Patents by Inventor Yi-Tang LIN

Yi-Tang LIN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150132911
    Abstract: A method of forming a fin field-effect transistor (FinFET) includes forming a plurality of fins on a substrate. The method further includes forming an oxide layer on the substrate, wherein a bottom portion of each fin of the plurality of fins is embedded in the oxide layer, and the bottom portion of each fin of the plurality of fins has substantially a same shape. The method further includes shaping at least one fin of the plurality of fins, wherein a top portion of the at least one fin has a different shape from a top portion of another fin of the plurality of fins.
    Type: Application
    Filed: January 16, 2015
    Publication date: May 14, 2015
    Inventors: Clement Hsingjen WANN, Ling-Yen YEH, Chi-Yuan SHIH, Yi-Tang LIN, Chih-Sheng CHANG, Chi-Wen LIU
  • Publication number: 20150129932
    Abstract: A method of fabricating a semiconductor structure having multiple semiconductor device layers is provided. The method comprises providing a bulk substrate and growing a first channel material on the bulk substrate wherein the lattice constant of the channel material is different from the lattice constant of the bulk substrate to introduce strain to the channel material. The method further comprises fabricating a first semiconductor device layer on the bulk substrate with the strained first channel material, fabricating a buffer layer comprising dielectric material with a blanket top surface above the first semiconductor layer, bonding to the blanket top surface a bottom surface of a second substrate comprising a buried oxide with second channel material above the buried oxide, and fabricating a second semiconductor device layer on the second substrate.
    Type: Application
    Filed: November 8, 2013
    Publication date: May 14, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: YI-TANG LIN, CHUN-HSIUNG TSAI, Clement HSINGJEN WANN
  • Patent number: 9029958
    Abstract: A method includes forming a gate stack including a gate electrode on a first semiconductor fin. The gate electrode includes a portion over and aligned to a middle portion of the first semiconductor fin. A second semiconductor fin is on a side of the gate electrode, and does not extend to under the gate electrode. The first and the second semiconductor fins are spaced apart from, and parallel to, each other. An end portion of the first semiconductor fin and the second semiconductor fin are etched. An epitaxy is performed to form an epitaxy region, which includes a first portion extending into a first space left by the etched first end portion of the first semiconductor fin, and a second portion extending into a second space left by the etched second semiconductor fin. A first source/drain region is formed in the epitaxy region.
    Type: Grant
    Filed: June 10, 2013
    Date of Patent: May 12, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chia-Cheng Ho, Tzu-Chiang Chen, Yi-Tang Lin, Chih-Sheng Chang
  • Publication number: 20150123202
    Abstract: A multilayer semiconductor device structure comprising a first buried oxide and a first semiconductor device layer fabricated above the first buried oxide is provided. The first semiconductor device layer comprises a patterned top surface. The patterned surface comprises insulator material and conductor material. The surface density of the insulator material is greater than 40 percent. The multilayer semiconductor device structure further comprises a second buried oxide bonded to the patterned surface of the first semiconductor device layer and a second semiconductor device layer fabricated above the second buried oxide.
    Type: Application
    Filed: November 5, 2013
    Publication date: May 7, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LIMITED
    Inventors: YI-TANG LIN, CHUN-HSIUNG TSAI, Clement HSINGJEN WANN
  • Publication number: 20150123203
    Abstract: A semiconductor structure having multiple semiconductor-device layers is provided. The semiconductor structure comprises a first buried oxide and a first semiconductor device layer fabricated above the first buried oxide. The first semiconductor device layer comprises a patterned top surface. A blanket layer comprising insulator material is fabricated over the patterned surface. The semiconductor structure further comprises a second buried oxide bonded to the blanket layer and a second semiconductor device layer fabricated above the second buried oxide.
    Type: Application
    Filed: November 6, 2013
    Publication date: May 7, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: YI-TANG LIN, CHUN-HSIUNG TSAI, Clement HSINGJEN WANN
  • Patent number: 9026959
    Abstract: A semiconductor manufacturing method of generating a layout for a device includes defining a first plurality of mandrels in a first active region of a first layout. Each mandrel of the first plurality of mandrels extends in a first direction and being spaced apart in a second direction perpendicular to the first direction. The method further includes defining a second plurality of mandrels in a second active region of the first layout. Each mandrel of the second plurality of mandrels extends in the first direction and being spaced apart in the second direction. An edge of the first active region is spaced from an edge of the second active region by a minimum distance less than a specified minimum spacing. The method further includes connecting, using a layout generator, at least one mandrel of the first plurality of mandrels to a corresponding mandrel of the second plurality of mandrels.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: May 5, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chien-Hsun Wang, Chih-Sheng Chang, Yi-Tang Lin, Ming-Feng Shieh
  • Publication number: 20150115373
    Abstract: A semiconductor structure includes an isolation feature formed in the semiconductor substrate and a first fin-type active region. The first fin-type active region extends in a first direction. A dummy gate stack is disposed on an end region of the first fin-type active region. The dummy gate stack may overlie an isolation structure. In an embodiment, any recess such as formed for a source/drain region in the first fin-type active region will be displaced from the isolation region by the distance the dummy gate stack overlaps the first fin-type active region.
    Type: Application
    Filed: December 30, 2014
    Publication date: April 30, 2015
    Inventors: Shao-Ming Yu, Chang-Yun Chang, Chih-Hao Chang, Hsin-Chih Chen, Kai-Tai Chang, Ming-Feng Shieh, Kuei-Liang Lu, Yi-Tang Lin
  • Publication number: 20150108575
    Abstract: A multilayer semiconductor structure having a layout footprint with a first region and a non-overlapping second region and different transistor types fabricated using different channel material. The semiconductor structure comprises a first transistor layer comprising a first type of channel material in the first region but no channel material in the second region. The semiconductor structure further comprises a second transistor layer comprising a second type of channel material in the second region but no channel material in the first region. The second transistor layer is vertically elevated above the first transistor layer. A first transistor is fabricated on the first transistor layer. A second transistor is fabricated on the second transistor layer, and the first transistor is interconnected with the second transistor to form a circuit.
    Type: Application
    Filed: October 23, 2013
    Publication date: April 23, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: YI-TANG LIN, Clement HSINGJEN WANN
  • Patent number: 9012315
    Abstract: Systems and methods are provided for activating dopants in a semiconductor structure. For example, a semiconductor structure including a plurality of dopants is provided. One or more microwave-absorption materials are provided, the microwave-absorption materials being capable of increasing an electric field density associated with the semiconductor structure. Microwave radiation is applied to the microwave-absorption materials and the semiconductor structure to activate the plurality of dopants for fabricating semiconductor devices. The microwave-absorption materials are configured to increase the electric field density in response to the microwave radiation so as to increase the semiconductor structure's absorption of the microwave radiation to activate the dopants.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: April 21, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chun Hsiung Tsai, Yan-Ting Lin, Cheng-Yan Zhan, Yi-Tang Lin, Clement Hsingjen Wann
  • Publication number: 20150091090
    Abstract: A semiconductor device structure and a method of fabricating a semiconductor device structure are provided. A first device layer is formed over a substrate, where an alignment structure is patterned in the first device layer. A dielectric layer is provided over the first device layer. The dielectric layer is patterned to include an opening over the alignment structure. A second device layer is formed over the dielectric layer. The second device layer is patterned using a mask layer, where the mask layer includes a structure that is aligned relative to the alignment structure. The alignment structure is visible via the opening during the patterning of the second device layer.
    Type: Application
    Filed: October 2, 2013
    Publication date: April 2, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: YASUTOSHI OKUNO, YI-TANG LIN
  • Publication number: 20150087090
    Abstract: A method and apparatus for estimating a height of an epitaxially grown semiconductor material in other semiconductor devices. The method includes epitaxially growing first, second, and third portions of semiconductor material on a first semiconductor device, measuring a height of the third portion of semiconductor material and a height of the first or second portion of semiconductor material, measuring a first saturation current through the first and second portions of semiconductor material, measuring a second saturation current through the first and third portions of semiconductor material, and preparing a model of the first saturation current relative to the height of the first or second portion of semiconductor material and the second saturation current relative to an average of the height of the first and third portions of semiconductor material. The model is used to estimate the height of an epitaxially grown semiconductor material in the other semiconductor devices.
    Type: Application
    Filed: November 26, 2014
    Publication date: March 26, 2015
    Inventors: Chih-Sheng Chang, Chia-Cheng Ho, Yi-Tang Lin
  • Publication number: 20150060959
    Abstract: An embodiment fin field-effect transistor (FinFET) includes an inner fin, and outer fin spaced apart from the inner fin by a shallow trench isolation (STI) region, an isolation fin spaced apart from the outer fin by the STI region, the isolation fin including a body portion, an isolation oxide, and an etch stop layer, the etch stop layer interposed between the body portion and the isolation oxide and between the STI region and the isolation oxide, and a gate formed over the inner fin, the outer fin, and the isolation fin.
    Type: Application
    Filed: September 4, 2013
    Publication date: March 5, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Yi-Tang Lin, Chih-Yu Hsu, Clement Hsingjen Wann, Chih-Sheng Chang
  • Publication number: 20150061026
    Abstract: Systems and methods are provided for fabricating a semiconductor device structure. An example semiconductor device structure includes a first device layer, a second device layer and an inter-level connection structure. The first device layer is formed on a substrate and includes a first semiconductor device, the first semiconductor device including a first electrode structure. The second device layer is formed on the first device layer and includes a second semiconductor device, the second semiconductor device including a second electrode structure. The first inter-level connection structure includes one or more first conductive materials and is configured to electrically connect to the first electrode structure and the second electrode structure.
    Type: Application
    Filed: August 27, 2013
    Publication date: March 5, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Yi-Tang Lin, Clement Hsingjen Wann
  • Publication number: 20150053983
    Abstract: Systems and methods are provided for dopant activation in a semiconductor structure for fabricating semiconductor devices. For example, a substrate is provided. A semiconductor structure is formed on the substrate. Pre-amorphization implantation is performed on the semiconductor structure. Microwave radiation is applied to the semiconductor structure to activate dopants in the semiconductor structure for fabricating semiconductor devices. Microwave-radiation absorption of the semiconductor structure is increased after the pre-amorphization implantation.
    Type: Application
    Filed: August 22, 2013
    Publication date: February 26, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: CHUN-HSIUNG TSAI, CHEN-FENG HSU, YI-TANG LIN, Clement HSINGJEN WANN
  • Patent number: 8963257
    Abstract: The disclosure relates to a Fin field effect transistor (FinFET). An exemplary structure for a FinFET comprises a substrate comprising a top surface; a first fin and a second fin extending above the substrate top surface, wherein each of the fins has a top surface and sidewalls; an insulation layer between the first and second fins extending part way up the fins from the substrate top surface; a first gate dielectric covering the top surface and sidewalls of the first fin having a first thickness and a second gate dielectric covering the top surface and sidewalls of the second fin having a second thickness less than the first thickness; and a conductive gate strip traversing over both the first gate dielectric and second gate dielectric.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: February 24, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Yi-Tang Lin, Chih-Sheng Chang
  • Publication number: 20150041966
    Abstract: Systems and methods are provided for activating dopants in a semiconductor structure. For example, a semiconductor structure including a plurality of dopants is provided. One or more microwave-absorption materials are provided, the microwave-absorption materials being capable of increasing an electric field density associated with the semiconductor structure. Microwave radiation is applied to the microwave-absorption materials and the semiconductor structure to activate the plurality of dopants for fabricating semiconductor devices. The microwave-absorption materials are configured to increase the electric field density in response to the microwave radiation so as to increase the semiconductor structure's absorption of the microwave radiation to activate the dopants.
    Type: Application
    Filed: August 9, 2013
    Publication date: February 12, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chun Hsiung Tsai, Yan-Ting Lin, Cheng-Yan Zhan, Yi-Tang Lin, Clement Hsingjen Wann
  • Patent number: 8946829
    Abstract: A semiconductor apparatus includes fin field-effect transistor (FinFETs) having shaped fins and regular fins. Shaped fins have top portions that may be smaller, larger, thinner, or shorter than top portions of regular fins. The bottom portions of shaped fins and regular fins are the same. FinFETs may have only one or more shaped fins, one or more regular fins, or a mixture of shaped fins and regular fins. A semiconductor manufacturing process to shape one fin includes forming a photolithographic opening of one fin, optionally doping a portion of the fin, and etching a portion of the fin.
    Type: Grant
    Filed: October 14, 2011
    Date of Patent: February 3, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Clement Hsingjen Wann, Ling-Yen Yeh, Chi-Yuan Shih, Yi-Tang Lin, Chih-Sheng Chang, Chi-Wen Liu
  • Publication number: 20150021710
    Abstract: A first Fin Field-Effect Transistor (FinFET) and a second FinFET are adjacent to each other. Each of the first FinFET and the second FinFET includes a semiconductor fin, a gate dielectric on sidewalls and a top surface of the semiconductor fin, and a gate electrode over the gate dielectric. The semiconductor fin of the first FinFET and the semiconductor fin of the second FinFET are aligned to a straight line. An isolation region is aligned to the straight line, wherein the isolation region includes a portion at a same level as the semiconductor fins of the first FinFET and the second FinFET. A continuous straight semiconductor strip is overlapped by the semiconductor fins of the first FinFET and the second FinFET. A Shallow Trench Isolation (STI) region is on a side of, and contacts, the semiconductor strip. The isolation region and the first STI region form a distinguishable interface.
    Type: Application
    Filed: July 19, 2013
    Publication date: January 22, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Yu Hsu, Yi-Tang Lin, Clement Hsinjen Wann, Chih-Sheng Chang, Wei-Chun Tsai, Jyh-Cherng Sheu, Chi-Yuan Shih
  • Patent number: 8906710
    Abstract: A method and apparatus for estimating a height of an epitaxially grown semiconductor material in other semiconductor devices. The method includes epitaxially growing first, second, and third portions of semiconductor material on a first semiconductor device, measuring a height of the third portion of semiconductor material and a height of the first or second portion of semiconductor material, measuring a first saturation current through the first and second portions of semiconductor material, measuring a second saturation current through the first and third portions of semiconductor material, and preparing a model of the first saturation current relative to the height of the first or second portion of semiconductor material and the second saturation current relative to an average of the height of the first and third portions of semiconductor material. The model is used to estimate the height of an epitaxially grown semiconductor material in the other semiconductor devices.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: December 9, 2014
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chih-Sheng Chang, Chia-Cheng Ho, Yi-Tang Lin
  • Publication number: 20140332904
    Abstract: A FinFET structure layout includes a semiconductor substrate comprising a plurality of FinFET active areas, and a plurality of fins within each FinFET active area of the plurality of FinFET active areas. The FinFET structure layout further includes a gate having a gate length parallel to the semiconductor substrate and perpendicular to length of the plurality of fins within each FinFET active area of the plurality of FinFET active areas. The FinFET structure layout further includes a plurality of metal features connecting a source region or a drain region of a portion of the plurality of FinFET active areas to a plurality of contacts. The plurality of metal features includes a plurality of metal lines parallel to a FinFET channel direction and a plurality of metal lines parallel to a FinFET channel width direction.
    Type: Application
    Filed: July 28, 2014
    Publication date: November 13, 2014
    Inventors: Clement Hsingjen WANN, Chih-Sheng CHANG, Yi-Tang LIN, Ming-Feng SHIEH, Ting-Chu KO, Chung-Hsien CHEN