Patents by Inventor Yun Wei

Yun Wei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11342275
    Abstract: Leadless power amplifier (PA) packages and methods for fabricating leadless PA packages having topside terminations are disclosed. In embodiments, the method includes providing electrically-conductive pillar supports and a base flange. At least a first radio frequency (RF) power die is attached to a die mount surface of the base flange and electrically interconnected with the pillar supports. Pillar contacts are further provided, with the pillar contacts electrically coupled to the pillar supports and projecting therefrom in a package height direction. The first RF power die is enclosed in a package body, which at least partially defines a package topside surface opposite a lower surface of the base flange. Topside input/out terminals are formed, which are accessible from the package topside surface and which are electrically interconnected with the first RF power die through the pillar contacts and the pillar supports.
    Type: Grant
    Filed: October 22, 2020
    Date of Patent: May 24, 2022
    Assignee: NXP USA, Inc.
    Inventors: Yun Wei, Fernando A. Santos, Lakshminarayan Viswanathan, Scott Duncan Marshall
  • Publication number: 20220157869
    Abstract: A pixel array includes octagon-shaped pixel sensors and a combination of visible light pixel sensors (e.g., red, green, and blue pixel sensors) and near infrared (NIR) pixel sensors. The color information obtained by the visible light pixel sensors and the luminance obtained by the NIR pixel sensors may be combined to increase the low-light performance of the pixel array, and to allow for low-light color images in low-light applications. The octagon-shaped pixel sensors may be interspersed in the pixel array with square-shaped pixel sensors to increase the utilization of space in the pixel array, and to allow for pixel sensors in the pixel array to be sized differently. The capability to accommodate different sizes of visible light pixel sensors and NIR pixel sensors permits the pixel array to be formed and/or configured to satisfy various performance parameters.
    Type: Application
    Filed: November 13, 2020
    Publication date: May 19, 2022
    Inventors: Feng-Chien HSIEH, Yun-Wei CHENG, Kuo-Cheng LEE, Cheng-Ming WU
  • Patent number: 11324847
    Abstract: The present invention discloses an automatic source-seeking indoor pollution purifying and removing device and method for airborne pollutants. The device comprises pollutant concentration sensors, a control unit, a position sensor, a power plant, a moving mechanism, a telescopic device, a pollutant collection hood, and a filtering and purifying device. The control unit can identify the actual release positions and hourly release rates of relevant pollutants according to the concentration data monitored by the pollutant concentration sensors, and can control the pollutant collection hood in the device to move to a designated position in a space, so as to realize the collection and removal of pollutants at the release position of the pollutants.
    Type: Grant
    Filed: May 28, 2018
    Date of Patent: May 10, 2022
    Assignee: DALIAN UNIVERSITY OF TECHNOLOGY
    Inventors: Tengfei Zhang, Yun Wei, Shugang Wang
  • Publication number: 20220130768
    Abstract: Leadless power amplifier (PA) packages and methods for fabricating leadless PA packages having topside terminations are disclosed. In embodiments, the method includes providing electrically-conductive pillar supports and a base flange. At least a first radio frequency (RF) power die is attached to a die mount surface of the base flange and electrically interconnected with the pillar supports. Pillar contacts are further provided, with the pillar contacts electrically coupled to the pillar supports and projecting therefrom in a package height direction. The first RF power die is enclosed in a package body, which at least partially defines a package topside surface opposite a lower surface of the base flange. Topside input/out terminals are formed, which are accessible from the package topside surface and which are electrically interconnected with the first RF power die through the pillar contacts and the pillar supports.
    Type: Application
    Filed: October 22, 2020
    Publication date: April 28, 2022
    Inventors: Yun Wei, Fernando A. Santos, Lakshminarayan Viswanathan, Scott Duncan Marshall
  • Publication number: 20220115421
    Abstract: An isolation structure can be formed between adjacent and/or non-adjacent pixel regions (e.g., between diagonal or cross-road pixel regions), of an image sensor, to reduce and/or prevent optical crosstalk. The isolation structure may include a deep trench isolation (DTI) structure or another type of trench that is partially filled with a material such that an air gap is formed therein. The DTI structure having the air gap formed therein may reduce optical crosstalk between pixel regions. The reduced optical crosstalk may increase spatial resolution of the image sensor, may increase overall sensitivity of the image sensor, may decrease color mixing between pixel regions of the image sensor, and/or may decrease image noise after color correction of images captured using the image sensor.
    Type: Application
    Filed: October 14, 2020
    Publication date: April 14, 2022
    Inventors: Tsung-Wei HUANG, Chao-Ching CHANG, Yun-Wei CHENG, Chih-Lung CHENG, Yen-Chang CHEN, Wen-Jen TSAI, Cheng Han LIN, Yu-Hsun CHIH, Sheng-Chan LI, Sheng-Chau CHEN
  • Patent number: 11302730
    Abstract: The present disclosure is directed to a method of forming a polarization grating structure (e.g., polarizer) as part of a grid structure of a back side illuminated image sensor device. For example, the method includes forming a layer stack over a semiconductor layer with radiation-sensing regions. Further, the method includes forming grating elements of one or more polarization grating structures within a grid structure, where forming the grating elements includes (i) etching the layer stack to form the grid structure and (ii) etching the layer stack to form grating elements oriented to a polarization angle.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: April 12, 2022
    Inventors: Yun-Wei Cheng, Chun-Hao Chou, Kuo-Cheng Lee
  • Patent number: 11302738
    Abstract: The present disclosure relates to a semiconductor image sensor with improved quantum efficiency. The semiconductor image sensor can include a semiconductor layer having a first surface and a second surface opposite of the first surface. An interconnect structure is disposed on the first surface of the semiconductor layer, and radiation-sensing regions are formed in the semiconductor layer. The radiation-sensing regions are configured to sense radiation that enters the semiconductor layer from the second surface and groove structures are formed on the second surface of the semiconductor layer.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: April 12, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yun-Wei Cheng, Chun-Hao Chou, Kuo-Cheng Lee, Hsun-Ying Huang, Shih-Hsun Hsu
  • Publication number: 20220109019
    Abstract: A light sensing device is provided. The light sensing device includes a semiconductor substrate and a light sensing region in the semiconductor substrate. The light sensing device also includes a filter element over the light sensing region and a light shielding element over the semiconductor substrate and beside the filter element. The light sensing device further includes a dielectric element over the light shielding element and beside the filter element. A top of the light shielding element and a bottom of the dielectric element have different widths.
    Type: Application
    Filed: December 17, 2021
    Publication date: April 7, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yun-Wei CHENG, Yi-Hsing CHU, Yin-Chieh HUANG, Chun-Hao CHOU, Kuo-Cheng LEE, Hsun-Ying HUANG, Hsin-Chi CHEN
  • Publication number: 20220085090
    Abstract: A semiconductor device includes a pixel array comprising a first pixel and a second pixel. The semiconductor device includes a metal structure overlying a portion of a substrate between the first pixel and the second pixel. The semiconductor device includes a first barrier layer adjacent a sidewall of the metal structure. The semiconductor device includes a passivation layer adjacent a sidewall of the first barrier layer. The first barrier layer is between the passivation layer and the metal structure.
    Type: Application
    Filed: November 29, 2021
    Publication date: March 17, 2022
    Inventors: Ya Chun TENG, Yun-Wei CHENG, Chien Ming SUNG
  • Publication number: 20220059581
    Abstract: Apparatus and methods for sensing long wavelength light are described herein. A semiconductor device includes: a carrier; a device layer on the carrier; a semiconductor layer on the device layer, and an insulation layer on the semiconductor layer. The semiconductor layer includes isolation regions and pixel regions. The isolation regions are or include a first semiconductor material. The pixel regions are or include a second semiconductor material that is different from the first semiconductor material.
    Type: Application
    Filed: August 20, 2020
    Publication date: February 24, 2022
    Inventors: Yun-Wei CHENG, Chun-Hao CHOU, Kuo-Cheng LEE, Ying-Hao CHEN
  • Publication number: 20220060614
    Abstract: An image sensor device has a first number of first pixels disposed in a substrate and a second number of second pixels disposed in the substrate. The first number is substantially equal to the second number. A light-blocking structure disposed over the first pixels and the second pixels. The light-blocking structure defines a plurality of first openings and second openings through which light can pass. The first openings are disposed over the first pixels. The second openings are disposed over the second pixels. The second openings are smaller than the first openings. A microcontroller is configured to turn on different ones of the second pixels at different points in time.
    Type: Application
    Filed: November 8, 2021
    Publication date: February 24, 2022
    Inventors: Yun-Wei Cheng, Chun-Hao Chou, Kuo-Cheng Lee, Hsin-Chi Chen
  • Publication number: 20220060648
    Abstract: An image sensor includes a photosensitive sensor, a floating diffusion node, a reset transistor, and a source follower transistor. The reset transistor comprises a first source/drain coupled to the floating diffusion node and a second source/drain coupled to a first voltage source. The source follower transistor comprises a gate coupled to the floating diffusion node and a first source/drain coupled to the second source/drain of the reset transistor. A first elongated contact contacts the second source/drain of the reset transistor and the first source/drain of the source follower transistor. The first elongated contact has a first dimension in a horizontal cross-section and a second dimension in the horizontal cross-section. The second dimension is perpendicular to the first dimension, and the second dimension is less than the first dimension.
    Type: Application
    Filed: November 8, 2021
    Publication date: February 24, 2022
    Inventors: Yun-Wei CHENG, Chia CHUN-WEI, Chun-Hao CHOU, Kuo-Cheng LEE
  • Patent number: 11258971
    Abstract: A photodetector circuit includes a photodetector and a sensing circuit located over a substrate semiconductor layer having a doping of a first conductivity type. The photodetector includes a second-conductivity-type pinned photodiode layer that forms a p-n junction with the substrate semiconductor layer, at least one floating diffusion region that is laterally spaced from a periphery of the second-conductivity-type pinned photodiode layer, and at least one transfer gate electrode. At least two different operations may be performed by applying at least two different pulse patterns to the at least one transfer gate electrode. The at least two different pulse patterns differ from one another or from each other by at least one of pulse duration, pulse magnitude, and delay time between a control signal applied to the sensing circuit and pulse initiation at a respective one of the at least one transfer gate electrode.
    Type: Grant
    Filed: May 28, 2020
    Date of Patent: February 22, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Feng-Chien Hsieh, Wei-Li Hu, Kuo-Cheng Lee, Hsin-Chi Chen, Yun-Wei Cheng
  • Publication number: 20220052096
    Abstract: A method includes forming image sensors in a semiconductor substrate, thinning the semiconductor substrate from a backside of the semiconductor substrate, forming a dielectric layer on the backside of the semiconductor substrate, and forming a polymer grid on the backside of the semiconductor substrate. The polymer grid has a first refractivity value. The method further includes forming color filters in the polymer grid, wherein the color filters has a second refractivity value higher than the first refractivity value, and forming micro-lenses on the color filters.
    Type: Application
    Filed: August 11, 2020
    Publication date: February 17, 2022
    Inventors: Kun-Huei Lin, Yun-Wei Cheng, Chun-Hao Chou, Kuo-Cheng Lee, Cheng Yuan Wang
  • Publication number: 20220023447
    Abstract: Fibrin-targeted microbubbles and their use in ultrasound-based diagnostic and therapeutic applications are disclosed. In particular, the invention relates to the use of fibrin-targeted polymerized shell lipid microbubbles and methods of fabricating and using such fibrin-targeted microbubbles for ultrasound imaging of fibrin deposition in tissue, including adhesions and atherosclerotic plaques. The invention further relates to the use of such fibrin-targeted microbubbles as carriers for drug delivery and in ultrasound-based methods of treatment.
    Type: Application
    Filed: December 6, 2019
    Publication date: January 27, 2022
    Inventors: Jon Nagy, Joyce Yun-Wei Wong, Benjamin J Keenan, Catherine Anne Gormley, Ray Glynn Holt
  • Publication number: 20220030158
    Abstract: An image sensor including a semiconductor substrate, a plurality of color filters, a plurality of first lenses and a second lens is provided. The semiconductor substrate includes a plurality of sensing pixels arranged in array, and each of the plurality of sensing pixels respectively includes a plurality of image sensing units and a plurality of phase detection units. The color filters at least cover the plurality of image sensing units. The first lenses are disposed on the plurality of color filters. Each of the plurality of first lenses respectively covers one of the plurality of image sensing units. The second lens is disposed on the plurality of color filters and the second lens covers the plurality of phase detection units.
    Type: Application
    Filed: October 4, 2021
    Publication date: January 27, 2022
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yun-Wei Cheng, Chun-Hao Chou, Hsin-Chi Chen, Kuo-Cheng Lee, Hsun-Ying Huang
  • Patent number: 11233082
    Abstract: A method for forming a light sensing device is provided. The method includes forming a light sensing region in a semiconductor substrate and forming a light shielding layer over the semiconductor substrate. The method also includes forming a dielectric layer over the light shielding layer and partially removing the light shielding layer and the dielectric layer to form a light shielding element and a dielectric element. A top width of the light shielding element is greater than a bottom width of the dielectric element. The light shielding element and the dielectric element surround a recess, and the recess is aligned with the light sensing region. The method further includes forming a filter element in the recess.
    Type: Grant
    Filed: May 6, 2020
    Date of Patent: January 25, 2022
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yun-Wei Cheng, Yi-Hsing Chu, Yin-Chieh Huang, Chun-Hao Chou, Kuo-Cheng Lee, Hsun-Ying Huang, Hsin-Chi Chen
  • Patent number: 11227886
    Abstract: An image sensor device is provided. The image sensor device includes a semiconductor substrate and a light sensing region in the semiconductor substrate. The image sensor device also includes a dielectric layer over the semiconductor substrate and a filter partially surrounded by the dielectric layer. The filter has a protruding portion protruding from a bottom surface of the dielectric layer. The image sensor device further includes a shielding layer between the dielectric layer and the semiconductor substrate and surrounding the protruding portion of the filter. In addition, the image sensor device includes a reflective element between the shielding layer and an edge of the light sensing region.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: January 18, 2022
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Volume Chien, Yun-Wei Cheng, Shiu-Ko Jangjian, Zhe-Ju Liu, Kuo-Cheng Lee, Chi-Cherng Jeng
  • Publication number: 20210407018
    Abstract: A farm sensing system is provided. The farm sensing system includes a cloud server, a sensing apparatus, and a computer device. The sensing apparatus is configured to be connected to a specific sensor disposed on a farm. The computer device is configured to obtain specific sensor data generated by the specific sensor through the cloud server. In response to there being potential failure of the specific sensor, the sensing apparatus enters a sensor-calibration mode. In response to a reference sensor being connected to the sensing apparatus, the sensing apparatus builds a calibration table by periodically receiving specific sensor data and reference sensor data, and executes a finite-state machine to perform a calibration procedure on each entry in the calibration table.
    Type: Application
    Filed: December 7, 2020
    Publication date: December 30, 2021
    Inventors: Yi-Bing LIN, Yun-Wei LIN, Chia-Yuan CHANG
  • Patent number: 11205234
    Abstract: A farm sensing system is provided. The farm sensing system includes a cloud server, a sensing apparatus, and a computer device. The sensing apparatus is configured to be connected to a specific sensor disposed on a farm. The computer device is configured to obtain specific sensor data generated by the specific sensor through the cloud server. In response to there being potential failure of the specific sensor, the sensing apparatus enters a sensor-calibration mode. In response to a reference sensor being connected to the sensing apparatus, the sensing apparatus builds a calibration table by periodically receiving specific sensor data and reference sensor data, and executes a finite-state machine to perform a calibration procedure on each entry in the calibration table.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: December 21, 2021
    Assignee: QUANTA COMPUTER INC.
    Inventors: Yi-Bing Lin, Yun-Wei Lin, Chia-Yuan Chang