of the overall semiconductor element can be adjusted, so as to reduce warpage.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: March 7, 2017
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Chin-Li Kao, Chang-Chi Lee, Yi-Shao Lai
  • Publication number: 20170059515
    Abstract: A method for testing a partially fabricated bio-sensor device wafer includes aligning the partially fabricated bio-sensor device wafer on a wafer stage of a wafer-level bio-sensor processing tool. The method further includes mounting an integrated electro-microfluidic probe card to a device area on the partially fabricated bio-sensor device wafer, wherein the electro-microfluidic probe card has a first major surface. The method further includes electrically connecting one or more electronic probe tips disposed on the first major surface of the integrated electro-microfluidic probe card to conductive areas of the device area. The method further includes flowing a test fluid from a fluid supply to the integrated electro-microfluidic probe card. The method further includes electrically measuring via the one or more electronic probe tips a first electrical property of one or more bio-FETs of the device area based on the test fluid flow.
    Type: Application
    Filed: November 14, 2016
    Publication date: March 2, 2017
    Inventors: Yi-Shao LIU, Fei-Lung LAI, Chun-Ren CHENG, Chun-Wen CHENG
  • Publication number: 20170054300
    Abstract: A power system with detecting function includes a power source, a power level detector, and a power floating detector. The power source includes multiple voltage sources for operations in multiple voltage domains, respectively. The power level detector is configured to constantly monitor the voltage level of each voltage domain. The power floating detector is configured to detect the presence of floating voltages in each voltage domain. Therefore, the present power system with detection function can guarantee stable operations and detect glitch attacks.
    Type: Application
    Filed: August 15, 2016
    Publication date: February 23, 2017
    Inventors: Chi-Yi Shao, Po-Hao Huang
  • Patent number: 9578421
    Abstract: A vibration unit of a miniature speaker is disclosed that the vibration unit has a diaphragm, a voice coil driving the diaphragm along a vibration direction, and a support around which the voice coil is wound. The support includes a base attached to the diaphragm, and a number of sidewalls each extending from a bound of the base along the vibration direction to a distal end thus forming an edge connecting the distal end and the bound. The support further includes a number of smooth corners formed at the edges of the sidewalls. For forming the smooth corners, each of the sidewalls includes two flanges extending from two edges for protecting the voice coil from being cut broken.
    Type: Grant
    Filed: December 3, 2014
    Date of Patent: February 21, 2017
    Assignee: AAC Technologies Pte. Ltd.
    Inventors: Song Pan, Yi Shao
  • Publication number: 20170023521
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device may include a substrate; a gate structure disposed on a first surface of the substrate and an interface layer formed on the second surface of the substrate. The interface layer may allow for a receptor to be placed on the interface layer to detect the presence of a biomolecule or bio-entity.
    Type: Application
    Filed: October 3, 2016
    Publication date: January 26, 2017
    Inventors: Alexander KALNITSKY, Yi-Shao LIU, Kai-Chih LIANG, Chia-Hua CHU, Chun-Ren CHENG, Chun-Wen CHENG
  • Patent number: 9523642
    Abstract: The present disclosure provides a biological field effect transistor (BioFET) device testing and processing methods, system and apparatus. A wafer-level bio-sensor processing tool includes a wafer stage, an integrated electro-microfluidic probe card, and a fluid supply and return. The integrated electro-microfluidic probe card includes a fluidic mount that may be transparent, a microfluidic channels in the fluidic mount, at least one microfluidic probe and a number of electronic probe tips at the bottom of the fluidic mount, fluidic and electronic input and output ports on the sides of the fluidic mount, and at least one handle lug on the fluidic mount. The method includes aligning a wafer, mounting the integrated electro-microfluidic probe card, flowing a test fluid, and measuring electrical properties. The tool may also be used for stamping or printing a fluid in the device area on the wafer.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: December 20, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi-Shao Liu, Fei-Lung Lai, Chun-Ren Cheng, Chun-Wen Cheng
  • Publication number: 20160341656
    Abstract: The present disclosure relates to an integrated chip having an integrated optical bio-sensor, and an associated method of fabrication. In some embodiments, the integrated optical bio-sensor has a sensing device arranged within a semiconductor substrate. An optical waveguide structure is located over a first side of the semiconductor substrate at a position over the sensing device. A dielectric structure is disposed onto the optical waveguide structure at a position that separates the optical waveguide structure from a sample retention area configured to receive a sample solution.
    Type: Application
    Filed: May 22, 2015
    Publication date: November 24, 2016
    Inventors: Yi-Shao Liu, Emerson Cheng, Yi-Hsien Chang, Chun-Ren Cheng, Ching-Ray Chen, Alex Kalnitsky, Allen Timothy Chang
  • Publication number: 20160334362
    Abstract: A device layer of an integrated circuit device includes a semiconductor active layer spanning a plurality of device regions. Each of the device regions has a heating element, a temperature sensor, and bioFETs in the device layer. The bioFETs have source/drain regions and channel regions in the semiconductor active layer and fluid gates exposed on a surface for fluid interfacing on one side of the device layer. A multilayer metal interconnect structure is disposed on the opposite side of the device layer. This structure places the heating elements in proximity to the fluid gates enabling localized heating, precision heating, and multiplexed temperature control for multiplexed bio-sensing applications.
    Type: Application
    Filed: May 15, 2015
    Publication date: November 17, 2016
    Inventors: Yi-Shao Liu, Jui-Cheng Huang, Tung-Tsun Chen
  • Patent number: 9493347
    Abstract: A method of forming a semiconductor device includes depositing a light reflecting layer over a substrate. The method also includes forming a protection layer over the light reflecting layer. The method further includes forming an anti-reflective coating (ARC) layer over the protection layer. The method additionally includes forming an opening in the ARC layer, the protection layer and the light reflecting layer exposing the substrate. The method also includes removing the ARC layer in a wet solution comprising H2O2, the ARC layer being exposed to the H2O2 at a flow rate greater than about 10 standard cubic centimeters per minute (sccm).
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: November 15, 2016
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi-Hsien Chang, Chun-Ren Cheng, Yi-Shao Liu, Allen Timothy Chang, Ching-Ray Chen, Yeh-Tseng Li, Wen-Hsiang Lin
  • Patent number: 9491151
    Abstract: The invention provides a memory apparatus, a charge pump circuit, and a voltage pumping method thereof. The charge pump circuit including a plurality of delay units, a latch circuit, and a plurality of charge pump units. The delay units respectively generate a plurality clock signals according to an output clock signal. The latch circuit receive a final stage clock signal of the clock signals and a latch enable signal. The latch circuit decides whether to latch final stage clock signal or not to generate the output clock signal according to the latch enable signal. The first stage of the charge pump unit receives an input voltage, and the charge pump units operate a voltage pumping operation on the input voltage to generate an output voltage according to the clock signals and the output clock signal.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: November 8, 2016
    Assignee: eMemory Technology Inc.
    Inventor: Chi-Yi Shao
  • Publication number: 20160320335
    Abstract: A biological device includes a substrate, a gate electrode, and a sensing well. The substrate includes a source region, a drain region, a channel region, a body region, and a sensing region. The channel region is disposed between the source region and the drain region. The sensing region is at least disposed between the channel region and the body region. The gate electrode is at least disposed on or above the channel region of the substrate. The sensing well is at least disposed adjacent to the sensing region.
    Type: Application
    Filed: April 29, 2015
    Publication date: November 3, 2016
    Inventors: Ta-Chuan LIAO, Chien-Kuo YANG, Yi-Shao LIU, Tung-Tsun CHEN, Chan-Ching LIN, Jui-Cheng HUANG, Felix Ying-Kit TSUI, Jing-Hwang YANG
  • Publication number: 20160320337
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device includes a substrate, a transistor structure having a treated layer adjacent to the channel region, an isolation layer, and a dielectric layer in an opening of the isolation layer on the treated layer. The dielectric layer and the treated layer are disposed on opposite side of the transistor from a gate structure. The treated layer may be a lightly doped channel layer or a depleted layer.
    Type: Application
    Filed: July 11, 2016
    Publication date: November 3, 2016
    Inventors: Chun-Wen Cheng, Yi-Shao Liu, Fei-Lung Lai, Wei-Cheng Lin, Ta-Chuan Liao, Chien-Kuo Yang
  • Patent number: 9459234
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device may include a substrate; a gate structure disposed on a first surface of the substrate and an interface layer formed on the second surface of the substrate. The interface layer may allow for a receptor to be placed on the interface layer to detect the presence of a biomolecule or bio-entity.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: October 4, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd., (“TSMC”)
    Inventors: Alexander Kalnitsky, Yi-Shao Liu, Kai-Chih Liang, Chia-Hua Chu, Chun-Ren Cheng, Chun-Wen Cheng
  • Patent number: 9395326
    Abstract: The present disclosure provides a device, such as a FET sensing cell, which includes a first dielectric layer over a substrate, an active layer over the first dielectric layer, a source region in the active layer, a drain region in the active layer, a channel region in the active layer situated between the source region and the drain region, a sensing film over the channel region, a second dielectric layer over the active layer, wherein an opening is formed in the second dielectric layer and the sensing film is located within the opening, a first electrode located within the second dielectric layer and a fluidic gate region located over the second dielectric layer and extending into the opening. The present disclosure also provides a method for improving the sensitivity of a device by adjusting a sensing value.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: July 19, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Tung-Tsun Chen, Jui-Cheng Huang, Chin-Hua Wen, Chun-wen Cheng, Yi-Shao Liu
  • Patent number: 9389199
    Abstract: The present disclosure provides a bio-field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET device includes a substrate, a transistor structure having a treated layer adjacent to the channel region, an isolation layer, and a dielectric layer in an opening of the isolation layer on the treated layer. The dielectric layer and the treated layer are disposed on opposite side of the transistor from a gate structure. The treated layer may be a lightly doped channel layer or a depleted layer.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: July 12, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun-Wen Cheng, Yi-Shao Liu, Fei-Lung Lai, Wei-Cheng Lin, Ta-Chuan Liao, Chien-Kuo Yang
  • Publication number: 20160197550
    Abstract: The invention provides a memory apparatus, a charge pump circuit, and a voltage pumping method thereof. The charge pump circuit including a plurality of delay units, a latch circuit, and a plurality of charge pump units. The delay units respectively generate a plurality clock signals according to an output clock signal. The latch circuit receive a final stage clock signal of the clock signals and a latch enable signal. The latch circuit decides whether to latch final stage clock signal or not to generate the output clock signal according to the latch enable signal. The first stage of the charge pump unit receives an input voltage, and the charge pump units operate a voltage pumping operation on the input voltage to generate an output voltage according to the clock signals and the output clock signal.
    Type: Application
    Filed: November 18, 2015
    Publication date: July 7, 2016
    Inventor: Chi-Yi Shao
  • Patent number: 9376713
    Abstract: Provided are methods and devices for label-free detection of nucleic acids that are amplified by polymerase chain reaction. A solution containing the components necessary for a PCR is introduced to a microfluidic amplification chamber and an electric field applied to a confined region in which PCR occurs. PCR product generated in the confined region is detected by measuring an electrical parameter that is, for example, solution impedance. The devices and methods provided herein are used, for example, in assays to detect one or more pathogens or for point-of-care tests. In an aspect, the PCR product is confined to droplets and the assay relates to detecting an electrical parameter of a flowing droplet, thereby detecting PCR product without a label. In an aspect, the PCR occurs in the droplet.
    Type: Grant
    Filed: September 23, 2010
    Date of Patent: June 28, 2016
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Rashid Bashir, Yi-Shao Liu, Eric Salm, Woo-Jin Chang, Nicholas N. Watkins
  • Publication number: 20160165351
    Abstract: The present disclosure provides diaphragm, which includes a dome part, a suspension part supporting the dome part, an adhesive layer located between the dome part and the suspension part. The suspension part includes a supporting portion for supporting the dome part and a periphery extending from and surrounding the supporting portion. The dome part further includes a first ceramic layer, a damping layer attaching to the supporting portion via the adhesive layer. By virtue of the configuration of the dome part, the diaphragm has better damping performance and greater stiffness. In addition, by virtue of the ceramic layer, the diaphragm is provided with better heat-stability.
    Type: Application
    Filed: October 21, 2015
    Publication date: June 9, 2016
    Applicant: AAC TECHNOLOGIES PTE. LTD.
    Inventor: Yi Shao