Carrier system, exposure apparatus, carrier method, exposure method, device manufacturing method, and suction device
A carrier system and method carries a plate-like object to an object mounting member provided with an object mounting section. The system includes an adjustment device that changes a shape of the plate-like object into a predetermined shape before the plate-like object is mounted onto the object mounting section. The plate-like object whose shape is changed into the predetermined shape is mounted onto the object mounting section.
Latest Nikon Patents:
- DATA GENERATION METHOD, BUILD METHOD, PROCESSING METHOD, DATA GENERATION APPARATUS, COMPUTER PROGRAM, RECORDING MEDIUM, AND DISPLAY METHOD
- IMAGING ELEMENT AND IMAGING DEVICE
- LEARNING APPARATUS, PREDICTION APPRARATUS, AND IMAGING APPRARATUS
- BRIGHT-FIELD REFLECTION MICROSCOPE, OBSERVATION METHOD, AND PROGRAM
- APPARATUS FOR STACKING SUBSTRATES AND METHOD FOR THE SAME
This is a divisional of U.S. patent application Ser. No. 15/637,069 filed Jun. 29, 2017 (now U.S. Pat. No. 10,081,108), which in turn is a divisional of U.S. patent application Ser. No. 14/648,280 (now U.S. Pat. No. 9,821,469), which is the U.S. National Stage of International Application No. PCT/JP2013/081852 filed Nov. 27, 2013, which claims the benefit of U.S. Provisional Application No. 61/731,892 filed Nov. 30, 2012. The disclosure of each of the above-identified prior applications is hereby incorporated by reference in its entirety.
TECHNICAL FIELDThe present invention relates to carrier systems, exposure apparatuses, carrier methods, exposure methods, device manufacturing methods, and suction devices, and more particularly to a carrier system which carries a plate-like object, an exposure apparatus which is equipped with the carrier system, a carrier method to carry a plate-like object onto a movable body, an exposure method using the carrier method, a device manufacturing method using the exposure apparatus or the exposure method, and a suction device which suctions the plate-like object.
BACKGROUND ARTConventionally, in a lithography process to manufacture electronic devices (microdevices) such as a semiconductor device (an integrated circuit or the like) or a liquid crystal display device, mainly, a projection exposure apparatus of a step-and-repeat method (a so-called stepper), projection exposure apparatus of a step-and-scan method (a so-called scanning stepper (also called a scanner)) or the like is mainly used.
Substrates such as a wafer, a glass plate and the like subject to exposure that are used in these types of exposure apparatuses are gradually becoming larger (for example, in the case of a wafer, in every ten years). Although a 300-=wafer which has a diameter of 300 mm is currently the mainstream, the coming of age of a 450 mm wafer which has a diameter of 450 mm looms near. When the transition to 450=wafers occurs, the number of dies (chips) output from a single wafer becomes double or more than the number of chips from the current 300 mm wafer, which contributes to reducing the cost.
However, because the thickness does not necessarily increase in proportion to the size of the wafer, the 450 mm wafer is weak in intensity and rigidity when compared with the 300 mm wafer. Therefore, when focusing on a point such as a carriage of a wafer, it was considered that there was a risk of warping occurring in the wafer, which may negatively affect the exposure accuracy when a means method similar to the current 300=wafer was employed. Accordingly, as the carrier method of the wafer, a proposal is made of a carrier method (carry-in) or the like that can be employed even when the wafer is a 450 mm wafer in which the wafer is suctioned from above in a non-contact manner by a carrier member equipped with a Bernoulli chuck or the like to maintain the flatness degree (flatness) and performs carriage to a wafer holder (holding device) (for example, refer to PTL 1).
However, in the case of employing suction in a non-contact manner from above by the carrier member described above as a carrier method of the wafer onto the wafer stage (wafer holder), there was a risk of positional deviation (rotation deviation) in a horizontal plane of the wafer being generated at an unacceptable level, to which correction based on measurement results was difficult to perform.
CITATION LIST Patent Literature[PTL 1] U.S. Patent Application Publication No. 2010/0297562
SUMMARY OF INVENTION Solution to ProblemAs a method for resolving the inconvenience due to suction in a non-contact manner from above by the wafer carrier member described above, a method can be considered in which while a wafer is suctioned in a non-contact manner suction from above by a suction member such as a Bernoulli chuck or the like, the wafer is also supported from below by a support member (for example, vertical-motion pins on a wafer stage). However, according to results of experiments and the like of the inventors, in the case of performing loading of the wafer onto the wafer stage in a non-contact suction from above the wafer and support from below, it became clear that warping that is not acceptable could occur even in the case of a 300 mm wafer due to a difference in driving velocity between the suction member and the support member on the loading.
According to a first aspect of the present invention, there is provided a carrier system in which a plate-like object is carried to an object mounting member where an object mounting section is provided, the system comprising: a suction member which has an opposing section opposed to the object, the suction member forming a gas flow between the opposing section and the object to generate a suction force with respect to the object; a measurement device which obtains information related to a shape of the object suctioned by the suction member; a driver which makes the suction member relatively move in a vertical direction in an approaching or separating manner with respect to the object mounting section; and a controller which controls at least one of the suction member and the driver so that the object is mounted on the object mounting section in a predetermined shape, using the information obtained by the measurement device.
According to this system, the object can be carried onto the object mounting member, in a state maintaining high flatness.
According to a second aspect of the present invention, there is provided an exposure apparatus which forms a pattern on an object, the apparatus comprising: the carrier system described above; and a pattern generating device which exposes the object carried onto the object mounting member by the carrier system with an energy beam so as to form the pattern.
According to a third aspect of the present invention, there is provided a device manufacturing method, comprising: exposing an object using the exposure apparatus described above; and developing the object which has been exposed.
According to a fourth aspect of the present invention, there is provided a carrier method in which a plate-like object is carried to an object mounting member, the method comprising: suctioning the object from above in a non-contact manner at an area above the object mounting member by a suction member; making the suction member relatively move in a vertical direction with respect to the object mounting section by a driver; obtaining information related to a position in the vertical direction for each of a plurality of places of the object suctioned by the suction member; and controlling at least one of the suction member and the driver so that the object is mounted on the object mounting section in a predetermined shape, using the information obtained.
According to this method, the object can be carried onto the object mounting member, in a state maintaining high flatness.
According to a fifth aspect of the present invention, there is provided an exposure method, comprising: carrying the object which is plate-like onto the object mounting member by the carrier method described above; and forming a pattern on the object by exposing the object held by the object mounting member with an energy beam after carriage.
According to a sixth aspect of the present invention, there is provided a device manufacturing method, comprising: exposing an object using the exposure method described above; and developing the object which has been exposed.
According to a seventh aspect of the present invention, there is provided a first suction device which suctions a plate-like object, the device comprising: a suction member having an opposing section which opposes the object, the suction member generating a suction force with respect to the object by blowing out gas from the opposing section; and a measurement device which obtains information related to a shape of the object suctioned by the suction member.
According to a eighth aspect of the present invention, there is provided a second suction device which makes a suction force act on a plate-like object in a non-contact manner, the device comprising: a base member; a plurality of suction sections provided at the base member, each section generating a flow of a gas in the periphery of the object so as to generate a suction force with respect to the object; and an adjustment device which deforms the object, wherein the object is deformed by the adjustment device, while the object is being suctioned by the force generated by the flow of the gas which the plurality of suction sections generated.
According to this device, it becomes possible to deform the object by the adjustment device, for example, so as to secure a desired level of flatness, while the object is being suctioned by the suction force generated by the flow of gas generated by the plurality of suction sections.
An embodiment will be described below, based on
Exposure apparatus 100, as is shown in
Exposure section 200 is equipped with an illumination system 10, a reticle stage RST, a projection unit PU, a local liquid immersion device 8 and the like.
Illumination system 10, as is disclosed in, for example, U.S. Patent Application Publication No. 2003/0025890 and the like, includes a light source, an illuminance equalizing optical system including an optical integrator and the like, and an illumination optical system that has a reticle blind and the like (none of which are shown). Illumination system 10 illuminates a slit-shaped illumination area IAR set (limited) on reticle R by the reticle blind (also called a masking system) by an illumination light (exposure light) IL, with a substantially uniform illuminance. In this case, as illumination light IL, for example, an ArF excimer laser beam (wavelength 193 nm) is used.
On reticle stage RST, reticle R on which a circuit pattern or the like is formed on its pattern surface (the lower surface in
Position information (including rotation information in the θz direction) of reticle stage RST in the XY plane is constantly detected, for example, by a reticle laser interferometer (hereinafter, referred to as a “reticle interferometer”) 13, via a movable mirror 15 (actually, a Y movable mirror (or a retroreflector) having a reflection surface orthogonal to the Y-axis direction and an X movable mirror having a reflection surface orthogonal to the X-axis direction are provided) fixed to reticle stage RST, at a resolution of, for example, around 0.25 nm. Measurement values of reticle interferometer 13 are sent to a main controller 20 (not shown in
Projection unit PU is placed below reticle stage RST in
Projection unit PU includes a barrel 40, and projection optical system PL held inside barrel 40. Used as projection optical system PL, for example, is a dioptric system consisting of a plurality of optical elements (lens elements) arranged along optical axis AX, which is parallel to the Z-axis. Projection optical system PL, for example, is double telecentric, and has a predetermined projection magnification (for example, ¼ times, ⅕ times or ⅛ times). Therefore, when illumination area IAR on reticle R is illuminated by illumination light IL from illumination system 10, a reduced image of the circuit pattern of reticle R (a reduced image of a part of the circuit pattern) within illumination area IAR is formed in an area (hereinafter, also called an exposure area) IA conjugate to illumination area IAR on wafer W whose surface is coated with a resist (sensitive agent) and is placed on a second surface (image plane) side of projection optical system PL, via projection optical system PL (projection unit PU), by illumination light IL having passed through reticle R placed so that its pattern surface substantially coincides with a first surface (object plane) of projection optical system PL. And, by reticle stage RST and wafer stage WST (to be more precise, fine movement stage WFS to be described later on which holds wafer W) being synchronously driven, scanning exposure of a shot area (divided area) on wafer W is performed, by reticle R being relatively moved in the scanning direction (Y-axis direction) with respect to illumination area IAR (illumination light IL) and wafer W being relatively moved in the scanning direction (Y-axis direction) with respect to exposure area IA (illumination light IL), and the pattern of reticle R is transferred onto the shot area. That is, in the present embodiment, the pattern of reticle R is generated on wafer W by illumination system 10 and projection optical system PL, and by the exposure of the sensitive layer (resist layer) on wafer W with illumination light IL the pattern is formed on wafer W.
Local liquid immersion device 8 is provided, corresponding to exposure apparatus 100 which performs exposure using a liquid immersion method. Local liquid immersion device 8 includes a liquid supply device 5, a liquid recovery device 6 (none of which are shown in
Further, in the case measurement stage MST is positioned below projection unit PU, liquid Lq can be filled in between a measurement table MTB to be described later and tip lens 191 in a manner similar to the description above.
Here, although the description goes out of sequence, stage device 50 will now be described. Stage device 50, as is shown in
Wafer stage WST, as it can be seen from
Coarse movement stage WCS, as is shown in
At the bottom surface of coarse movement stage WCS, that is, at the b base board 12 is provided, consisting of a plurality of permanent magnets 18 placed in the shape of a matrix with the XY two-dimensional directions serving as a row direction and the column direction, as is shown in
At the bottom surface of coarse movement slider section 91, a plurality of air bearings 94 is fixed around the magnet unit described above. Coarse movement stage WCS is supported by levitation by the plurality of air bearings 94, via a predetermined gap (clearance, gap) above base board 12, such as for example, a gap of about several μm, and is driven in the X-axis direction, the Y-axis direction and the θz direction by coarse movement stage driving system 51A.
Incidentally, coarse movement stage driving system 51A is not limited to the planar motor of the electromagnetic force (Lorentz force) driving method, and for example, a planar motor of a variable magneto-resistance driving method can also be used. Other than this, coarse movement stage driving system 51A can be structured by a magnetic levitation type planar motor, and the planar motor can driving coarse movement stage bottom surface of coarse movement slider section 91, a magnet unit corresponding to the coil unit placed inside
WCS in directions of six degrees of freedom. In this case, the air bearings will not have to be arranged at the bottom surface of coarse movement slider section 91.
Each of the pair of stator sections 93a, 93b, for example, consists of a member having an outer shape that is a rectangular plate shape, and inside each member, coil units CUa, CUb consisting of a plurality of coils are housed. The magnitude and direction of the electric current supplied to each coil structuring coil units CUa, CUb is controlled by main controller 20.
Fine movement stage WFS, as is shown in
Main section 81 is preferably made of a material having a thermal expansion coefficient is the same or around the same level as that of wafer table WTB, and the material is preferably a material having a low thermal expansion coefficient.
Here, although it is omitted in the drawing in
Referring back to
Housing 82a has an opening section formed whose YZ section is a rectangular shape elongate in the Y-axis direction, with the Y-axis direction dimension (length) and the Z-axis direction dimension (height) both slightly longer than stator section 93a. In the opening section of housings 82a, 82b, the end on the −X side of stator section 93a of coarse movement stage WCS is inserted in a non-contact manner. Inside an upper wall section 82a1 and a bottom wall section 82a2 of housing 82a, magnet units MUa1, MUa2 are provided.
Mover section 82b is structured in a similar manner, although the structure is symmetrical to mover section 82a. In the hollow section of housing (mover section) 82b, the end on the +X side of stator section 93b of coarse movement stage WCS is inserted in a non-contact manner. Inside an upper wall section 82b1 and bottom wall section 82b2 of housing 82b, magnet units MUb1, MUb2 are provided, which are structured similarly to magnet units MUa1, MUa2.
Coil units CUa, CUb described above are housed, respectively, inside stator sections 93a and 93b so that the units face magnet units MUa1, MUa2 and magnet units MUb1, MUb2.
The structure of magnet units MUa1, MUa2 and magnet units MUb1, MUb2, and coil units CUa, CUb, is disclosed in detail, for example, in U.S. Patent Application Publication No. 2010/0073652, U.S. Patent Application Publication No. 2010/0073653 and the like.
In the present embodiment, fine movement stage driving system 52A (refer to
Incidentally, in the case of using the magnetic levitation type planar motor as coarse movement stage driving system 51A (refer to
In the center on the upper surface of wafer table WTB, wafer W is fixed by vacuum suction or the like, via a wafer holder provided at a hold section of the wafer such as a pin chuck which is not shown or the like. While the wafer holder may be formed integral with wafer table WTB, in present embodiment, the wafer holder and wafer table WTB are structured separately, and the wafer holder is fixed in a recess section of wafer table WTB, for example, by vacuum chucking or the like. Further, on the upper surface of wafer table WTB, as is shown in
Near the end on the +Y side of plate 28, a measurement plate 30 is provided. At this measurement plate 30, a first fiducial mark FM is provided in the center positioned on a center line CL of wafer table WTB, and a pair of second reference marks RM used for reticle alignment is provided with the first fiducial mark FM arranged in between.
On wafer table WTB, as is shown in
To each of the −Y end surface and the −X end surface of wafer table WTB, mirror polishing is applied, and a reflection surface 17a and a reflection surface 17b are formed, as is shown in
Measurement stage MST, as is shown in
At the bottom surface of stage main section 60, although it is not shown, a magnet unit consisting of a plurality of permanent magnets is provided, which structures a measurement stage driving system 51B (refer to
Measurement table MTB consists of a member having a rectangular shape in a planar view. At measurement table MTB, various kinds of measurement members are provided. As such measurement members, for example, an illuminance irregularity sensor 88 having a pin-hole shaped light receiving section which receives illumination light IL on the image plane of projection optical system PL, an aerial image measuring instrument 96 which measures light intensity of an aerial image (projection image) of a pattern projected by projection optical system PL, and a wavefront aberration measuring instrument 89 are employed. As the illuminance irregularity sensor, a sensor having a structure similar to the one disclosed in, for example, U.S. Pat. No. 4,465,368 and the like can be used. Further, as the aerial image measuring instrument, an instrument having a structure similar to the one disclosed in, for example, U.S. Patent Application Publication No. 2002/0041377 and the like can be used. Further, as the wavefront aberration measuring instrument, an instrument having a structure similar to the one disclosed in, for example, PCT International Publication No. 03/065428 (corresponding U.S. Pat. No. 7,230,682) and the like can be used. Incidentally, adding to each sensor described above, an illuminance monitor can be employed having a light receiving section of a predetermined area which receives illumination light IL on the image plane of projection optical system PL, whose details are disclosed in, for example, U.S. Patent Application Publication No. 2002/0061469 and the like.
Incidentally, in the present embodiment, the surface of measurement table MTB (the measurement members previously described can be included) is also covered with a liquid-repellent film (water-repellent film).
Mirror polishing is applied to each of the +Y side surface and the −X side surface of measurement table MTB, and a reflection surface 95a and a reflection surface 95b is formed similar to wafer table WTB described above.
Next, interferometer system 70 which measures position information of wafer stage WST and measurement stage MST will be described.
Interferometer system 70 (refer to
Y interferometer 16, as is shown in
Y interferometer 19 irradiates two measurement beams B21 and B22, for example, along measurement axes in the Y-axis direction which are the same distance to the −X side and the +X side from reference axis LV, on reflection surface 95a of measurement table MTB, and receives each of the reflected lights.
X interferometer 136, as is shown in
X interferometer 137, as is shown in
X interferometer 138 irradiates a measurement beam B7 along a straight line LUL, which passes through loading position LP where loading of the wafer is performed and is parallel to the X-axis, on reflection surface 17b of wafer table WTB, and receives the reflected light.
X interferometer 139 irradiates a measurement beam parallel to the X-axis with respect to reflection surface 95b, and receives the reflected light.
Measurement values (measurement results on position information) of each interferometer of interferometer system 70 are supplied to main controller 20 (refer to
Further, main controller 20 obtains position information related to the X-axis direction, the Y-axis direction, and the θz direction of measurement table MTB (measurement stage MST), based on measurement values of Y interferometer 19 and X interferometer 139.
Other than these sections, interferometer system 70 is equipped with a Z interferometer system, in which a pair of Z interferometers that irradiate a pair of measurement beams set apart in the Z-axis direction and parallel to the Y-axis on a pair of fixed mirrors, via a vertical pair of reflection surfaces of a movable mirror fixed to a side surface on the −Y side of coarse movement stage WCS, and receive return lights from the pair of fixed mirrors via the reflection surfaces, is placed away from reference axis LV by the same distance to the −X side and to the +X side. Based on measurement values of the Z interferometer system, main controller 20 obtains position information of wafer stage WST related to directions of at least three degrees of freedom including, the Z-axis direction, the θy direction and the θz direction.
Incidentally, a detailed structure and an example of details of a measurement method for interferometer system 70 are disclosed in detail, for example, in U.S. Patent Application Publication No. 2008/0106722 and the like.
While an interferometer system was used in the present embodiment to measure information related to the position of wafer stage WST or measurement stage MST, a different means can be used. For example, it is also possible to use an encoder system such as the one described in U.S. Patent Application Publication No. 2010/0297562.
Referring back to
Alignment system device 99 includes five alignment systems shown in
As each of the five alignment systems AL1 and AL21 to AL24, for example, an FIA (Field Image Alignment) system of an image processing method is used, in which a broadband detection beam that does not sensitize the resist on the wafer is irradiated on a subject mark, an image of the subject mark formed on the light-receiving plane by a reflected light from the subject mark and an image of an index (an index pattern on an index plate provided in each alignment system) which is not shown are formed using an image-forming element (CCD or the like), 99 is disclosed in, for example, U.S. Patent Application Publication No. 2009/0233234.
Carry-in unit 121 (refer to
Carry-in unit 121, as is shown in
Chuck unit 153, as is shown in
In the present embodiment, as is shown in
At the lower surface of the first member 44A, chuck member 124 is placed at a plurality of (for example, nineteen) points, at a point on its center (center point), and on points spaced equally apart on a virtual double concentric circle with the point serving as the center. To describe this in detail, on the virtual circle on the inner side, chuck member 124 is placed at six points with the central angle thereof set to 60 degrees, and on the virtual circle on the outer side, chuck member 124 is placed spaced apart at twelve points with the central angle thereof set to 30 degrees, the points including six points which are on straight lines joined from the point at the center to the six points described above. The lower surface of each of the plurality of, or a total of nineteen, chuck members 124, is embedded into the lower surface of plate member 44 (refer to
Each chuck member 124 consists of a so-called Bernoulli chuck. Bernoulli chuck, as is well known, is a chuck that uses the Bernoulli effect to locally increase the flow velocity of fluid (for example, air) which is blowing out to suction the target object (hold in a non-contact manner)). Here, the Bernoulli effect is an effect in which the pressure of fluid decreases when the flow velocity increases, and with the Bernoulli chuck, the suction state (holding/floating state) is decided by the weight of the target object subject to suction (hold, fix), and the flow velocity of fluid blowing out from the chuck. That is, in the case the size of the target object is known, the size of the gap between the chuck and the target object subject to hold upon the suction is decided, according to the flow velocity of the fluid blowing out from the chuck. In the present embodiment, chuck member 124 is used to suction wafer W by blowing out gas from its gas flow hole (for example, a nozzle or a blowout port) or the like to generate a flow of gas (gas flow) in the periphery of wafer W. The degree of the force of suction (that is, the flow velocity and the like of the gas blowing out) is appropriately adjustable, and by holding wafer W by suction with chuck member 124, movement in the Z-axis direction, the θx direction and the θy direction can be restricted.
With the plurality of (nineteen) chuck members 124, at least one of flow velocity, flow amount, and direction of blowout (blowout direction of the gas) or the like of the gas blowing out from each of the chuck members is controlled by main controller 20, via an adjustment device 115 (refer to
In the first member 44A, as is shown in
Near the inner circumference section of the second member 44B, a plurality of (for example, twelve) through holes 154 are formed on the outer side of each of the twelve chuck members 124 positioned at the outer circumference section of the first member 44A. Inside each through hole 154, a porous bearing 156 is provided consisting of a ceramic porous body. A plurality of (for example, twelve) porous bearings 156 are each connected to a gas supply device 48 (refer to
Here, the gas supplied to chuck member 124 is clean air (for example, compressed air), in which at least the temperature is adjusted to a constant level, and dust, particles and the like are removed. That is, wafer W suctioned by chuck member 124 is maintained at a predetermined temperature by the compressed air whose temperature is controlled. Further, the temperature, the degree of cleanliness and the like of the space where wafer stage WST and the like are placed can be maintained to a set range.
To both of the ends in the X-axis direction on the upper surface of chuck unit 153, one end of each of a pair of support plates 151 extending in the X-axis direction within a horizontal plane (XY plane) is connected, as is shown in
To the upper surface of each of the pair of extended sections 159 of frame FL previously described, as is shown in
And, the other end of each of the pair of support plates 151 is supported from below by weight-cancelling device 131 and Z voice coil motor 144, which are fixed to the upper surface of each of the pair of extended sections 159.
Each of the pair of Z voice coil motors 144 drives chuck unit 153 in the vertical direction with predetermined strokes (in a range including a first position where chuck unit 153 begins suction of wafer W, and a second position where wafer W suctioned by chuck unit 153 is mounted on the wafer holder (wafer table WTB)). Each of the pair of Z voice coil motors 144 is controlled by main controller 20 (refer to
Each of the pair of weight-cancelling devices 131 is equipped with a piston member 133a and a cylinder 133b at which piston member 133a is provided freely slidable. The pressure of the space inside cylinder 133b, which is divided by the piston of piston member 133a and cylinder 133b, is set to a value according to the self-weight of chuck unit 153. The upper end of the rod section of piston member 133a is joined to the lower surface of support plate 151. Each of the pair of weight-cancelling devices 131 is a type of pneumatic spring device which gives a force in an upward direction (+Z direction) to support plate 151 via piston member 133a, and this force allows the pair of weight-cancelling devices 131 to support all or a part of the self-weight of chuck unit 153 (and support plate 151). The pressure, amount and the like of the pressurized gas supplied to the inside of cylinder 133b of weight-cancelling device 131 are controlled by main controller 20 (refer to
Each of the pair of wafer support members 125 is equipped with a vertical movement rotation driving section 127 attached integrally via a coupling member which is not shown to each of the pair of extended sections 159 of frame FL, a drive shaft 126 which is driven in the Z-axis direction (vertical direction) and the θz direction by vertical movement rotation driving section 127, and a support plate 128, which has one end of its upper surface in the longitudinal direction fixed to the lower end surface of drive shaft 126, extending in an uniaxial direction within the XY plane. Support plate 128 is driven by vertical movement rotation driving section 127, so that the other end in the longitudinal direction is rotationally driven in the θz direction with drive shaft 126 serving as the rotation center between a first support plate position opposing a part of the outer circumference section of chuck unit 153 and a second support plate position which does not face chuck unit 153, and is also driven in predetermined strokes in the vertical direction. A suction pad 128b is fixed to the upper surface of support plate 128, near the other end. Suction pad 128b is joined to a vacuum device via a piping member which is not shown (the vacuum device and the piping member are each omitted in the drawings). Wafer W, when supported from below by support plate 128 (suction pad 128b), is vacuum chucked and held by suction pad 128b. That is, a frictional force between wafer W and suction pad 128b limits movement of wafer W in the X-axis direction, the Y-axis direction, and the θz direction. Incidentally, the frictional force between wafer W and wafer support member 125 can be used, without suction pad 128b being provided.
The first support plate position of each of the support plates 128 is set so that support plate 128 of one of wafer support members 125, when at the first support plate position, faces the outer circumference edge in the five o'clock direction when viewed from the center of plate member 44 of chuck unit 153, and support plate 128 of the other wafer support member 125, when at the first support plate position, faces the outer circumference edge in the seven o'clock direction when viewed from the center of plate member 44 of chuck unit 153 (refer to
A pair of measurement systems 123a, 123b, which employs a vertical illumination method where an illumination light can be irradiated from above to each of the reflection mirrors 128a on each of the support plates 128 when each of the pair of support plates 128 is at the first support plate position, is provided near the pair of wafer support members 125. Each of the pair of measurement systems 123a, 123b is joined to mainframe BD, via a support member which is not shown.
Each of the pair of measurement systems 123a, 123b is an edge position detection system which employs an image processing method to detect position information of the edge section of wafer W, the system including an illumination light source, a plurality of optical path bending members such as reflection mirrors, lenses or the like, imaging devices such as CCDs and the like.
In carry-in unit 121, another reflection mirror 34 is further provided (refer to
When edge detection of wafer W is performed by each of the three measurement systems 123a to 123c, imaging signals are to be sent to a signal processing system 116 (refer to
Carry-in unit 121 is furthermore equipped with a wafer flatness detection system 147 (refer to
Wafer flatness detection system 147 is structured by a plurality of, or in this case, four Z position detection systems 146 (refer to
Measurement values of the plurality of Z position detection systems 146 structuring wafer flatness detection system 147 are sent to main controller 20 (refer to
A plurality of (for example, three) chuck unit position detection systems 148 is fixed to mainframe BD. As each of the chuck unit position detection systems 148, a position detection system of a triangulation method similar to Z position detection system 146 is used. By the three chuck unit position detection systems 148, the Z position of the plurality of places on the upper surface of chuck unit 153 is detected, and the detection results are sent to main controller 20 (refer to
Although it is not shown in
Other than this, in exposure apparatus 100, near projection optical system PL, an irradiation system which irradiates a plurality of measurement beams on the surface of wafer W via liquid Lq of liquid immersion area 36, and a multi-point focal point detection system 54 (refer to
In exposure apparatus 100 related to the present embodiment structured in the manner described above, under the control of main controller 20, similarly to the exposure apparatus disclosed in, for example, U.S. Pat. No. 8,0544,472 and the like, a parallel processing operation is performed using wafer stage WST and measurement stage MST. In exposure apparatus 100 of the present embodiment, on wafer W loaded (carry-in) on wafer stage WST as it will be described later on and held by wafer table WTB, liquid immersion area 36 is formed using local liquid immersion device 8, and exposure operation of the wafer is performed using illumination light IL, via projection optical system PL and liquid Lq of liquid immersion area 36. This exposure operation is performed by repeating a moving operation between shots, in which wafer stage WST is moved to a scanning starting position (acceleration starting position) for exposure of each shot area on wafer W, and a scanning exposure operation, in which the pattern of reticle R is transferred by the scanning exposure method onto each shot area, based on results of wafer alignment (EGA) by alignment systems AL1, and AL21 to AL24 of alignment system device 99, the latest base line of alignment system AL1, and AL21 to AL24 and the like, performed in advance by the main controller. Further, on the parallel processing operation described above, the liquid immersion area is to be held on measurement stage MST during wafer exchange, and when wafer stage WST is placed right under projection unit PU on the exchange with measurement stage, the liquid immersion area on measurement stage MST is moved onto wafer stage WST.
However, in the present embodiment, different from the exposure apparatus disclosed in, U.S. Pat. No. 8,054,472 described above, position information of wafer stage WST and position information of measurement stage MST are measured using each interferometer of interferometer system 70, during the parallel processing operation using wafer stage WST and measurement stage MST. Further, reticle alignment is performed, using the pair of reticle alignment system detection systems 14 (refer to
Incidentally, as is with the exposure apparatus disclosed in, U.S. Pat. No. 8,054,472 described above, a multi-point AF system consisting of an irradiation system and a light-receiving system can be placed in between alignment system device 99 and projection unit PU, instead of multi-point AF system 54. And, the Z position of the entire surface of wafer W can be acquired using the multi-point AF system while wafer stage WST is moving on wafer alignment, and position control in the Z-axis direction of wafer stage WST during exposure can be performed, based on the Z position of the entire surface of wafer W acquired during the alignment. In this case, another measurement device has to be provided for measuring the Z position of the wafer table WTB upper surface on wafer alignment and on exposure.
Next, a procedure for loading wafer W will be described based on
As a premise, for example, chuck unit 153, as is shown in
In this state, first of all, carry-in of wafer W to an area below chuck unit 153 is performed, in a state where wafer W is supported from below by carrier arm 149. Here, carry-in of wafer W to loading position LP by carrier arm 149 can be performed when exposure processing on a previous wafer subject to exposure (hereinafter called a previous wafer) is being performed on wafer stage WST, or when alignment processing or the like is being performed.
Next, as is shown in
Next, main controller 20 drives (rotates) support plates 128 of the pair of wafer support members 125 so as to position each support plate at its first support plate position, via vertical movement rotation driving section 127. On this operation, as is shown in
When suction pads 128b on the upper surface of each of the support plates 128 face wafer W, main controller 20, as is shown in
The processing sequence of exposure apparatus 100 is decided so that wafer W waits above loading position LP in this state, that is, in a state where suction hold (support) is performed by chuck unit 153 and the pair of wafer support members 125. In exposure apparatus 100, while wafer W waits at loading position LP, exposure processing (and alignment processing prior to the exposure processing) or the like to the previous wafer held on wafer table WTB is performed. Further, on this operation, vacuum suction of wafer W by carrier arm 149 can be moved to a state where the suction is stopped.
Then, while wafer W is waiting above loading position LP, as is shown in
Around the beginning of the edge detection of wafer W described above, main controller 20 drives carrier arm 149 downward so as to separate carrier arm 149 and wafer W, and then makes carrier arm 149 withdraw from loading position LP.
When exposure processing of the previous wafer is completed, and the previous wafer is unloaded from wafer table WTB by the carry-out device which is not shown, by main controller 20, wafer stage WST is moved to a position below (loading position LP) chuck unit 153, via coarse movement stage driving system 51A. Then, as is shown in
Then, when the upper surface of the three vertical movement pins 140 comes into contact with the lower surface of wafer W suctioned by chuck unit 153, main controller 20 stops the upward drive of center support member 150. This allows wafer W to be held by suction by the three vertical movement pins 140 in a state where the positional deviation and the rotation errors are corrected.
Here, the Z position of wafer W suctioned by chuck unit 153 at the waiting position can be accurately determined to some extent. Accordingly, by driving center support member 150 from the reference position by a predetermined amount, main controller 20 can make the three vertical movement pins 140 come into contact with the lower surface of wafer W suctioned by chuck unit 153, based on measurement results of displacement sensor 145. However, the arrangement is not limited to this, and an arrangement can be set in advance so that the three vertical movement pins 140 come into contact with the lower surface of wafer W suctioned by chuck unit 153 at the upper limit of the movement position of center support member 150 (the three vertical movement pins 140).
Then, main controller 20 operates a vacuum pump which is not shown, and begins vacuum suction to the wafer W lower surface by the three vertical movement pins 140. Incidentally, the suction of wafer W by chuck member 124 is being continued even in this state. By the suction by chuck member 124 and the frictional force due to the support from below of the three vertical movement pins 140, the movement of wafer W is restricted in directions of six degrees of freedom. Accordingly, no problems occur even when the suction hold of wafer W by support plate 128 of wafer support member 125 is released in this state.
So, when wafer W is supported (held by suction) by the three vertical movement pins 140, main controller 20 separates support plates 128 of the pair of wafer support members 125 from wafer W by driving the support plates downward, after finishing vacuum suction by the pair of suction pads 128b, as is shown in
Next, as is shown in
The drive of chuck unit 153 with the three vertical movement pins 140 (center support member 150) described above is performed until the lower surface (rear surface) of wafer W comes into contact with a planar wafer mounting surface 41 of wafer table WTB (refer to
Before starting the downward drive and during the downward drive of chuck unit 153 with the three vertical movement pins 140 (center support member 150) described above, main controller 20 measures the flatness of the wafer W upper surface, via wafer flatness detection system 147 (a plurality of Z position detection systems 146 (refer to
That is, for example, in the case it is detected by wafer flatness detection system 147 that wafer W is deformed in a shape protruding downward (a shape in which the inner circumference section is recessed than the outer circumference section), main controller 20 decreases the downward speed of center support member 150 so that it becomes slower than the driving speed of chuck unit 153, via driver 142. When the downward speed of center support member 150 is made slower than the driving speed of chuck unit 153, the center of the lower surface of wafer W is substantially pushed from below by the three vertical movement pins 140. Then, when the flatness of wafer W becomes a predetermined value, main controller 20 further drives center support member 150 and chuck unit 153 downward at the same speed (synchronously). In this case, the flatness of wafer W “becomes a predetermined value” means that, for example, wafer W is not completely flat and although the inner circumference section is recessed when compared to the outer circumference section, the shape of the wafer is deformed so that the recess level becomes equal to or less than a level determined in advance.
Further, for example, in the case it is detected by wafer flatness detection system 147 that wafer W is deformed in shape protruding upward (a shape in which the inner circumference section is protruding upward than the outer circumference section), main controller 20 increases the downward speed of center support member 150 so that it becomes faster than the driving speed of chuck unit 153, via driver 142. When the downward speed of center support member 150 is made faster than the driving speed of chuck unit 153, the center of the lower surface of wafer W is substantially pulled downward since the wafer is held by suction by the three vertical movement pins 140. Then, when the flatness of wafer W becomes the predetermined value described above chuck unit 153, main controller 20 drives center support member 150 and chuck unit further downward at the same speed (synchronously).
Incidentally, in the present embodiment, while the position in the Z direction of wafer W is detected at a plurality of points of wafer W, and information related to the shape (flatness) of wafer W is obtained from the information related to these positions, other methods can also be used. For example, an image of wafer W can be picked up by a camera or the like, and the information related to the shape (flatness) of wafer W can be obtained from the image information which has been obtained.
In the present embodiment, main controller 20 constantly measures the deformation state (flatness) of wafer W using wafer flatness detection system 147, from the state in which wafer W is suctioned by chuck unit 153 from an upward direction and is also supported from below by vertical movement pins 140 to the state in which wafer W is held by suction on the wafer holder which is not shown. Therefore, even in the case excessive flatness correction was performed, such as when, for example, wafer W located between chuck unit 153 and the three vertical movement pins 140 has a shape protruding downward and the descending speed of vertical movement pins 140 was made slower than the descending speed of chuck unit 153 so as to adjust the flatness, and as a consequence, wafer W became a shape protruding upward, by increasing the descending speed of vertical movement pins 140 with respect to the descending speed of chuck unit 153, the flatness of wafer W can be adjusted again to a predetermined value. However, measurement of the deformation state (flatness) of wafer W can also be performed only during a part of a time interval, the interval being from a state where wafer W is suctioned from an upward direction by chuck unit 153 and is also supported from a downward direction by vertical movement pins 140 until wafer W is held by suction on the wafer holder which is not shown (for example, just before coming into contact with wafer mounting surface 41).
Then, when the lower surface of wafer W comes into contact with the wafer table WTB upper surface (wafer mounting surface 41) as is shown in
Next, as is shown in
Here, when chuck unit 153 is driven upward and stopped (or during the upward drive), main controller 20 performs detection of edge position of wafer W, using the three measurement systems 123a to 123c previously described. In this case, edge detection of wafer W is performed by measurement beams from measurement systems 123a, 123b, 123c being irradiated on the three reflection mirrors 86 on wafer table WTB, and reflection beams from the reflection mirrors being received by the imaging elements of measurement system 123a, 123b, 123c. Imaging signals of the imaging elements that the three measurement systems 123a to 123c have are sent to signal processing system 116 (refer to
As is described so far, according to carrier system 120 related to the present embodiment exposure apparatus 100 equipped with the system, on loading wafer W onto wafer table WTB, main controller 20 can independently and vertically move chuck unit 153 which suctions wafer W from above and vertical movement pins 140 (center support member 150) which support wafer W from below. That is, on making wafer W, in which flexure, distortion or the like has occurred, move downward for wafer stage WST to hold by suction, wafer W can be loaded on wafer stage WST in a state where the flatness of wafer W is maintained to a value within a desired range, by controlling the descending speed of center support member 150 (the three vertical movement pins 140).
Further, in the present embodiment, while a structure was employed where three vertical movement pins 140 (center support member 150), which were structured to vertically move in an integral manner, were used, the structure is not limited to this. For example, center support member 150 can be structured so that the three vertical movement pins move vertically in an independent manner, and the flatness of wafer W can be made to fall within a desired range by making the three vertical movement pins move vertically in an independent manner, based on measurement results of the flatness of the wafer. Incidentally, the number of vertical movement pins is not limited to three, and the pins can be equal to, less than or more than three.
Further, in carry-in unit 121 which structures a part of carrier system 120 related to the present embodiment, because the self-weight of chuck unit 153 is supported by the pair of weight-cancelling devices 131, the force when driving chuck unit 153 in the vertical direction can be reduced, and the size of the pair of Z voice coil motors 144 can be reduced.
Further, in carrier system 120 related to the present embodiment, during the loading of wafer W onto wafer stage WST, main controller 20 measures positional deviation and rotation deviation of wafer W via measurement systems 123a to 123c, and based on the measurement results, wafer stage WST is driven so that positional deviation and rotational deviation of wafer W are corrected. Accordingly, wafer W can be loaded on wafer table WTB with good positional reproducibility.
Further, according to exposure apparatus 100 related to the present embodiment, because exposure to wafer W loaded on wafer table WTB in a state of high flatness and with good positional reproducibility is performed in a step-and-scan method, to each of a plurality of shot areas on wafer W, exposure with good overlay accuracy and without defocus becomes possible, the pattern of reticle R can be transferred on the plurality of shot areas in a favorable manner.
Incidentally, in the embodiment above, considering the point that the three vertical movement pins 140 (center support member 150) are superior to chuck unit 153 in responsiveness at the time of driving, driver 142 was driven so as to adjust the descending speed of the three vertical movement pins 140 (center support member 150) to make the flatness of wafer W become a value within a desired range, when wafer W is loaded on wafer stage WST. However, on the contrary, in the case chuck unit 153 is superior to the three vertical movement pins 140 (center support member 150) in responsiveness at the time of driving, it is desirable to adjust the descending speed of chuck unit 153. In the case responsiveness at the time of driving is about the same in the three vertical movement pins 140 (center support member 150) and chuck unit 153, the descending speed of one of center support member 150 and chuck unit 153, or both center support member 150 and chuck unit 153 can be adjusted. Further, since the flatness of the wafer only has to be maintained at a predetermined level, the descending speed of one of center support member 150 and chuck unit 153, or both center support member 150 and chuck unit 153 can be adjusted, regardless of the superiority of responsiveness.
Further, in the embodiment above, while the case has been described where wafer flatness detection system 147 was structured by the plurality of Z position detection systems 146, the embodiment is not limited to this, and the wafer flatness detection system can be structured using a detection device that irradiates light on the entire upper surface of the wafer and can detect the surface shape. Further, in the case the wafer flatness detection system is structured by the plurality of Z position detection systems similarly to the embodiment described above, as the Z position detection system, the position detection system which employs a triangulation method does not necessarily have to be used. That is, since the wafer flatness detection system only has to be able to detect the flatness (the Z position of a plurality of places) of wafer W, for example, as is shown in
Further, because the chuck unit position detection system only has to measure the Z position of chuck unit 153, the system is not limited to a position detection system of the triangulation method, and as is shown in
Incidentally, in the embodiment described above, just before wafer W is loaded onto wafer table WTB, gas can be blown out from chuck member 124 toward wafer W at a blowout velocity faster than the blowout velocity so far when wafer W was being suctioned. By this operation, as is shown in
Incidentally, in the embodiment described above, while wafer W is mounted on wafer mounting surface 41 of wafer table WTB by chuck unit 153 performing suction of wafer W from above, and chuck unit 153 and the three vertical movement pins 140 being driven downward in a state where the three vertical movement pins 140 perform vacuum suction of the rear surface of wafer W, the structure is not limited to this. For example, instead of the three vertical movement pins 140, a structure that uses carrier arm 149 can be employed. In this case, carrier arm 149 is to have a structure drivable within a predetermined range also in the vertical direction, in addition to the horizontal direction. And, in a state where vacuum suction of the rear surface of wafer W is performed by carrier arm 149, the wafer W surface is suctioned by chuck unit 153, and main controller 20 sets each of the downward speed of chuck unit 153 and carrier arm 149 to a predetermined value, using the detection results of wafer flatness detection system 147.
Incidentally, it is preferable to form a groove in wafer mounting surface 41 so as to fit carrier arm 149 therein so that carrier arm 149 does not interfere with wafer W when wafer W is mounted on wafer mounting surface 41, and that wafer W and wafer mounting surface 41 can come into contact with good precision. Then, carrier arm 149 can be made to move in the horizontal direction inside the groove, so that it can be withdrawn from wafer mounting surface 41.
Further, as another structure, wafer W can be mounted on wafer mounting surface 41 of wafer table WTB without using the three vertical movement pins 140, after wafer W is delivered to chuck unit 153 from carrier arm 149. In this case, for example, main controller 20 can control the descending speed of chuck unit 153, the flow velocity (flow amount) of the fluid blowing out from chuck member 124, and the direction of the fluid flowing, using the detection results of wafer flatness detection system 147 to preferably set each of the suction forces of chuck unit 153 to a predetermined value. On this operation, in the case the rear surface of wafer W is supported by suction using suction pad 125b of wafer support member 125, similarly to the case of carrier arm 149 previously described, a cutout into which wafer support member 125 fits is preferably formed in wafer mounting surface 41, so that wafer W and mounting surface 41 can come into contact with good precision. Further, in the case movement of wafer W in the lateral direction (a direction parallel to the mounting surface) does not have to be restricted, a structure can be employed in which wafer W is held by suction only by chuck member 124 without wafer support member 125 being provided, and wafer W is mounted on wafer mounting surface 41 of wafer table WTB. Also on this operation, for example, main controller 20 can control the descending speed of chuck unit 153, the flow velocity (flow amount) of the fluid blowing out from chuck member 124, and the direction of the fluid flowing, using the detection results of wafer flatness detection system 147 to preferably set each of the suction forces of chuck unit 153 to a predetermined value.
Incidentally, in the embodiment described above, as an example, while a liquid immersion exposure apparatus was described in which a liquid immersion space including an optical path of the illumination light was formed between the projection optical system and the wafer, and the wafer was exposed with the illumination light via the liquid between the projection optical system and the liquid immersion space, the embodiment is not limited to this, and the embodiment described above can be applied to a dry-type exposure apparatus which performs exposure of wafer W without the illumination light passing through the liquid (water).
Further, in the embodiment described above and its modified example (hereinafter referred to as the embodiment described above and the like), while the case has been described where the exposure apparatus is a scanning type exposure apparatus of the step-and-scan method or the like, the embodiment is not limited to this, and the embodiment described above can also be applied to a stationary type exposure apparatus such as a stepper. Further, the embodiment described above and the like can also be applied to a reduction projection exposure apparatus of the step-and-stitch method in which a shot area and a shot area are synthesized, an exposure apparatus of the proximity method, a mirror projection aligner or the like. Furthermore, the embodiment described above and the like can also be applied to a multi-stage type exposure apparatus equipped with a plurality of wafer stages, as is disclosed in, for example, U.S. Pat. Nos. 6,590,634, 5,969,441, 6,208,407 or the like.
Further, the projection optical system in the exposure apparatus of the embodiment described above and the like is not limited to a reduction system, and can either be an equal-magnifying or a magnifying system, and projection optical system PL is not limited to a refractive system, and can either be a reflection system or a catadioptric system, and its projection image can either be an inverted image or an erect image. Further, while the shape of the illumination area and the exposure area previously described was a rectangular shape, the embodiments are not limited to this, and for example, the shape can be an arc, a trapezoid, a parallelogram or the like.
Further, the light source of the exposure apparatus related to the embodiment described above and the like is not limited to the ArF excimer laser, and a pulse laser light source such as a KrF excimer laser (output wavelength 248 nm), an F2 laser (output wavelength 157 nm), an Ar2 laser (output wavelength 126 nm), or a Kr2 laser (output wavelength 146 nm), a super high pressure mercury lamp which generates a bright line such as a g-line (wavelength 436 nm), an i-line (wavelength 365 nm), or the like can also be used. Further, a harmonic wave generating device which uses a YAG laser can also be used. As other light sources, as is disclosed in, for example, U.S. Pat. No. 7,023,610, a harmonic wave can also be used as vacuum ultraviolet light, in which a single-wavelength laser beam in the infrared range or the visible range emitted by a DFB semiconductor laser or a fiber laser is amplified by a fiber amplifier doped with, for example, erbium (or both erbium and ytterbium) and wavelength conversion into ultraviolet light is performed using a nonlinear optical crystal.
Further, in the embodiment described above and the like, as illumination light IL of the exposure apparatus, the light is not limited to light having a wavelength of 100 nm or more, and as a matter of course, light having a wavelength less than 100 nm can also be used. For example, the embodiment described above and the like can suitably be applied to an EUV exposure apparatus which uses EUV (Extreme Ultraviolet) light in the soft X-ray region (for example, a wavelength region of 5 to 15 nm). Other than this, the embodiment described above and the like can also be applied to an exposure apparatus which uses a charged particle beam such as an electron beam or an ion beam.
Furthermore, the embodiment described above and the like can also be applied to an exposure apparatus which synthesizes two reticle patterns on a wafer via the projection optical system and performs double exposure almost simultaneously on a shot area on the wafer by performing scanning exposure once, as is disclosed in, for example, U.S. Pat. No. 6,611,316.
Further, the object on which the pattern should be formed (the object subject to exposure on which the energy beam is irradiated) in the embodiment described above and the like is not limited to the wafer, and may be other objects such as a glass plate, a ceramic substrate, a film member, or a mask blank.
The usage of the exposure apparatus is not limited to the exposure apparatus for manufacturing semiconductors, and the embodiments above can be widely applied, for example, to an exposure apparatus for liquid crystals that transfers a liquid crystal display devices pattern onto a square-shaped glass plate, an exposure apparatus for manufacturing an organic EL, a thin film magnetic head, an imaging element (such as a CCD), a micromachine and a DNA chip or the like. Further, the embodiment described above and the like can also be applied to an exposure apparatus that transfers a circuit pattern onto a glass substrate or a silicon wafer for manufacturing a reticle or a mask that is used in not only microdevices such as semiconductor devices, but also used in an optical exposure apparatus, an EUV exposure apparatus, an X-ray exposure apparatus, an electron beam exposure apparatus or the like.
Electronic devices such as semiconductor devices are manufactured through the steps such as; a step for performing function/performance design of a device, a step for making a reticle based on this design step, a step for making a wafer from a silicon material, a lithography step for transferring a pattern of a mask (reticle) onto the wafer by the exposure apparatus (pattern generating device) and the exposure method related to the embodiment described above and the like, a development step for developing the wafer which has been exposed, an etching step for removing by the etching an exposed member of an area other than the area where the resist remains, a resist removing step for removing the resist that is no longer necessary since etching has been completed, a device assembly step (including a dicing process, a bonding process, and a package process), and an inspection step. In this case, in the lithography step, because the device pattern is formed on the wafer, using the exposure apparatus of the embodiment described above and the like and performing the exposure method previously described, a highly integrated device can be manufactured with good productivity.
Incidentally, the disclosures of all publications, PCT International Publications, U.S. patent application Publications and U.S. patents related to exposure apparatuses and the like that are cited in the description so far are each incorporated herein by reference.
Claims
1. A carrier system that carries an object to an object mounting member provided with an object mounting section, the system comprising:
- an adjustment device that changes a shape of the object, not in contact with the object mounting section, into a predetermined shape before the object is mounted onto the object mounting section; and
- a controller that controls the adjustment device before the object is mounted onto the object mounting section, based on information related to the shape of the object, wherein
- the object whose shape has been changed into the predetermined shape comes into contact with the object mounting section, and is mounted onto the object mounting section.
2. The carrier system according to claim 1, wherein
- the predetermined shape includes a shape protruding downward.
3. The carrier system according to claim 1, wherein
- the object mounting section is located under the object whose shape has been changed into the predetermined shape.
4. The carrier system according to claim 1, wherein
- the adjustment device changes the shape of the object so that at least one surface of the object has a predetermined flatness degree.
5. The carrier system according to claim 4, wherein
- having the predetermined flatness degree includes a degree of protruding downward of a part of the object becoming a predetermined value, the part of the object protruding downward compared to an outer circumference section of the object.
6. The carrier system according to claim 1, wherein
- the adjustment device changes the shape of the object into the predetermined shape, by individually adjusting a velocity of an area including a first area near an outer circumference of the object and a velocity of a second area on an inner side of the first area of the object, at a time of moving the object downward.
7. The carrier system according to claim 1, further comprising:
- a first support member configured to support the object by suctioning from above or supporting from below an area including a first area near an outer circumference of the object, the first support member being vertically movable; and
- a second support member configured to support the object by adsorbing from below a second area on the inner side of the first area of the object, the second support member being vertically movable independently from the first support member, wherein
- the adjustment device changes the shape of the object into the predetermined shape, by individually adjusting a velocity of the first support member and a velocity of the second support member at a time of moving downward the object supported by the first support member and the second support member.
8. The carrier system according to claim 7, wherein
- the second support member is provided at the object mounting member, and
- the object comes into contact with the object mounting section in a state where the object is supported by the second support member and the shape of the object is changed into the predetermined shape by the adjustment device.
9. The carrier system according to claim 8, wherein
- the controller changes the shape of the object into the predetermined shape via the adjustment device, in at least a part of a period from when the object is supported by the second support member until when the object comes into contact with the object mounting section.
10. The carrier system according to claim 8, wherein
- before the object is supported by the second support member, the controller changes the shape of the object into the predetermined shape via the adjustment device.
11. The carrier system according to claim 8, wherein
- after the object is supported by the second support member, the controller moves the second support member downward and causes the object to come into contact with the object mounting section.
12. The carrier system according to claim 8, wherein
- the controller changes the shape of the object into the predetermined shape via the adjustment device, in at least a part of a period when the second support member supporting the object is moved downward.
13. The carrier system according to claim 7, wherein
- the first support member is a suction member that supports the object from above in a noncontact manner, by generating a suction force with respect to the object by forming a gas flow between the suction member and the object.
14. The carrier system according to claim 13, wherein
- the controller changes the shape of the object into the predetermined shape via the adjustment device, in at least a part of a period when a relative position between the suction member suctioning the object and the object mounting section is changed in a vertical direction.
15. The carrier system according to claim 1, wherein
- the adjustment device changes the shape of the object into the predetermined shape based on the information related to the shape of the object obtained via a measurement device.
16. The carrier system according to claim 1, further comprising:
- a measurement device that measures the information related to the shape of the object.
17. The carrier system according to claim 16, wherein
- the controller obtains the information related to the shape of the object via the measurement device, in at least a part of a period when the object is carried to the object mounting section.
18. The carrier system according to claim 16, wherein
- the controller obtains the information related to the shape of the object via the measurement device, before changing the shape of the object into the predetermined shape.
19. The carrier system according to claim 16, wherein
- the object mounting member further comprises a support member that is movable in a vertical direction with respect to the object mounting section in a state of supporting the object from below,
- the controller obtains the information related to the shape of the object via the measurement device, in at least a part of a period when the object is supported by the support member.
20. The carrier system according to claim 19, wherein
- the controller obtains the information related to the shape of the object via the measurement device, in at least a part of a period when the support member supporting the object is moved downward.
21. The carrier system according to claim 16, further comprising:
- a suction device that includes a suction member, the suction member generating a suction force with respect to the object by forming a gas flow between the suction member and the object, wherein
- the controller obtains the information related to the shape of the object via the measurement device, in at least a part of a period when the suction member suctions the object.
22. The carrier system according to claim 21, wherein
- a relative position between the suction member and the object mounting section is variable in a vertical direction, and
- the controller obtains the information related to the shape of the object via the measurement device, in at least a part of a period when the relative position between the suction member suctioning the object and the object mounting section is changed in the vertical direction.
23. The carrier system according to claim 16, wherein
- the measurement device has a plurality of sensors that measures information related to a position in a direction intersecting one surface of the object, for each of a plurality of places of the one surface.
24. The carrier system according to claim 16, further comprising:
- a suction device that includes a suction member, the suction member generating a suction force with respect to the object by forming a gas flow between the suction member and the object, and a relative position between the suction member and the object mounting section being variable in a vertical direction, wherein
- the measurement device is provided at the suction device.
25. An exposure apparatus that forms a pattern on an object, the apparatus comprising:
- the carrier system according to claim 1; and
- a pattern generating device that forms the pattern by exposing the object, that has been carried onto the object mounting member by the carrier system, with an energy beam.
26. A device manufacturing method, comprising:
- exposing an object using the exposure apparatus according to claim 25; and
- developing the object that has been exposed.
27. A carrier system that carries a wafer to a wafer mounting member provided with a wafer mounting section, the system comprising:
- an adjustment device that has a support member configured to support the wafer by adsorbing the wafer from below and configured to vertically move, and changes a shape of the wafer, not in contact with the wafer mounting section, into a predetermined shape; and
- a controller that controls the adjustment device, wherein
- the shape of the wafer is changed into the predetermined shape, by controlling a downward velocity of the support member supporting the wafer at a time of moving the wafer downward, before the wafer is mounted onto the wafer mounting section, and
- the wafer whose shape has been changed into the predetermined shape comes into contact with the wafer mounting section, and is mounted onto the wafer mounting section.
28. A carrying method of carrying a wafer to a wafer mounting member provided with a wafer mounting section, the method comprising:
- before the wafer is mounted onto the wafer mounting section, moving the wafer downward, in a state where the wafer is supported by adsorbing from below a second area of the wafer by a second support member, in parallel with suctioning from above or supporting from below an area including a first area of the wafer by a first support member, the first area being near an outer circumference of the wafer, the second area being on an inner side of the first area, the first support member being vertically movable, and the second support member being vertically movable independently from the first support member;
- changing a shape of the wafer into a predetermined shape, by individually adjusting a velocity of the first support member and a velocity of the second support member at a time of moving the wafer downward; and
- mounting the wafer whose shape has been changed into the predetermined shape onto the wafer mounting section.
29. The carrying method according to claim 28, wherein
- the predetermined shape includes a shape protruding downward.
30. The carrying method according to claim 28, wherein
- the wafer mounting section is located under the wafer whose shape has been changed into the predetermined shape.
31. The carrying method according to claim 28, wherein
- the changing the shape of the wafer into the predetermined shape includes changing the shape of the wafer so that at least one surface of the wafer has a predetermined flatness degree.
32. The carrying method according to claim 31, wherein
- having the predetermined flatness degree includes a degree of protruding downward of the second area of the wafer becoming a predetermined value, the second area of the wafer protruding downward compared to the first area of the wafer.
33. The carrying method according to claim 28, wherein
- the second support member is provided at the wafer mounting member, and
- the wafer comes into contact with the wafer mounting section in a state where the wafer is supported by the second support member and the shape of the wafer is changed into the predetermined shape.
34. The carrying method according to claim 33, wherein
- the shape of the wafer is changed into the predetermined shape, in at least a part of a period from when the wafer is supported by the second support member until when the wafer comes into contact with the wafer mounting section.
35. The carrying method according to claim 33, wherein
- before the wafer is supported by the second support member, the shape of the wafer is changed into the predetermined shape.
36. The carrying method according to claim 33, wherein
- after the wafer is supported by the second support member, the second support member is moved downward and causes the wafer to come into contact with the wafer mounting section.
37. The carrying method according to claim 33, wherein
- the shape of the wafer is changed into the predetermined shape, in at least a part of a period when the second support member supporting the wafer is moved downward.
38. The carrying method according to claim 28, wherein
- a suction member is used as the first support member, the suction member supporting the wafer from above in a noncontact manner, by generating a suction force with respect to the wafer by forming a gas flow between the suction member and the wafer.
39. The carrying method according to claim 38, wherein
- the shape of the wafer is changed into the predetermined shape, in at least a part of a period when a relative position between the wafer suctioned by the suction force and the wafer mounting section is changed in a vertical direction.
40. The carrying method according to claim 28, further comprising:
- obtaining information related to the shape of the wafer via a measurement device, wherein
- the shape of the wafer is changed into the predetermined shape based on the information related to the shape of the wafer that has been obtained.
41. The carrying method according to claim 40, wherein
- the information related to the shape of the wafer is obtained via the measurement device, in at least a part of a period when the wafer is carried to the wafer mounting section.
42. The carrying method according to claim 40, wherein
- the information related to the shape of the wafer is obtained via the measurement device, before the shape of the wafer is changed into the predetermined shape.
43. The carrying method according to claim 40, wherein
- the second support member is provided at the wafer mounting member, and
- the information related to the shape of the wafer is obtained via the measurement device, in at least a part of a period when the wafer is supported by the second support member.
44. The carrying method according to claim 43, wherein
- the information related to the shape of the wafer is obtained via the measurement device, in at least a part of a period when the second support member supporting the wafer is moved downward.
45. The carrying method according to claim 40, wherein
- a suction member is used as the first support member, the suction member supporting the wafer from above in a noncontact manner, by generating a suction force with respect to the wafer by forming a gas flow between the suction member and the wafer, and
- the information related to the shape of the wafer is obtained via the measurement device, in at least a part of a period when the wafer is suctioned by the suction force.
46. The carrying method according to claim 45, wherein
- the information related to the shape of the wafer is obtained via the measurement device, in at least a part of a period when a relative position between the wafer suctioned by the suction force and the wafer mounting section is changed in a vertical direction.
47. An exposure method of forming a pattern on a wafer, the method comprising:
- forming the pattern by exposing the wafer, that has been carried onto the wafer mounting member by the carrying method according to claim 28, with an energy beam.
48. A device manufacturing method, comprising:
- exposing a wafer using the exposure method according to claim 47; and
- developing the wafer that has been exposed.
4391511 | July 5, 1983 | Akiyama |
4465368 | August 14, 1984 | Matsuura et al. |
5969441 | October 19, 1999 | Loopstra et al. |
6208407 | March 27, 2001 | Loopstra |
6590634 | July 8, 2003 | Nishi et al. |
6611316 | August 26, 2003 | Sewell |
6624433 | September 23, 2003 | Okumura et al. |
7230682 | June 12, 2007 | Shimizu et al. |
7643130 | January 5, 2010 | Yoshitake |
8054472 | November 8, 2011 | Shibazaki |
9821469 | November 21, 2017 | Hara |
20020041377 | April 11, 2002 | Hagiwara et al. |
20020061469 | May 23, 2002 | Tanaka |
20030077879 | April 24, 2003 | Ohno et al. |
20040036850 | February 26, 2004 | Tsukamoto |
20040100624 | May 27, 2004 | Hagiwara et al. |
20070064212 | March 22, 2007 | Kayama et al. |
20070103657 | May 10, 2007 | Yoshitake et al. |
20070236857 | October 11, 2007 | Lin et al. |
20080106722 | May 8, 2008 | Shibazaki |
20080299784 | December 4, 2008 | Jin et al. |
20090026676 | January 29, 2009 | Kurita et al. |
20090233234 | September 17, 2009 | Shibazaki |
20100073652 | March 25, 2010 | Shibazaki |
20100073653 | March 25, 2010 | Shibazaki |
20100297562 | November 25, 2010 | Shibazaki |
20110085150 | April 14, 2011 | Ichinose |
20110189595 | August 4, 2011 | Tanabe |
20160023356 | January 28, 2016 | Hara |
101036221 | September 2007 | CN |
101047141 | October 2007 | CN |
102549502 | July 2012 | CN |
102008023907 | December 2009 | DE |
S63-260129 | October 1988 | JP |
H06-302550 | October 1994 | JP |
2003-133261 | May 2003 | JP |
2006-080289 | March 2006 | JP |
2006-114640 | April 2006 | JP |
2007-214336 | August 2007 | JP |
2008-168413 | July 2008 | JP |
2009-218372 | September 2009 | JP |
2009-224519 | October 2009 | JP |
2010-530636 | September 2010 | JP |
2010-531541 | September 2010 | JP |
2011-003891 | January 2011 | JP |
2013-219069 | October 2013 | JP |
03/065428 | August 2003 | WO |
2008/156366 | December 2008 | WO |
2008/156367 | December 2008 | WO |
2014/084229 | June 2014 | WO |
- Jan. 28, 2014 International Search Report issued in International Application No. PCT/JP2013/081852.
- Jan. 28, 2014 Written Opinion issued in International Application No. PCT/JP2013/081852.
- Feb. 4, 2017 Office Action issued in Chinese Application No. 201380071862.7.
- May 2, 2017 Office Action issued in U.S. Appl. No. 14/648,280.
- Sep. 12, 2016 Extended Search Report issued in European Application No. 13859307.4.
- Dec. 21, 2016 Office Action issued in U.S. Appl. No. 14/648,280.
- Jun. 27, 2017 Office Action issued in Japanese Application No. 2014-550208.
- Dec. 8, 2017 Office Action issued in U.S. Appl. No. 15/637,069.
- May 8, 2019 Office Action issued in Japanese Patent Application No. 2018-107671.
Type: Grant
Filed: May 9, 2018
Date of Patent: Aug 20, 2019
Patent Publication Number: 20180257237
Assignee: NIKON CORPORATION (Tokyo)
Inventor: Hideaki Hara (Kumagaya)
Primary Examiner: Hung Nguyen
Application Number: 15/974,965
International Classification: G03F 7/20 (20060101); B25J 11/00 (20060101); H01L 21/67 (20060101); H01L 21/68 (20060101); H01L 21/683 (20060101); H01L 21/687 (20060101); B25J 15/06 (20060101);