Methods and systems utilizing ultrasound-assisted sampling interfaces for mass spectrometric analysis
An ultrasonic transmitter (95) and detector (e.g., integrated as an ultrasound transducer) utilized in a feedback control system automatically monitors and/or detects surface profile (e.g., shape) of the liquid-air interface and adjusts the flow rate of sampling liquid to ensure that experimental conditions remain consistent at the time of sample introduction during serial samplings. The feedback control can provide for automated adjustment of the surface profile of the liquid-air interface in accordance with changes in desired set point according to an experimental workflow (e.g., automated adjustment between an interface corresponding to a vortex sampling set point and an overflow cleaning set point). Improvements in desorption efficiency and quality of mass spectrometry data by degassing of the liquid solvent utilized within the sampling interfaces, and/or utilization in a feedback control system for generating data indicative of a surface profile of the liquid-air interface within the interface's sampling port may be realized.
Latest DH Technologies Development Pte. Ltd. Patents:
- Ms/Ms-Based Identification of Trisulfide Bonds
- SYSTEMS AND METHODS FOR SIGNAL DECONVOLUTION FOR NON-CONTACT SAMPLE EJECTION
- SYSTEMS AND METHODS FOR FLASH BOILING OF A LIQUID SAMPLE
- System and method for the acoustic loading of an analytical instrument using a continuous flow sampling probe
- THREE-DIMENSIONAL CHEMICAL PEAK FINDER FOR QUALITATIVE AND QUANTITATIVE ANALYTICAL WORKFLOWS
This application claims the benefit of priority from U.S. Provisional Application No. 62/589,071, filed on 21 Nov. 2017, the entire contents of which are incorporated by reference herein.
FIELDThe present teachings generally relate to mass spectrometry, and more particularly, to ultrasound-assisted sampling interfaces for mass spectrometry systems and methods.
INTRODUCTIONMass spectrometry (MS) is an analytical technique for determining the elemental composition of test substances with both qualitative and quantitative applications. MS can be useful for identifying unknown compounds, determining the isotopic composition of elements in a molecule, determining the structure of a particular compound by observing its fragmentation, and quantifying the amount of a particular compound in a sample. Given its sensitivity and selectivity, MS is particularly important in life science applications.
In the analysis of complex sample matrices (e.g., biological, environmental, and food samples), many current MS techniques require extensive pre-treatment steps to be performed on the sample prior to MS detection/analysis of the analyte of interest. Such pre-analytical steps can include sampling (i.e., sample collection) and sample preparation (separation from the matrix, concentration, fractionation and, if necessary, derivatization). It has been estimated, for example, that more than 80% of the time of overall analytical process can be spent on sample collection and preparation in order to enable the analyte's detection via MS or to remove potential sources of interference contained within the sample matrix, while nonetheless increasing potential sources of dilution and/or error at each sample preparation stage.
Ideally, sample preparation and sample introduction techniques for MS should be fast, reliable, reproducible, inexpensive, and in some aspects, amenable to automation. By way of example, various ionization methods have been developed that can desorb/ionize analytes from condensed-phase samples with minimal sample handling (e.g., desorption electrospray ionization (DESI) and direct analysis in real time (DART), which “wipe-off” analytes from the samples by exposing their surfaces to an ionizing medium such as a gas or an aerosol). However, such techniques can also require sophisticated and costly equipment, and may be amenable only for a limited class of highly-volatile small molecules. Another recent example of an improved sample introduction technique is an “open port” sampling interface in which relatively unprocessed samples can be introduced into a continuous flowing solvent that is delivered to an ion source of a MS system, as described for example in an article entitled “An open port sampling interface for liquid introduction atmospheric pressure ionization mass spectrometry” of Van Berkel et al., published in Rapid Communications in Mass Spectrometry, 29(19), pp. 1749-1756 (2015), which is incorporated by reference in its entirety.
There remains a need for improved sample introduction techniques that provide sensitivity, simplicity, selectivity, speed, reproducibility, and high-throughput.
SUMMARYMethods and systems for improving mass spectrometry (MS) data generated from sampling interfaces having an open sampling port from which a liquid is delivered to an ion source for mass spectrometric analysis are provided herein. In accordance with various aspects of the present teachings, MS-based systems and methods are provided in which a source of ultrasound energy (e.g., an ultrasonic transmitter) is associated with at least one of the sampling interface and a sample substrate configured for insertion within the sampling interface so as to provide ultrasound energy thereto. In various aspects, the use of a source of ultrasound energy can provide improved desorption efficiency, improve the quality of the MS data by degassing of the liquid solvent utilized within the sampling interfaces, and/or be utilized in a feedback control system for generating data indicative of a surface profile of the liquid-air interface within the interface's sampling port. In some aspects, for example, an ultrasound energy module coupled to one of the sampling interface or a sampling substrate itself can improve the elution of analytes from a solid-phase sample substrate, for example, by agitating the desorption liquid within the sampling probe so as to increase the efficiency of mass transfer from the sampling substrate. Additionally or alternatively, the ultrasound energy can be effective to remove bubbles from the liquid delivered to the ion source so as to reduce the presence of aberrations or spikes in the MS data that can be observed when bubbles are discharged into the ionization chamber. Moreover, in various aspects of the methods and systems provided herein, an ultrasonic transmitter and detector (e.g., an ultrasound transducer) can be utilized in a feedback control system so as to automatically monitor and/or detect the surface profile (e.g., shape) of the liquid-air interface (e.g., without human intervention) and adjust the flow rate of the sampling liquid to ensure that experimental conditions remain consistent at the time of sample introduction for serial samplings. In such aspects, for example, the ultrasound energy that is reflected from the liquid-air interface can be detected so as to enable the flow rate of a liquid (e.g., a desorption solvent) into and/or out of a sampling probe to be selectively adjusted so as to maintain a desired liquid-air interface within the sampling port and a stable and reproducible analyte flow of consistent dilution to the ion source, thereby increasing the reproducibility and/or accuracy of the MS analysis. Additionally or alternatively, the feedback control can utilize the detected ultrasound energy so as to provide for the automated adjustment of the surface profile of the liquid-air interface in accordance with a change in the desired set point according to an experimental workflow (e.g., automated adjustment between an interface corresponding to a vortex sampling set point and an overflow cleaning set point between samplings).
In accordance with various exemplary aspects of the present teachings, a system for analyzing a chemical composition of a specimen is provided, the system comprising a reservoir for storing a liquid and a sampling probe having an open end partially defining a sample space configured to receive the liquid from the reservoir, the liquid within the sample space further configured to receive through the open end one or more analytes of a sample. The system can further comprise a pump for delivering the liquid from the reservoir to an ion source via the sample space, the ion source being configured to discharge the liquid having the one or more analytes entrained therein into an ionization chamber in fluid communication with a sampling orifice of a mass spectrometer. An ultrasonic transmitter is also provided for applying ultrasound energy to at least one of the liquid within the sample space, the sampling probe, and a sample substrate to be inserted into the liquid within the sample space. By way of non-limiting example, the sample can be one of a liquid sample containing one or more analytes that can be introduced (e.g., pipetted into the open end of the sampling probe, acoustically injected) or a sample substrate having one or more analytes adsorbed thereto such that at least a portion of said one or more analytes are desorbed therefrom into the desorption solvent within the sample space.
Ultrasonic transmitters can be associated with the sampling probe in a variety of manners. By way of example, in some aspects, in which the sample comprises a sample substrate, the ultrasonic transmitter can be coupled thereto and can be configured to apply ultrasound energy to the sample substrate upon insertion thereof into the sample space (e.g., under the influence of a controller for activating the ultrasonic transducer upon insertion of the sample substrate within into the sample space). In such aspects, the ultrasound energy can facilitate desorption into the liquid of one or more analytes adsorbed onto a surface of the sample substrate, for example, by agitating (e.g., vibrating) the substrate within the liquid and/or by generating heat within the substrate and/or liquid so as to increase the elution efficiency of the analytes. In various aspects, the ultrasonic transmitter can be coupled to the sampling probe so as to apply ultrasound energy to the sampling probe and the liquid therewithin. In some aspects, for example, the ultrasonic transmitter can be disposed in the fluid flow path of the liquid before or after the sample space so as to be in contact with the liquid being flowed through the sampling probe. In various aspects, the ultrasound energy can be effective to increase agitation of the liquid within the sample space and/or remove bubbles from the liquid delivered to the ion source so as to reduce the presence of aberrations or spikes in the MS data when bubbles are discharged by the ion source into the ionization chamber.
In addition to the above described benefits of the ultrasonic transmitter in accordance with various aspects of the present teachings, in some aspects the ultrasound energy provided by the ultrasonic transmitter can additionally or alternatively be utilized in a feedback-based control system for controlling the surface profile of the liquid-air interface within the open end of the sampling probe. In certain aspects, for example, the system can further comprise an ultrasound detector configured to detect the ultrasound energy that is reflected from the liquid-air interface at the open end of the sampling probe so as to generate data indicative of a surface profile of the liquid-air interface. A controller, operatively coupled to the ultrasound detector, can be configured to generate control signals based on the surface profile data for adjusting the surface profile of the liquid-air interface, for example, by adjusting the flow rates of the liquid into and out of the sampling probe. By way of non-limiting example, the control signals generated by the controller are configured to adjust the flow rate of liquid within the sampling probe by adjusting at least one of the flow rate of liquid provided by the pump and the flow rate of a nebulizer gas that surrounds the discharge end of the ion source.
Sampling probes in accordance with the present teachings can have a variety of configurations but are generally include an open end by which the liquid delivered from the reservoir is open to the atmosphere and through which a sample containing or suspected of containing one or more analytes can be received. In accordance with various aspects of the present teachings, the sampling probe can comprise an outer capillary tube extending from a proximal end to a distal end and an inner capillary tube extending from a proximal end to a distal end and disposed within said outer capillary tube, wherein the distal end of the inner capillary tube is recessed relative to the distal end of the outer capillary tube so as to define the sample space between the distal end of the inner capillary tube, a portion of an inner wall of the outer capillary tube, and the distal end of the outer capillary tube. In such aspects, the inner and outer capillary tubes can define a solvent conduit and a sampling conduit in fluid communication with one another via said sample space, said solvent conduit extending from an inlet end configured to receive solvent (e.g., desorption solvent or other liquid) from the reservoir to an outlet end terminating at said sample space. The sampling conduit can extend from an inlet end commencing at the sample space for receiving from the sample space solvent in which the analytes are entrained to an outlet end fluidly coupled to the ion source.
In accordance with various exemplary aspects of the present teachings, a method for analyzing a chemical composition of a specimen is provided, the method comprising providing a flow of liquid to a sampling probe, said sampling probe having an open end partially defining a sample space configured to receive the liquid and further configured to receive through the open end one or more analytes of a sample into the liquid within the sample space. The method can further comprise applying ultrasound energy to at least one of the liquid within the sample space, the sampling probe, and a sample substrate at least during insertion thereof into the liquid within the sample space and discharging the liquid having the one or more analytes entrained therein into the ionization chamber for ionization therein. In various aspects, the ultrasound energy can be generated by an ultrasonic transmitter coupled to at least one of the sampling probe and the sample substrate, the method further comprising activating the ultrasonic transmitter upon insertion of a sampling probe into the sample space so as to facilitate desorption of one or more analytes adsorbed thereto. For example, in some aspects, the ultrasonic transmitter can be coupled to the sample substrate and can be configured to apply ultrasound waves to the sample substrate upon insertion thereof into the sample space such that the ultrasound waves facilitate desorption into the liquid within the sample space of one or more analytes adsorbed onto a surface of the sample substrate. Without being bound by any particular theory, the ultrasound energy can be configured to facilitate desorption into the liquid of one or more analytes adsorbed onto a surface of the sample substrate via at least one of increasing agitation of the liquid in the sample space and increasing the temperature of the liquid in the sample space. In various aspects, the ultrasound energy can be configured to degas the liquid provided by the pump prior to the liquid being delivered to the ion source.
In various aspects, applying ultrasound energy can comprise directing the ultrasound energy through the liquid toward a liquid-air interface at the open end of the sampling probe, wherein the method can further comprise detecting the reflected ultrasound energy to generate data indicative of a surface profile of the liquid-air interface at the open end of the sampling probe. Based on the surface profile data, the flow rate of the liquid within the sampling probe can be adjusted so as to control the surface profile of the liquid-air interface.
In accordance with various exemplary aspects of the present teachings, a system for analyzing a chemical composition of a specimen is provided, the system comprising a reservoir for storing a liquid and a sampling probe having an open end partially defining a sample space configured to receive the liquid from the reservoir, the liquid within the sample space further configured to receive through the open end one or more analytes of a sample. The system can further comprise a pump for delivering the liquid from the reservoir to an ion source via the sample space, wherein the ion source is configured to discharge the liquid having the one or more analytes entrained therein into an ionization chamber in fluid communication with a sampling orifice of a mass spectrometer. The system can additionally include an ultrasonic transmitter for applying ultrasound energy to at least one of the liquid within the sample space, the sampling probe, and a sample substrate to be inserted into the liquid within the sample space and an ultrasound detector for detecting the ultrasound energy reflected from the liquid-air interface at the open end of the sampling probe so as to generate data indicative of a surface profile of the liquid-air interface. Further, the system can include a controller for generating control signals based on the surface profile data for adjusting the surface profile of the liquid-air interface. In various aspects, the controller can be configured to compare the surface profile data to a reference surface profile and to generate control signals for adjusting the flow rate of liquid within the sampling probe so as to adjust the surface profile of the liquid-air interface in accordance with the reference surface profile, if necessary. By way of example, the control signals generated by the controller can be configured to adjust the flow rate of liquid within the sampling probe by adjusting at least one of the flow rate of liquid provided by the pump and the flow rate of a nebulizer gas that surrounds the discharge end of the ion source so as to adjust the surface profile of the liquid-air interface.
The liquid within the sample space can receive the analytes thereat in a variety of manners. By way of non-limiting example, the sample can comprise a liquid sample containing the one or more analytes, which can be introduced (e.g. by touch, injection, insertion, pipetted, acoustically injected, etc.) into the liquid within the sample space. Alternatively, in some aspects, the sample can comprise a sample substrate (e.g., a solid-phase microextraction (SPME) substrate), which can have one or more analytes adsorbed thereto. In various aspects, the liquid flowing from the reservoir can comprise a desorption solvent such that the analytes are desorbed from the sample substrate when inserted within the desorption solvent within the sample space.
The ultrasound detector can have a variety of configurations, but is generally configured to generate data indicative of the surface profile of the liquid-air interface at the open end of the sampling probe based on ultrasound energy received thereat. In some exemplary aspects, the ultrasonic transmitter and the ultrasound detector can comprise an integrated ultrasonic transducer module. In various aspects, the ultrasonic transmitter and the ultrasound detector can be disposed relative to the liquid air interface and one another so as to reflect and detect, respectively, the level of liquid within the sampling space at the center thereof.
In response to the detected surface profile, the controller can be configured to adjust the surface profile in a variety of manners. By way of example, the controller can be operatively connected to the pump and can be configured to adjust the flow rate of liquid within the sampling probe by adjusting the flow rate of liquid provided to the sample space by the pump. Additionally or alternatively, the system can further comprise a source of nebulizer gas for providing a nebulizing gas flow that surrounds the discharge end of the ion source, with the controller being operatively connected to the source of nebulizer gas so as to control the flow rate thereof. In such aspects, the controller can be configured to adjust the flow rate of liquid within the sampling probe by controlling a flow rate of nebulizing gas provided to the discharge end of the ion source.
The sampling probe can have a variety of configurations, but is generally configured to receive through the open end the sample containing one or more analytes within the liquid (e.g., desorption solvent) within the sample space. In various aspects, the sampling probe can comprise an outer capillary tube extending from a proximal end to a distal end, and an inner capillary tube extending from a proximal end to a distal end and disposed within said outer capillary tube, wherein the distal end of the inner capillary tube is recessed relative to the distal end of the outer capillary tube so as to define the sample space between the distal end of the inner capillary tube, a portion of an inner wall of the outer capillary tube, and the distal end of the outer capillary tube. In some related aspects, the inner and outer capillary tubes can define a solvent conduit and a sampling conduit in fluid communication with one another via the sample space, said solvent conduit extending from an inlet end configured to receive the liquid (e.g., desorption solvent) from the reservoir to an outlet end terminating at the sample space. The sampling conduit can extend from an inlet end commencing at said sample space for receiving from the sample space desorption solvent in which the desorbed analytes are entrained to an outlet end fluidly coupled to the ion source. In certain exemplary aspects, an axial bore of the inner capillary tube can at least partially define the sampling conduit and the space between the inner capillary tube and the outer capillary tube can define the solvent conduit. In some related aspects, the controller can be configured to adjust the flow rate of desorption solvent within the sampling probe so as to maintain the surface profile at a reference surface profile by adjusting at least one the flow rate of desorption solvent within the solvent conduit and the sampling conduit.
Feedback control systems in accordance with various aspects of the present teachings can help provide reliable, reproducible results across multiple samplings. By way of example, in certain aspects, the controller can be configured to maintain the surface profile at a reference surface profile for the serial insertion of a plurality of substrates or serial introduction of a liquid sample. Additionally, in some aspects, the controller can be configured to adjust the surface profile between each insertion of the plurality of substrates. By way of example, the controller can be configured to increase the flow rate of desorption solvent delivered to the sample space during at least a portion of the duration between each insertion of the plurality of substrates such that desorption solvent overflows from the sample space through the open end of the sampling probe (e.g., so as to clean the sampling probe between the serial insertions). Thereafter, the controller can be configured to re-adjust the flow rates such that the surface profile of the liquid-air interface during the addition of the next sample is the same as for the previous sample.
In accordance with various exemplary aspects of the present teachings, a method for analyzing a chemical composition of a specimen is provided, the method comprising providing a flow of liquid to a sampling probe, said sampling probe having an open end partially defining a sample space configured to receive the liquid and further configured to receive through the open end one or more analytes of a sample into the liquid within the sample space. The flow of the liquid having the one or more analytes entrained therein can be directed from the sample space to an ion source configured to discharge the liquid and analytes entrained therein into an ionization chamber in fluid communication with a sampling orifice of a mass spectrometer. The method can further comprise utilizing an ultrasonic transmitter to generate ultrasound energy directed to the liquid-air interface at the open end of the sampling probe and utilizing an ultrasound detector to detect the ultrasound energy reflected from the liquid-air interface so as to generate data indicative of a surface profile of the liquid-air interface at the open end of the sampling probe and based on the surface profile data, adjust the flow rate of the liquid within the sampling probe so as to adjust the surface profile of the liquid-air interface. In various aspects, the method can further comprise comparing the surface profile data with a reference surface profile, wherein adjusting the surface profile of the liquid-air interface can include adjusting the flow rate of liquid within the sampling probe so as to adjust the surface profile at the liquid-air interface in accordance with the reference surface profile. By way of example, the reference surface profile can comprise one of a dome-like liquid-air interface and a vortex-like liquid-air interface.
In certain aspects, the liquid provided by the reservoir can comprise desorption solvent, the method further comprising inserting a first substrate having one or more analytes adsorbed thereto into the desorption solvent within the sample space exhibiting a reference surface profile; removing the first substrate from the desorption solvent; and adjusting the surface profile of the liquid-air interface to the reference surface profile for insertion of a second substrate having one or more analytes adsorbed thereto into the desorption solvent. In some related aspects, the surface profile of the liquid-air interface can be adjusted between the insertion of the first and second substrates by increasing the flow rate of desorption solvent provided to the sampling probe such that desorption solvent overflows from the sample space through the open end of the sampling probe during at least a portion of the duration between insertion of the first and second substrates. Thereafter, the flow rates can then be adjusted (e.g., automatically without human intervention) for insertion of the second substrate.
In various aspects, adjusting the surface profile of the interface based on the surface profile data can comprise maintaining substantially the same volumetric flow rate of liquid provided by the pump while adjusting the flow rate of nebulizer gas surrounding the discharge end of the ion source.
These and other features of the applicant's teachings are set forth herein.
The skilled person in the art will understand that the drawings, described below, are for illustration purposes only. The drawings are not intended to limit the scope of the applicant's teachings in any way.
It will be appreciated that for clarity, the following discussion will explicate various aspects of embodiments of the applicant's teachings, while omitting certain specific details wherever convenient or appropriate to do so. For example, discussion of like or analogous features in alternative embodiments may be somewhat abbreviated. Well-known ideas or concepts may also for brevity not be discussed in any great detail. The skilled person will recognize that some embodiments of the applicant's teachings may not require certain of the specifically described details in every implementation, which are set forth herein only to provide a thorough understanding of the embodiments. Similarly it will be apparent that the described embodiments may be susceptible to alteration or variation according to common general knowledge without departing from the scope of the disclosure. The following detailed description of embodiments is not to be regarded as limiting the scope of the applicant's teachings in any manner.
In accordance with various aspects of the applicant's teachings, exemplary MS-based analytical systems and methods are provided herein in which ultrasound energy can be utilized in association with a sampling interface having an open sampling port to provide improved desorption efficiency, improve the quality of the MS data by degassing of the liquid solvent utilized within the sampling interfaces, and/or provide for feedback control based on data indicative of a surface profile of the liquid-air interface within the interface's sampling port. In some aspects, for example, an ultrasound energy module can be effective to agitate the desorption liquid within the sampling probe and/or increase a temperature thereof so as to increase the efficiency of mass transfer from the sampling substrate. Additionally or alternatively, the ultrasound energy can be effective to remove bubbles from the liquid delivered from the sampling probe to the ion source so as to reduce the presence of aberrations or spikes in the MS data that can be observed when bubbles are discharged into the ionization chamber. Moreover, in various aspects of the methods and systems provided herein, an ultrasonic transmitter and detector (e.g., an ultrasound transducer) can be utilized in a feedback control system so as to automatically monitor and/or detect the surface profile (e.g., shape) of the liquid-air interface (e.g., without human intervention) and adjust the flow rate of the sampling liquid to ensure that experimental conditions remain consistent between serial samplings (e.g., at the time of each sample introduction). In such aspects, for example, ultrasound energy that is reflected from the liquid-air interface can be detected so as to enable the flow rate of a liquid (e.g., a desorption solvent) into and/or out of a sampling probe to be selectively adjusted so as to maintain a desired liquid-air interface within the sampling port and a stable and reproducible analyte flow of consistent dilution to the ion source, thereby increasing the reproducibility and/or accuracy of the MS analysis. In various aspects, the feedback control can additionally or alternatively utilize the detected ultrasound energy so as to provide for the automated adjustment of the surface profile of the liquid-air interface in accordance with a change in the desired set point according to an experimental workflow (e.g., automated adjustment between an interface corresponding to a vortex sampling set point and an overflow cleaning set point between samplings).
The ultrasonic transmitter 95 can have a variety of configurations but is generally configured to apply or propagate ultrasound energy (e.g., ultrasonic waves) into one or more of the sample substrate 20, the sampling probe 30, and the liquid contained within the sample space of the sampling probe 30, depending on implementation. As will be discussed in detail below with reference to
Ultrasonic transmitters 95 suitable for use in accordance with the present teachings can be configured to convert electrical energy into acoustic ultrasonic waves at a wide range of ultrasonic frequencies. By way of non-limiting example, the ultrasonic energy can exhibit a frequency of at least about 16 kHz, though ultrasonic waves of other frequencies can also be utilized in accordance with the present teachings. By way of non-limiting example, the ultrasound transmitter 95 can be a piezoelectric transducer, which includes a piezoelectric crystal that is configured to change size when a voltage is applied (e.g., ferroelectric piezoceramic crystalline materials such as lead zirconate titanate (PZT)). Alternatively, the ultrasonic transmitter 95 can be a capacitive transducer that utilizes electrostatic fields between a conductive diaphragm and a backing plate to generate the ultrasonic wave. Further, a person skilled in the art will appreciate that other ultrasonic transmitters 95 known in the art and modified in accordance with the present teachings can be suitable for use with the present principles as described for example with reference to system 10.
It will be appreciated that the controller 80 can be implemented in a variety of manners in accordance with the present teachings, but generally comprises one or more processors configured to generate control signals for controlling the operations of various elements of the system 10 as otherwise discussed herein. For example, the controller 80 can be configured to generate control signals such that the ultrasonic transmitter 95 generates ultrasound energy substantially continuously or for selected portions of an experimental protocol (e.g., during insertion of the substrate 20 within the sampling probe 30), by way of non-limiting example.
In accordance with certain aspects of the present teachings, the controller can comprise a digital processor executing one or more sequences of instructions contained in memory, which may be read into memory from another computer-readable medium (e.g., a floppy disk, a flexible disk, hard disk, magnetic tape, or any other magnetic medium, a CD-ROM, digital video disc (DVD), a Blu-ray Disc, any other optical medium, a thumb drive, a memory card, a RAM, PROM, and EPROM, a FLASH-EPROM, any other memory chip or cartridge, or any other tangible medium from which a computer can read). Execution of the sequences of instructions contained in memory causes processor to perform the process described herein. Alternatively hard-wired circuitry may be used in place of or in combination with software instructions to implement the present teachings. Thus implementations of the present teachings are not limited to any specific combination of hardware circuitry and software. In various embodiments, the controller 80 can be connected to one or more other computer systems across a network to form a networked system. The network can include a private network or a public network such as the Internet. In the networked system, one or more computer systems can store and serve the data to other computer systems. The one or more computer systems that store and serve the data can be referred to as servers or the cloud, in a cloud computing scenario. The one or more computer systems can include one or more web servers, for example. The other computer systems that send and receive data to and from the servers or the cloud can be referred to as client or cloud devices, for example.
The ion source 60 can have a variety of configurations but is generally configured to generate analytes contained within a liquid (e.g., the desorption solvent) that is received from the sampling probe 30. In the exemplary embodiment depicted in
As shown in
In the depicted embodiment, the ionization chamber 12 can be maintained at an atmospheric pressure, though in some embodiments, the ionization chamber 12 can be evacuated to a pressure lower than atmospheric pressure. The ionization chamber 12, within which analytes desorbed from the substrate 20 can be ionized as the desorption solvent is discharged from the electrospray electrode 64, is separated from a gas curtain chamber 14 by a plate 14a having a curtain plate aperture 14b. As shown, a vacuum chamber 16, which houses the mass analyzer 70, is separated from the curtain chamber 14 by a plate 16a having a vacuum chamber sampling orifice 16b. The curtain chamber 14 and vacuum chamber 16 can be maintained at a selected pressure(s) (e.g., the same or different sub-atmospheric pressures, a pressure lower than the ionization chamber) by evacuation through one or more vacuum pump ports 18.
It will also be appreciated by a person skilled in the art and in light of the teachings herein that the mass analyzer 70 can have a variety of configurations. Generally, the mass analyzer 70 is configured to process (e.g., filter, sort, dissociate, detect, etc.) sample ions generated by the ion source 60. By way of non-limiting example, the mass analyzer 70 can be a triple quadrupole mass spectrometer, or any other mass analyzer known in the art and modified in accordance with the teachings herein. Other non-limiting, exemplary mass spectrometer systems that can be modified in accordance various aspects of the systems, devices, and methods disclosed herein can be found, for example, in an article entitled “Product ion scanning using a Q-q-Qlinear ion trap (Q TRAP®) mass spectrometer,” authored by James W. Hager and J. C. Yves Le Blanc and published in Rapid Communications in Mass Spectrometry (2003; 17: 1056-1064), and U.S. Pat. No. 7,923,681, entitled “Collision Cell for Mass Spectrometer,” which are hereby incorporated by reference in their entireties. Other configurations, including but not limited to those described herein and others known to those skilled in the art, can also be utilized in conjunction with the systems, devices, and methods disclosed herein. For instance other suitable mass spectrometers may include single quadrupole, triple quadrupole, ToF, trap, and hybrid analyzers. It will further be appreciated that any number of additional elements can be included in the system 10 including, for example, an ion mobility spectrometer (e.g., a differential mobility spectrometer) that is disposed between the ionization chamber 12 and the mass analyzer 70 and is configured to separate ions based on their mobility through a drift gas in high- and low-fields rather than their mass-to-charge ratio). Additionally, it will be appreciated that the mass analyzer 70 may comprise a detector that can detect the ions which pass through the analyzer 70 and, for example, may supply a signal indicative of the number of ions per second that are detected.
The sampling probe 30 can have a variety of configurations but generally includes an open end by which the liquid delivered from the reservoir 50 is open to the atmosphere, thus exhibiting a liquid-air interface. The open end can further be configured to receive therethrough a sample containing or suspected of containing one or more analytes. By way of non-limiting example, in some embodiments the sample may comprise a liquid sample that can be introduced (e.g., injected, pipetted, acoustically injected) directly into the liquid present within the sample space. It will likewise be appreciated by those skilled in the art in light of the teachings herein that any liquid (e.g., solvent) suitable for directly receiving a liquid sample, for example, and amenable to the ionization process can be provided by the reservoir 50 in accordance with various aspects of the present teachings. In other embodiments, the sample may comprise a solid sample that may be introduced directly into the liquid present within the sample space for dissolution.
Alternatively, as shown in
With reference now to
It will be appreciated that sampling probes in accordance with the present teachings can also have a variety of configuration and sizes, with the sampling probe 30 of
As shown in
As shown in
As noted above, the sampling probe 30 of
With reference now to
With reference now to
With specific reference now to
In addition to utilizing ultrasound energy to improve desorption and/or degas the liquid being delivered to the ion source (e.g., removing bubbles) as otherwise discussed herein, in some additional or alternative aspects of the present teachings, the ultrasound transmitter 95 can be utilized as part of a feedback control system for controlling the surface profile of the liquid-air interface within the sampling probe's port. In some aspects, for example, the system of
With reference to
With reference specifically to
Depending on the liquid flow rates within the solvent conduit 38 and the sampling conduit 36, the liquid within the sample space 35 may take on a variety of surface configurations or profiles at the open end. Feedback control systems in accordance with various aspects of the present teachings are configured to detect and/or monitor the surface profile (e.g., shape) of the liquid-air interface at the sample space 35 and to adjust the volumetric flow rates through the various channels of the sampling probe 30 and/or the electrospray electrode 44 so as to control the surface profile. Depending on the relationship of the volumetric flow rate into the sampling probe 30 (e.g., via solvent conduit 38, which can be primarily due to action of the pump 43) and the volumetric flow rate of the liquid from the sample space 35 to the ion source 60 (e.g., via the sampling conduit 36, which can be primarily due to the effect of the nebulizer gas), various liquid conditions can be formed in the sampling port. With reference now to
While the specific surface profile generated at the liquid-air interface can be a function of size of the various conduits, liquid temperature, surface tension, and other experimental conditions as noted otherwise herein, the level of the liquid along the central longitudinal axis within the sample space (e.g., relative to the distal end 34b of the inner capillary 34) can generally be increased by increasing the volumetric flow rate of liquid into the sampling probe (e.g., via solvent conduit 38), by decreasing the volumetric flow rate of liquid out of the sampling probe (e.g., via sampling conduit 36), or some combination of the two. By way of example, the balanced condition (e.g., a substantially planar liquid-air interface) can be achieved when the volumetric flow rates are approximately equal. However, when the solvent delivery rate provided by the pump 43 is relatively low compared with the solvent removal rate due to the aspiration force generated by the nebulizer gas, for example, a vortex surface profile can be formed as in
With reference now to
With reference now to
Use of the feedback control system of
In various aspects, the exemplary system 10 of
As discussed otherwise herein, analytes introduced into the sample space (e.g., desorbed from a sample substrate 20 by the desorption solvent provided from the reservoir 50) and entrained within the liquid (e.g., desorption solvent) can then be delivered to the ion source 60 and mass analyzer 70 for ionization and mass spectrometric analysis. After the analytes from the first sample have been transmitted from the sample space 35 (e.g., after removal of a sampling substrate 20), in some aspects, the controller 80 can be configured to effect an increase the volumetric flow rate of liquid from the reservoir 50 to the sample space 35 so as to temporarily overflow liquid through the open end of the sampling probe 30 before another substrate 20 is inserted therein, thereby cleaning residual sample deposited by the withdrawn substrate and/or preventing any airborne material from being transmitted into the sampling conduit 36 in between serial samplings. By way of example, after the first substrate 20 has been removed, the controller 80 can compare the data generated by the ultrasound detector 90 to a second reference surface profile (e.g., a cleaning set point having a surface profile as in
The section headings used herein are for organizational purposes only and are not to be construed as limiting. While the applicant's teachings are described in conjunction with various embodiments, it is not intended that the applicant's teachings be limited to such embodiments. On the contrary, the applicant's teachings encompass various alternatives, modifications, and equivalents, as will be appreciated by those of skill in the art.
Claims
1. A system for analyzing a chemical composition of a specimen, comprising:
- a reservoir for storing a liquid;
- a sampling probe having an open end partially defining a sample space configured to receive liquid from the reservoir, said liquid within the sample space further configured to receive through the open end one or more analytes of a sample;
- a pump for delivering the liquid from the reservoir to an ion source via the sample space, wherein the ion source is configured to discharge the liquid having said one or more analytes entrained therein into an ionization chamber in fluid communication with a sampling orifice of a mass spectrometer;
- an ultrasonic transmitter for applying ultrasound energy the liquid within the sample space;
- an ultrasound detector configured to detect ultrasound energy reflected from a liquid-air interface in the sample space so as to generate data indicative of a surface profile of the liquid-air interface at the open end of the sampling probe; and
- a controller operatively coupled to the ultrasound detector and configured to generate control signals based on the surface profile data for adjusting the surface profile of the liquid-air interface,
- wherein the control signals generated by the controller are configured to adjust the flow rate of liquid within the sampling probe by adjusting at least one of the flow rate of liquid provided by the pump and the flow rate of a nebulizer gas that surrounds the discharge end of the ion source.
2. The system of claim 1, wherein the sample comprises a liquid sample containing said one or more analytes.
3. The system of claim 1, wherein the liquid comprises a desorption solvent and the sample comprises a sample substrate having one or more analytes adsorbed thereto such that at least a portion of said one or more analytes are desorbed therefrom into the desorption solvent within the sample space.
4. The system of claim 1, wherein the ultrasonic transmitter is coupled to the sampling probe so as to apply ultrasound energy to the sampling probe and the liquid therewithin.
5. The system of claim 1, wherein the ultrasound energy is configured to increase agitation of the liquid within the sample space.
6. A system for analyzing a chemical composition of a specimen, comprising:
- a reservoir for storing a liquid;
- a sampling probe having an open end partially defining a sample space configured to receive liquid from the reservoir, said liquid within the sample space further configured to receive through the open end one or more analytes of a sample;
- a pump for delivering the liquid from the reservoir to an ion source via the sample space, wherein the ion source is configured to discharge the liquid having said one or more analytes entrained therein into an ionization chamber in fluid communication with a sampling orifice of a mass spectrometer;
- an ultrasonic transmitter for applying ultrasound energy to the liquid within the sample space;
- wherein the ultrasonic transmitter is configured to degas the liquid provided by the pump prior to the liquid being delivered to the ion source.
7. The system of claim 1, wherein the sampling probe comprises:
- an outer capillary tube extending from a proximal end to a distal end; and
- an inner capillary tube extending from a proximal end to a distal end and disposed within said outer capillary tube, wherein said distal end of the inner capillary tube is recessed relative to the distal end of the outer capillary tube so as to define the sample space between the distal end of the inner capillary tube, a portion of an inner wall of the outer capillary tube, and the distal end of the outer capillary tube,
- wherein said inner and outer capillary tubes define a solvent conduit and a sampling conduit in fluid communication with one another via said sample space, said solvent conduit extending from an inlet end configured to receive solvent from the reservoir to an outlet end terminating at said sample space, and said sampling conduit extending from an inlet end commencing at said sample space for receiving from the sample space desorption solvent in which the desorbed analytes are entrained to an outlet end fluidly coupled to the ion source.
8. A method for chemical analysis, comprising:
- providing a flow of liquid to a sampling probe, said sampling probe having an open end partially defining a sample space configured to receive the liquid and further configured to receive through the open end one or more analytes of a sample into the liquid within the sample space;
- directing a flow of the liquid having the one or more analytes entrained therein from the sample space to an ion source configured to discharge the liquid having the one or more analytes entrained therein into an ionization chamber in fluid communication with a sampling orifice of a mass spectrometer;
- applying ultrasound energy to the liquid within the sample space, wherein the ultrasound energy is configured to degas the liquid provided by the pump prior to the liquid being delivered to the ion source; and
- discharging the liquid having the one or more analytes entrained therein into the ionization chamber for ionization therein.
9. A method for chemical analysis, comprising:
- providing a flow of liquid to a sampling probe, said sampling probe having an open end partially defining a sample space configured to receive the liquid and further configured to receive through the open end one or more analytes of a sample into the liquid within the sample space;
- directing a flow of the liquid having the one or more analytes entrained therein from the sample space to an ion source configured to discharge the liquid having the one or more analytes entrained therein into an ionization chamber in fluid communication with a sampling orifice of a mass spectrometer;
- applying ultrasound energy to the liquid within the sample space;
- wherein applying ultrasound energy comprises directing the ultrasound energy through the liquid toward a liquid-air interface at the open end of the sampling probe, the method further comprising:
- detecting the reflected ultrasound energy to generate data indicative of a surface profile of the liquid-air interface at the open end of the sampling probe; and
- based on the surface profile data, adjusting the flow rate of the liquid within the sampling probe so as to adjust the surface profile of the liquid-air interface.
10. A system for analyzing a chemical composition of a specimen, comprising:
- a reservoir for storing a liquid;
- a sampling probe having an open end partially defining a sample space configured to receive liquid from the reservoir, said liquid within the sample space further configured to receive through the open end one or more analytes of a sample;
- a pump for delivering the liquid from the reservoir to an ion source via the sample space, wherein the ion source is configured to discharge the liquid having said one or more analytes entrained therein into an ionization chamber in fluid communication with a sampling orifice of a mass spectrometer;
- an ultrasonic transmitter for applying ultrasound energy to at least one of the liquid within the sample space, the sampling probe, and a sample substrate to be inserted into the liquid within the sample space
- an ultrasound detector for detecting the ultrasound energy reflected from the liquid-air interface at the open end of the sampling probe so as to generate data indicative of a surface profile of the liquid-air interface; and
- a controller configured to generate control signals based on the surface profile data for adjusting the surface profile of the liquid-air interface.
11. The system of claim 1, wherein the ultrasonic transmitter and the ultrasound detector are integrated within an ultrasonic transducer.
12. The system of claim 1, wherein the ultrasonic transmitter and the ultrasound detector are disposed so as to reflect and detect respectively the level of liquid within the sampling space at the center thereof.
8153964 | April 10, 2012 | Chen |
20120080592 | April 5, 2012 | Wiseman |
20120121464 | May 17, 2012 | Nogami |
20140319335 | October 30, 2014 | Morris |
20170176401 | June 22, 2017 | Bajic |
20170316926 | November 2, 2017 | Arnold |
20180158661 | June 7, 2018 | Eberlin |
2010114976 | October 2010 | WO |
- International Search Report and Written Opinion for PCT/IB2018/059138 dated Mar. 8, 2019.
Type: Grant
Filed: Nov 20, 2018
Date of Patent: May 31, 2022
Patent Publication Number: 20200365382
Assignee: DH Technologies Development Pte. Ltd. (Singapore)
Inventors: Don W Arnold (Livermore, CA), Thomas R. Covey (Richmond Hill), Chang Liu (Richmond Hill)
Primary Examiner: Michael Maskell
Application Number: 16/765,910
International Classification: H01J 49/00 (20060101); H01J 49/04 (20060101); G01B 17/06 (20060101); G01F 23/296 (20220101); G01N 1/14 (20060101); G01N 1/40 (20060101); H01J 49/16 (20060101); H01J 49/42 (20060101);