New lysine derivatives containing an Ne-alkoxy or Ne-alkenoxycarbonyl group, their preparation and their use in cosmetic, pharmaceutical, hygiene or food compositions

- L'Oreal

Lysine derivatives, salts of the derivatives, their optical isomers of D or L configuration, or their mixtures, the derivatives containing an Ne-alkoxy or Ne-alkenoxycarbonyl group and having the formula: 1

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

[0001] The subject of the present invention is new lysine derivatives containing an Ne-alkoxy or Ne-alkenoxycarbonyl group, their preparation and their use, especially as agents which make it possible to facilitate compaction in cosmetic, pharmaceutical, hygiene or food compositions.

[0002] There have been described, in EP-139,481, cosmetic compositions using, as agents for modifying the surface of inorganic compounds, for the purpose of increasing the dispersibility thereof, either an N-monoacylated derivative of a basic amino acid in which the aliphatic acyl group has from 8 to 22 carbon atoms or an N,N-diacylated derivative of a basic amino acid in which the aliphatic acyl groups, which are identical or different, have from 1 to 22 carbon atoms.

[0003] There have also been described, in EP-336,265, cosmetic compositions for hair shaping comprising, as surface-active agents, an N-monoacylated derivative of a basic amino acid in which the aliphatic acyl group has from 8 to 22 carbon atoms.

[0004] The acylated derivatives of the basic amino acids described previously are, however, very difficult and even impossible to compact.

[0005] Now, it is known that certain cosmetic, pharmaceutical and hygiene compositions are presented in the so-called “compact” form. They are anhydrous compositions consisting mainly of solid particles and of a fatty binder (oils or mixture of oils and waxes) and are shaped by compression or by pouring into a container which acts as mould.

[0006] The development of such compositions raises, however, many difficulties because the final product must be sufficiently homogeneous and compact to have a good ability to be removed and, moreover, to avoid fragmentation which may be caused, especially , by impacts.

[0007] It has now been surprisingly and unexpectedly observed that a new family of lysine derivatives containing an Ne-alkoxy or Ne-alkenoxycarbonyl group made it possible not only to satisfy the abovementioned requirements and to facilitate the preparation of such compositions, in contrast to the corresponding Ne-acylated derivatives, but also to confer particularly advantageous spreading, skin-adhesion and light-scattering qualities, as well as a pleasant and smooth feel, on any cosmetic composition containing them.

[0008] The subject of the present invention is therefore lysine derivatives containing an Ne-alkoxy or Ne-alkenoxycarbonyl group of formula: 2

[0009] in which:

[0010] R represents a linear or branched C13-C24 alkyl radical, the C16 radical being branched, or a linear or branched C8-C24 alkenyl radical, and the salts of the said compounds of formula (I) as well as their optical isomers of D or L configuration or their mixtures.

[0011] Mention may be made, among the salts of the compounds of formula (I), of the salts of monovalent inorganic cations such as those of sodium, or of the salts of divalent inorganic cations such as those of zinc or of copper and of the salts of organic cations such as those of aminopropanediol, of trishydroxyaminomethane, of glucamine and of N-methylglucamine.

[0012] Mention may be made, among the compounds of formula (I), of, in particular, Ne-2-hexyldecyloxycarbonyl-L-lysine, Ne-2-decyltetradecyloxycarbonyl-L-lysine and Ne-tetradecyloxycarbonyl-L-lysine.

[0013] The compounds according to the invention are provided in the solid form having a particle size of between 10 nm and 500 &mgr;m and preferably between 0.1 and 25 &mgr;m.

[0014] They have little solubility both in oils and in aqueous solutions whose pH is between 5 and 8.

[0015] They have a high melting point, that is to say greater than 250° C., a high ability to reflect light and excellent adherence to the skin.

[0016] Another subject of the invention is a process for the preparation of the compounds of formula (I).

[0017] This process consists in reacting lysine or one of its salts, of known configuration, in aqueous medium and at basic pH, with a solution of a copper salt, in then reacting the solution of the copper complex thus obtained of formula: 3

[0018] with a compound of formula: 4

[0019] in which:

[0020] R is as defined previously,

[0021] and X is chosen from the group consisting of a chlorine atom, a chloromethyl radical or an imidazolyl radical, the said compound of formula (III) being added without solvent, and

[0022] in treating the copper salt of the Ne-substituted lysine obtained with a decomplexing agent and,

[0023] optionally, in purifying the compound obtained.

[0024] Mention may in particular be made, among the copper salt solutions used in the process according to the invention, of copper sulphate solutions.

[0025] The basic pH of the reaction medium is preferably between 8 and 14.

[0026] According to a preferred embodiment of the process for the preparation of the compounds of formula (I) according to the invention, the decomplexing agent used is an aqueous solution of the disodium salt of ethylenediaminetetraacetic acid.

[0027] Another subject of the present invention is cosmetic, pharmaceutical, hygiene or food compositions comprising a lysine derivative corresponding to the following formula: 5

[0028] in which:

[0029] R′ represents a linear or branched C8-C24 alkyl or alkenyl radical, and the salts of the said compounds of formula (I′) as well as their optical isomers of D or L configuration or their mixtures.

[0030] Mention may especially be made, among the compounds of formula (I′), of Ne-2-ethylhexyloxycarbonyl-L-lysine, Ne-dodecyloxycarbonyl-L-lysine, Ne-hexadecyloxycarbonyl-L-lysine, Ne-decyloxycarbonyl-L-lysine, Ne-2butyloctyloxycarbonyl-L-lysine, Ne-2-hexyldecyloxycarbonyl-L-lysine, Ne-2-decyltetradecyloxycarbonyl-L-lysine and Ne-tetradecyloxycarbonyl-L-lysine.

[0031] Some of the compounds of formula (I′) are known and have been described in U.S. Pat. No. 3,541,135 as intermediates of active compounds in the treatment of allergies and inflammations.

[0032] The proportion of lysine derivative of formula (I′) in the compositions according to the invention is preferably between 0.05% and 80% by weight with respect to the total weight of the composition and in particular between 1% and 30% by weight.

[0033] Of course the lysine derivatives according to the invention can be present in the compositions according to the invention in the free form or in the form of a combination with the substrate particles which they coat as mentioned hereinbelow.

[0034] The compositions according to the invention can be provided in various forms such as dispersions, optionally thickened or gelled lotions, optionally “compacted” powders, milks, creams, sticks or alternatively foams or sprays when they are packaged as aerosols.

[0035] They can especially be oil-in-water or water-in-oil emulsions, vesicular dispersions or alternatively solid preparations.

[0036] The compositions according to the invention can especially be provided in the form of cosmetic make-up compositions such as foundation creams, tinted creams, mascaras, blushers, eye shadows, lipsticks, nail varnishes and exfoliative compositions.

[0037] According to a specific embodiment of the compositions according to the invention, the latter are provided in the so-called “compact” form, the compounds of general formula (I′) facilitating compaction of the ingredients of the said compositions.

[0038] Mention may especially be made, among these so-called compact compositions, of foundation creams, blushers, eye shadows and lipsticks.

[0039] The compositions can also be pharmaceutical or hygiene compositions such as toothpastes, powders for the body or for babies and antiperspirant powders.

[0040] In addition to the compounds of formula (I′), the compositions according to the invention can comprise at least one additive chosen from the group consisting of surface-active agents, fatty substances, organic solvents, silicones, thickeners, emollients, sunscreening agents, treating agents, anti-foaming agents, moisturizing agents, fragrances, preservatives, anti-oxidizing agents, sequestrants, flavouring agents, basifying or acidifying agents, fillers and inorganic or organic powders.

[0041] Mention may be made, among the surface-active agents which can be used in the compositions according to the invention which are provided in the emulsion form, of conventional surface-active agents whether they are anionic, cationic, non-ionic or amphoteric in nature or of a mixture of the said surface-active agents.

[0042] Mention may be made, among the fatty substances which-can be used in the compositions according to the invention, of oils, waxes, fatty acids, fatty alcohols or a mixture of the said fatty substances.

[0043] The oils can be of animal, plant, inorganic or synthetic origin. Mention may in particular be made of hydrogenated palm oil, hydrogenated castor oil, liquid paraffin and purcellin oil.

[0044] The waxes can be of animal, plant, inorganic or synthetic origin. Mention may in particular be made of beeswax, montan wax, carnauba wax, candelilla wax, sugar cane wax, Japan wax, ozocerite, microcrystalline waxes, paraffin wax, lanolin wax, hydrogenated lanolin wax and acetylated lanolin wax.

[0045] Mention may especially be made, among the fillers which can be used in the compositions according to the invention, of optionally coloured insoluble fillers such as pigments, for example metal oxides such as titanium, zinc, iron, manganese, cerium and/or zirconium oxides, and their nanopigments, or nylon, polyethylene, mica or talc powders.

[0046] Another subject of the present invention is the use of the lysine derivatives of formula (I′) as substances for coating substrate particles which make it possible to confer better properties on the said particles and in particular to increase the compressibility thereof and to improve the feel of the cosmetic compositions containing them.

[0047] Mention may especially be made, among the particles which can thus be coated, of pigments and of particulate fillers such as mentioned hereinabove and of microspheres such as the hollow vinylidene chloride/acrylonitrile copolymer microspheres marketed under the names of “Expancel 551 DE 20” and “Expancel 551 DE” by the Company Casco Nobel.

[0048] Examples of the preparation of the lysine derivatives containing an Ne-alkoxy or Ne-alkenoxycarbonyl group, and of various compositions containing them, will now be given by way of illustration.

PREPARATION EXAMPLES EXAMPLE 1: Preparation of Ne-dodecyloxycarbonyl-L-lysine

[0049] 15 g (82.1 mmol) of L-lysine monohydrochloride are dissolved, at room temperature, in 66 ml of a 10% aqueous sodium hydroxide solution in a 250 ml three-necked flask equipped with a thermometer and a 50 ml dropping funnel.

[0050] 10.2 g (41.06 mmol) of copper sulphate pentahydrate, dissolved beforehand in 30 ml of water, are then added. After homogenization, the reaction medium is cooled to a temperature of 5° C.

[0051] 8.2 g (82.1 mmol) of sodium hydrogencarbonate are then added and then 19.3 g (82.1 mmol) of dodecyl chloroformate are added dropwise. After leaving overnight at room temperature, the reaction medium is filtered and the blue precipitate thus obtained is washed with water and then dried over phosphorus pentoxide. The crude product, in the blue copper complex form, is then treated with a 10% aqueous solution of the dihydrated disodium salt of ethylenediaminetetraacetic acid (120 mmol) at reflux for four hours and the mixture is then cooled, the precipitate filtered off, washed with water and with acetone and then dried.

[0052] This treatment is then repeated until a white product is obtained.

[0053] There are thus obtained, with a yield of 74%, 21.8 g of Ne-dodecyloxycarbonyl-L-lysine, existing in the form of a white powder.

[0054] Analyses: Melting point: >260° C. (Kofler) Mass spectrum: (TSQ 70 CI-DCI): m/Z: 359(M+H), 315(M-CO2+H)+, 169(C12H25+) The NMR spectra are recorded on a Bruker WM 250 1H NMR (CD3COOD): 4.12 ppm (3H, m, CH2-12 and CH-18); 3.22 ppm (2H, t, CH2-14); 1.26 to 1.67 ppm (26H, m, CH2-2 to 11 and 15 to 17); 0.95 ppm (3H, t, CH3-1) Elemental analysis C19H38N2O4; MW =358.526 1 C % H % N % O % Calculated 63.65 10.68 7.81 17.85 Found 63.43 10.65 8.05 17.88

[0055] Presence of copper: 695 ppm Particle size measured using a Coulter counter TA II: Mean size (in number)=2.23 &mgr;m Standard deviation=1.36 &mgr;m.

EXAMPLE 2: Preparation of Ne-hexadecyloxycarbonyl-L-lysine

[0056] According to the same procedure as described in Example 1, 29.1 g of Ne-hexadecyloxycarbonyl-L-lysine (Yield 85.5%), existing in the form of a white powder, are obtained by using 25 g (82.1 mmol) of hexadecyl chloroformate.

[0057] Analyses: Melting point: >260° C (Kofler) Mass spectrum: (TSQ 70 CI-DCI): m/Z: 415(MH), 367.2, 279.1, 225.1 Elemental analysis C23H46N2O4; MW=414.634 2 C % H % N % O % Calculated 66.56 11.09 6.75 15.43 Found 66.70 11.07 6.58 15.18

[0058] Presence of copper: 0.45% Particle size measured using a Coulter counter TA II: Mean size (in number)=4.58 &mgr;m Standard deviation=5.62 &mgr;m.

EXAMPLE 3: Preparation of Ne-2-ethylhexyloxycarbonyl-L-lysine

[0059] According to the same procedure as described in Example 1, 8.4 g of Ne-2-ethylhexyloxycarbonyl-L-lysine (Yield 34%), existing in the form of a white powder, are obtained by using 14.8 g (82.1 mmol) of 2-ethylhexyl chloroformate.

[0060] Analyses: Melting point: >260° C (Kofler) The NMR spectra are recorded on a Bruker WM 250 1H NMR (CD3COOD): 4.07 to 4.15 ppm (3H, t+m, CH2-8 and CH-14; 3.23 ppm (2H, t, CH2-10); 1.98 to 2.1 ppm (2H, m, CH2-13); 1.38 to 1.61 ppm (13H, m, CH2-2 to 4 and 6, 11, 12 and CH-5); 0.97 ppm (6H, 2t, CH3-1 and 7) Elemental analysis C15H30N2O4; MW =302.417 3 C % H % N % O % Calculated 59.58 10.00 9.26 21.16 Found 58.83 10.06 9.13 21.65

[0061] Presence of copper: 100 ppm Particle size measured using a Coulter counter TA II: Mean size (in number): 2.57 &mgr;m Standard deviation =1.86 &mgr;m.

EXAMPLE 4 : Ne-Decyloxycarbonyl-L-lysine

[0062] According to the same procedure as described in Example 1, Ne-decyloxycarbonyl-L-lysine, existing in the form of a white powder, is obtained by using decyl chloroformate as alkyl chloroformate.

[0063] Analyses: Melting point: 244.9° C (DSC Mettler) Mass spectrum: (SSQ 710 CI-DI): m/Z: 331 (MH)+ The NMR spectra are recorded on a Bruker AMXS 1H NMR (CD3COOD): 4.17 ppm (2H, t, CH2-10); 4.10 ppm (1H, m, CH-16); 3.25 ppm (2H, t, CH2-12); 2.06 ppm (2H, m, CH2-15); 1.70 ppm (2H, m, CH2-9); 1.64 ppm (2H, m, CH2-13); 1.40 ppm (16H, m, CH2-2 to 8 and 14); 0.970 ppm (3H, t, CH3-1). Elemental analysis C17H34N2O4; MW =330.5 4 C % H % N % O % Calculated 61.72 10.29 8.47 19.36 Found 61.97 10.50 8.41 19.43

[0064] Presence of copper: 340 ppm

[0065] Particle size measured by light scattering using a Leeds & Worthrup model Microtrac X100 at 0.4% in a water/ethanol (1/1) mixture: Mean size (in number): 0.69 &mgr;m.

EXAMPLE 5 : Ne-2-Butyloctyloxycarbonyl-L-lysine

[0066] According to the same procedure as described in Example 1, Ne-2-butyloctyloxycarbonyl-L-lysine, existing in the form of a white powder, is obtained by using 2-butyloctyl chloroformate as alkyl chloroformate.

[0067] Analyses: Melting point: ≧260° C (Baukofler) Mass spectrum: (SSQ 710 CI-DI): m/Z: 359 (ME)+ The NMR spectra are recorded on a Bruker AMX 500 1H NMR (d6-DMSO+CD3COOD): 3.81 ppm (2H, d, CH2-12); 3.52 ppm (1H, dd, CH-18); 2.94 ppm (2H, t, CH2-14); 1.66 to 1.77 ppm (2H, 2m, CH2-17); 1.51 ppm (1H, m, CH-7); 1.21 to 1.40 (20H, m, CH2-2 to 6, 8 to 10 and 15, 16); 0.82 ppm (6H, 2t, CH3-1 and 11). Elemental analysis C19H38N2O4; MW =358.526 5 C % H % N % O % Calculated 63.65 10.68 7.81 17.85 Found 63.78 10.69 7.75 18.14

[0068] Presence of copper: 60 ppm

[0069] Particle size measured by light scattering using a Leeds & Worthrup model Microtrac X100 at 0.4% in a water/ethanol (1/1) mixture: Mean size (in number): 1.66 &mgr;m.

EXAMPLE 6 : Zinc Ne-dodecyloxycarbonyl-L-lysinate

[0070] 5 g (13.9 mmol) of Ne-dodecyloxycarbonyl-L-lysine obtained in Example 1 are dissolved at 70° C. in 5.6 ml of a 10% aqueous sodium hydroxide solution and 50 ml of water in a 250 ml beaker.

[0071] 2 g of zinc sulphate heptahydrate, dissolved beforehand in 10 ml of water, are then added dropwise.

[0072] The reaction mixture is filtered and the white precipitate thus obtained is washed with water and then dried.

[0073] There are thus obtained, with a yield of 96%, 5.2 g of zinc Ne-dodecyloxycarbonyl-L-lysinate, existing in the form of a white powder.

[0074] Analyses: Melting point: >260 C. (Baukofler) Elemental analysis: 2C19H37N2O4—Zn; MW=780.405 6 C % H % N % O % Zn % Calculated 58.49 9.56 7.18 16.4  8.38 % Calc. (+ 1.2 mol H2O) 56.85 9.52 6.98 18.35 8.15 Found 56.88 9.25 7.09 18.91 8.00

[0075] Particle size measured by light scattering using a Leeds & Worthrup model Microtrac X 100 at 0.4% in a water/ethanol (1/1) mixture: Mean size (in number): 0.85 &mgr;m.

COMPOSITION EXAMPLES EXAMPLE I: Compact powder

[0076] Phases A and B are prepared separately by mixing the following ingredients: 7 Phase A: Talc 36.7 g Bismuth oxychloride 10 g Zinc stearate 4 g N′-dodecyloxycarbonyl-L-lysine 20 g Nylon 12 powder marketed under the name of 20 g “Orgasol 2082 D Nat Extra Cos” by the Company Atochem Fragrance 1.6 g Hollow microspheres marketed under the name 0.1 g of “Expancel 551 DE 20” by the Company Casco Nobel Yellow iron oxide marketed under the name of 0.6 g “Sicomet Yellow 10” by the Company BASF Mixture of brown iron oxide and of yellow 0.8 g iron oxide marketed under the name of “Sicomet Brown ZP 3569” by the Company BASF Black iron oxide marketed under the name 0.2 g of “Sicomet Black 85” by the Company BASF Phase B: Liquid paraffin 6 g

[0077] All the ingredients of Phase A are gently ground for 5 minutes and then Phase B is added. The mixture is then ground gently for 2 minutes and then vigorously for 3 minutes.

[0078] The composition is then sieved using a 0.160 mm sieve and the preparation is divided up into small dishes and then compacted at a pressure of 60 bar.

[0079] The compact powder thus obtained has a satisfactory hardness which is highly resistant to impacts.

[0080] It disintegrates easily and is readily spread on the skins showing a highly satisfactory adherence.

EXAMPLE II: Lipsticks

[0081] 8 The following ingredients are mixed: Jojoba oil 11.65 g Sesame oil 11.31 g Di-tert-butyl-4-hydroxytoluene marketed  0.07 g under-the name of “Antracine 8” by the Company Jan Dekker Stabilized isopropyl lanolate marketed 12.48 g under the name of “Lanesta SLPV” by the Company Westbrook 2-Ethylhexyl glyceryl behenate marketed 11.31 g under the name of “Mexanyl GQ” by the Company Chimex Polybutylene marketed under the name of 12.48 g “Indopol H 300” by the Company Amoco Chemical

[0082] The mixture is heated on a water bath for one hour at a temperature between 60 and 70° C and the mixture of the following ingredients is then added: 9 Calcium lake of Lithol Red B on colophony 2.1 g marketed under the name of “DC Red 7 WOO5” by the Company Wackherr Aluminium lake of Brilliant Yellow FCF on 7.32 g alumina marketed under the name of “FDC Yellow 6 Al Lake BC - 6508” by the Company Clark Color Yellow iron oxide 0.2 g Mixture of brown iron oxide and of yellow iron 1.35 g oxide marketed under the name of “Sicomet Brown ZP 3569” by the Company BASF Unprocessed rutile titanium oxide marketed 0.649 g under the name of “Hombitan R 301” by the Company Sachtleben

[0083] The mixture thus obtained is ground using a Discontimill grinder and then the mixture of the following ingredients is added: 10 Beeswax  3.18 g Polyethylene wax marketed under the name 12.74 g of “Polywax 500” by the Company Bareco Oxypropylenated lanolin wax marketed under 12.86 g the name of “Propoxyol 1695” by the Company Henkel

[0084] After heating the mixture for one hour at 100° C., a homogeneous mixture is obtained to which 0.3 g of fragrance is added. When the temperature of the mixture has come down again to approximately 60° C., 2 g of Ne-dodecyloxycarbonyl-L-lysine are added and the mixture is then poured into moulds.

[0085] The lipsticks thus obtained are simultaneously homogeneous, compact and have good resistance to impacts.

[0086] They are readily applied to the lips, are smooth and have good hold.

EXAMPLE III: Make-up removal cream

[0087] The following ingredients are mixed: 11 Sorbitan monostearate marketed under the name 6 g of “Span 60” by the Company ICI Surfactants Polyglycerolated oleyl alcohol marketed 4 g under the name of “Chimexane NB” by the Company Chimex Allantoin 0.2 g D-Panthenol 0.8 g Water 78.98 g

[0088] After heating the mixture at 80° C., 10 g of Ne-dodecyloxycarbonyl-L-lysine are added with stirring using a Moritz stirrer and the mixture is then homogenized.

[0089] When the temperature of the mixture has come down again to approximately 40° C., 0.02 g of preservative, marketed under the name of “Kathon CG” by the Company Rohm-Haas, is added.

[0090] The cream thus obtained is readily applied to the skin and is very smooth.

EXAMPLE IV: Lipsticks

[0091] Lipsticks are prepared, according to the same procedure as described in Example II, from the following ingredients: 12 Jojoba oil 11.65 g Sesame oil 11.31 g Di-tert-butyl-4-hydroxytoluene marketed 0.07 g under the name of “Antracine 8” by the Company Jan Dekker Stabilized isopropyl lanolate marketed 12.48 g under the name of “Lanesta SLPV” by the Company Westbrook 2-Ethylhexyl glyceryl behenate marketed 11.31 g under the name of “Mexanyl GQ” by the Company Chimex Polybutylene marketed under the name of 12.48 g “Indopol H 300” by the Company Amoco Chemical Calcium lake of Lithol Red B on colophony 2.1 g marketed under the name of “DC Red 7 WOO5” by the Company Wackherr Aluminium lake of Brilliant Yellow FCF on 7.32 g alumina marketed under the name of “FDC Yellow 6 Al Lake BC - 6508” by the Company Clark Color Yellow iron oxide 0.2 g Mixture of brown iron oxide and of yellow iron 1.35 g oxide marketed under the name of “Sicomet Brown ZP 3569” by the Company BASE Unprocessed rutile titanium oxide marketed 0.649 g under the name of “Hombitan R 301” by the Company Sachtleben Beeswax 3.18 g Polyethylene wax marketed under the name 12.74 g of “Polywax 500” by the Company Bareco Oxypropylenated lanolin wax marketed under 12.86 g the name of “Propoxyol 1695” by the Company Henkel Ne-2-Butyloctyloxycarbonyl-L-lysine 2.0 g

[0092] The lipsticks thus obtained are simultaneously homogeneous, compact and have good resistance to impacts.

[0093] They are readily applied to the lips, are smooth and have good hold.

EXAMPLE V: Lipsticks

[0094] Lipsticks are prepared, according to the same procedure as described in Example II, from the following ingredients: 13 Jojoba oil 11.65 g Sesame oil 11.31 g Di-tert-butyl-4-hydroxytoluene marketed under the name of “Antracine 8” by the Company Jan Dekker 0.07 g Stabilized isopropyl lanolate marketed under the name of “Lanesta SLPV” by the Company Westbrook 12.48 g 2-Ethylhexyl glyceryl behenate marketed under the name of “Mexanyl GQ” by the Company Chimex 11.31 g Polybutylene marketed under the name of “Indopol H 300” by the Company Amoco Chemical 12.48 g Calcium lake of Lithol Red B on colophony marketed under the name of “DC Red 7 WOO5” by the Company Wackherr 2.1 g Aluminium lake of Brilliant Yellow FCF on alumina marketed under the name of “FDC Yellow 6 A1 Lake BC - 6508” by the Company Clark Color 7.32 g Yellow iron oxide 0.2 g Mixture of brown iron oxide and of yellow iron oxide marketed under the name of “Sicomet Brown ZP 3569” by the Company BASF 1.35 g Unprocessed rutile titanium oxide marketed under the name of “Hombitan R 301” by the Company Sachtleben 0.649 g Beeswax 3.18 g Polyethylene wax marketed under the name of “Polywax 500” by the Company Bareco 12.74 g Oxypropylenated lanolin wax marketed under the name of “Propoxyol 1695” by the Company Henkel 12.86 g Zinc N′-dodecyloxycarbonyl-L-lysinate 2.0 g

[0095] The lipsticks thus obtained are simultaneously homogeneous, compact and have good resistance to impacts.

[0096] They are readily applied to the lips, are smooth. and have good hold.

Claims

1. Lysine derivatives containing an Ne-alkoxy or Ne-alkenoxycarbonyl group of formula:

6
in which:
R represents a linear or branched C13-C24, alkyl radical, the C16 radical being branched, or a linear or branched C8-C24 alkenyl radical, and the salts of the said compounds of formula (I) as well as their optical isomers of D or L configuration or their mixtures.

2. Lysine derivatives according to

claim 1, characterized in that the said salts are salts of inorganic or organic cations.

3. Lysine derivatives according to either of claims 1 and 2, characterized in that they are chosen from the group consisting of Ne-2-hexyldecyloxycarbonyl-L-lysine, Ne-2-decyltetradecyloxycarbonyl-L-lysine and Ne-tetradecyloxycarbonyl-L-lysine.

4. Lysine derivatives according to any one of the preceding claims, characterized in that the said derivatives have a melting point greater than 250° C. and have a particle size of between 10 nm and 500 &mgr;m and preferably between 0.1 and 25 &mgr;m.

5. Process for the preparation of the lysine derivatives of formula (I) as defined according to any one of the preceding claims, characterized in that it consists in reacting lysine or one of its salts, of known configuration, in aqueous medium and at basic pH, with a solution of a copper salt, in then reacting the solution of the copper complex thus obtained, of formula:

7
with a compound of formula:
8
in which:
R is as defined according to
claim 1,
and X is chosen from the group consisting of a chlorine atom, a chloromethyl radical and an imidazolyl radical, the said compound of formula (III) being added without solvent, and
in treating the copper salt of the Ne-substituted lysine thus obtained with a decomplexing agent and, optionally, in purifying the compound obtained.

6. Preparation process according to

claim 5, characterized in that the said copper salt solution is a copper sulphate solution.

7. Preparation process according to either of claims 5 and 6, characterized in that the decomplexing agent is an aqueous solution of the disodium salt of ethylenediaminetetraacetic acid.

8. Cosmetic, pharmaceutical, hygiene or food composition, characterized in that it contains a lysine derivative corresponding to the following formula:

9
in which:
R represents a linear or branched C8-C24 alkyl or alkenyl radical, and the salts of the said compounds of formula (I′) as well as their optical isomers of D or L configuration or their mixtures.

9. Composition according to

claim 8, characterized in that the lysine derivative of formula (I′) is chosen from the group consisting of Ne-2-ethylhexyloxycarbonyl-L-lysine, Ne-dodecyloxycarbonyl-L-lysine, Ne-hexadecyloxycarbonyl-L-lysine, Ne-decyloxycarbonyl-L-lysine, Ne-2-butyloctyloxycarbonyl-L-lysine, Ne-2-hexyldecyloxycarbonyl-L-lysine, Ne-2-decyltetradecyloxycarbonyl-L-lysine and Ne-tetradecyloxycarbonyl-L-lysine.

10. Composition according to

claim 8 or
9, characterized in that the said lysine derivative is present in a proportion of between 0.05% and 80% by weight with respect to the total weight of the composition.

11. Composition according to any one of

claims 8 to
10, characterized in that the said lysine derivative is present in a proportion of between 1% and 30% by weight with respect to the total weight of the composition.

12. Composition according to any one of

claims 8 to
11, characterized in that it additionally contains at least one additive chosen from the group consisting of surface-active agents, fatty substances, organic solvents, silicones, thickeners, emollients, sunscreening agents, treating agents, anti-foaming agents, moisturizing agents, fragrances, preservatives, anti-oxidizing agents, sequestrants, flavouring agents, basifying or acidifying agents, fillers and inorganic or organic powders.

13. Use of a lysine derivative corresponding to the formula (I′) according to claims 8 and 9 as substance for coating substrate particles.

14. Use of a lysine derivative according to

claim 13, characterized in that the substrate particles are chosen from optionally coloured insoluble fillers.

15. Use of a lysine derivative according to

claim 14, characterized in that the said fillers are chosen from metal oxides or zinc, iron, titanium, manganese, cerium and/or zirconium, and their nanopigments, or nylon, polyethylene, mica or talc powders.
Patent History
Publication number: 20010055620
Type: Application
Filed: Dec 18, 2000
Publication Date: Dec 27, 2001
Applicant: L'Oreal
Inventors: Michel Philippe (Wissous), Thierry Bordier (Livry Gargan)
Application Number: 09737759