Methods of making microelectronic assemblies
A method of making a microelectronic assembly includes juxtaposing a first element having conductive leads thereon with a second element having contacts thereon, and wire bonding the conductive leads on the first element to the contacts on the second element so that elongated bonding wires extend between the conductive leads and the contacts. After the wire bonding step, the first and second elements are moved through a preselected displacement relative to one another so as to deform the bonding wires.
Latest Tessera, Inc. Patents:
- Method and structure for forming dielectric isolated FinFET with improved source/drain epitaxy
- Homogeneous densification of fill layers for controlled reveal of vertical fins
- Nanosheet field effect transistors with partial inside spacers
- Selective gas etching for self-aligned pattern transfer
- Hybrid-channel nano-sheet FETS
The present application is a divisional of U.S. patent application Ser. No. 09/766,814, filed Jan. 22, 2001, now allowed, which is a continuation-in-part of U.S. patent application Ser. No. 09/520,320, filed Mar. 7, 2000, now U.S. Pat. No. 6,486,003, which in turn is a continuation of U.S. patent application Ser. No. 08/988,097 filed Dec. 10, 1997, now abandoned, which claims the benefit of U.S. Provisional Application 60/032,870 filed Dec. 13, 1996. The present application is also a continuation-in-part of U.S. patent application Ser. No. 09/271,688, filed Mar. 18, 1999, which in turn claims benefit of U.S. Provisional Application Ser. No. 60/032,870 filed Dec. 13, 1996. The Ser. No. 09/271,688 application is also a continuation-in-part of U.S. patent application Ser. No. 09/138,858 filed Aug. 24, 1998, now U.S. Pat. No. 6,104,087, which in turn is a divisional of U.S. patent application Ser. No. 08/440,665, filed May 15, 1995, now U.S. Pat. No. 5,801,441, which in turn is a divisional of U.S. patent application Ser. No. 08/271,768, filed Jul. 7, 1994, now U.S. Pat. No. 5,518,964. The Ser. No. 09/271,688 application is also a continuation-in-part of U.S. patent application Ser. No. 08/712,855, filed Sep. 12, 1996, now U.S. Pat. No. 6,191,368, which application claims benefit of U.S. Provisional Patent Application 60/003,619, filed Sep. 12, 1995. The Ser. No. 09/271,688 application is also a continuation-in-part of U.S. patent application Ser. No. 09/057,125, filed Apr. 8, 1998, now U.S. Pat. No. 5,959,354, which in turn is a divisional of U.S. patent application Ser. No. 08/678,808, filed Jul. 12, 1996, now U.S. Pat. No. 5,830,782. The disclosures of all of said applications and patents are hereby incorporated by reference herein.
BACKGROUND OF THE INVENTIONThe present invention generally relates to microelectronic assemblies, and more specifically to components that facilitate connections between a microelectronic element such as a semiconductor chip, and an external circuit element such as a printed circuit board.
Connection components are typically used in combination with microelectronic elements such as semiconductor chips to facilitate electrical interconnections between semiconductor chips and external circuit elements. The reliability of the entire circuit typically depends upon the electrical connections between the chip, the connection component and the external circuit element.
Various attempts have been made to produce reliable connections between microelectronic elements such as semiconductor chips and external circuit elements. For example, certain preferred embodiments of commonly assigned U.S. Pat. No. 5,148,265, the disclosure of which is hereby incorporated by reference herein, disclose improved methods for connecting semiconductor chips to circuit elements. According to certain embodiments discussed in the '265 patent, a semiconductor chip is connected to a corresponding substrate through a connection component including a dielectric material. The semiconductor chip has a plurality of peripheral contacts positioned in a peripheral area of a front surface thereof and the connection component is formed with a plurality of connecting terminals, each of which is connected to a bonding terminal adjacent the periphery of the connection component. The connection component is supported by a compliant layer. The peripheral contacts of the semiconductor chip are connected to the terminals of the connection component by bonding a plurality of leads to the chip. In one embodiment, the lead-bonding operation uses wires which are bonded to bonding terminals on the periphery of the connection component and to the contacts of the chip. During a wire bonding operation, when downwardly directed forces are applied to the peripheral region of the connection component containing the bonding terminals, this peripheral regions flexes downwardly. In some instances, it has been determined that downward movement of the peripheral region of the connection component may impede the bonding of the wires and the bonding terminals.
Certain preferred embodiments of commonly assigned U.S. patent application Ser. No. 08/709,127, the disclosure of which is hereby incorporated by reference herein, disclose a structure for compliantly interconnecting semiconductor chips and supporting substrates while substantially obviating problems associated with thermal cycling. In one preferred embodiment, the semiconductor chip package includes a sheet-like substrate having one or more apertures extending from a first surface to a second surface of the substrate and conductive terminals which are contacted from the second surface of the substrate. The substrate further has conductive leads electrically connected to and extending from each terminal and across the one or more apertures. Each lead is connected to a bond pad on the opposite side of the aperture so that each lead has an expansion section within the aperture which is laterally curved with respect to the plane of the substrate. In certain preferred embodiments, the expansion sections laterally curve at least twice in opposite directions and in one particular embodiment create substantially “S” shaped lead portions. This structure allows the package to compensate for coefficient of thermal expansion (“CTE”) mismatch problems by allowing flexing and bending of the expansion sections of the leads within the one of more apertures. The expansion sections of the leads are typically encapsulated with a compliant encapsulant to provided added support for their bending and flexing motion during thermal cycling.
Commonly assigned U.S. patent application Ser. No. 08/516,645, filed Aug. 18, 1995, the disclosure of which is hereby incorporated by reference herein, discloses a microelectronic assembly including a connection component having oppositely facing first and second surfaces, a connecting terminal region and a bonding terminal region. The connection component has connecting terminals on the second surface in the connecting terminal region and has bonding terminals in the bonding terminal region. The assembly also includes a microelectronic element such as a semiconductor chip or other element having a front surface and having contacts on the front surface. The connection component overlies the front surface of the semiconductor chip with the second surface of the connection component facing upwardly away from the chip and with the first surface facing downwardly toward the chip. The connecting terminals are movable relative to the chip in vertical directions, whereas the bonding terminals are supported against such vertical movement. The connection component preferably comprises a thin, flexible layer, and a compliant layer disposed between the flexible layer and the chip for movably supporting the connecting terminal region. The assembly according to this aspect of the invention desirably also includes a reinforcing structure for reinforcing the bonding terminal region of the flexible layer against vertical movement towards the semiconductor chip. Subassemblies according to this aspect of the invention can be subjected to a bonding operation, such as a wire bonding operation, in which flexible conductors such as bonding wires are connected between the bonding terminals and the contacts on the chip. Because the bonding terminal region is reinforced, the bonding operation can be conducted efficiently. However, the finished assembly still provides the benefits associated with a compliantly mounted interposer, including testability and compensation for thermal effects during operation.
In certain preferred embodiments of commonly assigned U.S. patent application Ser. No. 09/520,320 filed Mar. 7, 2000, the disclosure which is hereby incorporated by reference herein, disclosed a method of making a microelectronic package including an expandable structure. The method includes providing first and second microelectronic elements having electrically conductive parts, and providing an expandable structure between the microelectronic elements. The electrically conductive parts of the first and second microelectronic elements are then connected together so that they microelectronic elements are electrically interconnected. The expandable structure is then expanded after the connection step so that the microelectronic elements move away from one another. The expandable structure is substantially rigged before the expanding step and substantially compliant after the expanding step. During the expanding step, the expandable structure remains in contact with the microelectronic elements and the microelectronic elements remain electrically interconnected. Thus, the '320 patent application allows or provides a rigged structure during bonding of electrically conductive parts, whereby the rigged structure maybe transformed into a compliant structure after the bonding steps have been completed.
In spite of the improved methods described above for connecting a semiconductor chip and an external circuit element, further improvements would be desirable.
SUMMARY OF THE INVENTIONIn accordance with certain preferred embodiments of the present invention, a method of making a microelectronic assembly includes juxtaposing a first microelectronic element having conductive leads thereon with a second microelectronic element having contacts thereon. In certain preferred embodiments, the first microelectronic element includes a dielectric substrate having top and bottom surfaces, the conductive leads being exposed to the top surface of the dielectric substrate, whereby the juxtaposing step includes juxtaposing the bottom surface of the dielectric substrate with the second microelectronic element. The dielectric element preferably has one or more apertures therein, the apertures being substantially aligned with the contacts of the second element during the juxtaposing step. The second element may include one or more semiconductor chips, or may include a plurality of semiconductor chips. The method also preferably includes the step of wire bonding the conductive leads on the first element to the contacts on the second element so that elongated bonding wires extend between the conductive leads and the contacts. The wire bonding step may include extending the bonding wires between the conductive leads and the contacts and through the one or more apertures in the dielectric substrate.
After the wire bonding step, the first and second elements are preferably moved through a pre-selected displacement relative to one another so as to deform the bonding wires. A flowable dielectric material such as curable liquid encapsulant, may be introduced between the first and second elements and around the bonding wires during or after the moving step. The flowable material may be cured such as by using heat or light so as to form an encapsulant layer between the first and second microelectronic elements and around at least a portion of the bonding wires. In certain preferred embodiments, the step of introducing a flowable material may include introducing the flowable material under pressure between the first and second elements. The flowable material may be introduced during the moving step so that the first and second elements move away from one another at least partially under the influence of the pressure of the flowable material. The cured flowable material preferably provides a compliant encapsulant layer that enables the first and second microelectronic elements and electrically conductive parts to move during thermal cycling.
The dielectric support preferably has one or more apertures or bond windows therein, the apertures being positioned in substantial alignment with the contacts of the second element during the juxtaposing step. The wire bonding step is desirably preformed so that the bonding wires extend or are extendable through the one or more apertures. Prior to introducing the flowable dielectric material, the one or more apertures may be sealed, such as by using one or more cover layers. In certain preferred embodiments, the step of sealing the one or more apertures may include applying a sealing sheet on the top surface of the dielectric support so as to close the apertures. The second element may be a semiconductor wafer including a plurality of semiconductor chips.
The second element may also include a plurality of semiconductor chips attached to a supporting substrate, whereby the supporting substrate may be severed for separating the semiconductor chips from one another after the wire bonding step. The method may also include severing the first microelectronic element and separating the chips from one another to form a plurality of individual packages, whereby each package includes at least one of the chips and a portion of the first microelectronic element.
The wire bonding step may be performed so that prior to the moving step, the bonding wires includes looped portions projecting upwardly from the top surface of the dielectric support, whereby the step of applying a sealing sheet may include forming the sealing sheet so that portions of the sealing sheet remote from the looped portions of the bonding wires lie against the top surface of the dielectric support whereas other portions of the sealing sheet extend over the looped portions of the bonding wires. The step of wire bonding may be performed so that prior to the moving step, the bonding wires project in a plane substantially parallel to the top surface from the bonding terminal to the apertures, the bonding wires being curved in horizontal directions. The step of sealing the apertures may also include engaging a mold plate with the top surface of the dielectric sheet.
In still other embodiments, the step of wire bonding may be performed so that prior to the moving step, the bonding wires include looped portions projecting upwardly from the top surface of the dielectric support, whereby the mold plate has an abutment surface for engaging the top surface of the dielectric sheet and upwardly-extending recesses extending in the mold plate from the abutment surface, the looped portions being received in the recesses. When the curable dielectric material is introduced into the mold, portions of the flowable material may penetrate into the recesses so as to form projections extending from the top surface of the dielectric sheet after the curing step.
In other preferred embodiments of the present invention, a method of making a microelectronic assembly includes juxtaposing a first element with a second element so that the first element is disposed above the second element, and providing leads extending between the elements, the leads being curved in a vertical direction and including looped portions projecting upwardly from the dielectric sheet. The method may also include moving the first and second elements through a pre-selected displacement relative to one another so as to deform the leads, wherein the looped portions are pulled toward the dielectric sheet during the moving step. The dielectric sheet preferably includes at least one aperture, wherein prior to the moving step, the loops project upwardly from the top surface and downwardly into the at least one aperture so that portions of the leads extending into the apertures connect with the second element, the loops being pulled downwardly into the aperture during the moving step. The moving step may include moving the elements with a vertical component of motion relative to one another.
In accordance with still other preferred embodiments of the present invention, a method of making a microelectronic assembly includes juxtaposing a connection component having leads with a microelectronic element having contacts thereon, and electrically interconnecting the leads and the contacts using conductive wires having first ends attached to the leads and second ends connected to the contacts. After the electrically interconnecting step, the connection component and the microelectronic element may be moved relative to one another so as to deform the conductive wires. The moving step desirably includes securing a first platen to the connection component and a second platen to the microelectronic element and moving the platens through a pre-selected displacement. The connection component may have a top surface, a bottom surface and at least one aperture or bond window extending between the top and bottom surfaces, whereby the leads includes frangible ends extending into the bond window.
In certain preferred embodiments, the electrically interconnecting step may include bonding the second ends of the conductive wires to the frangible ends of the leads and bonding the frangible ends of the leads to the contacts of the microelectronic element. The steps of bonding the second ends of the conductive wires to the frangible ends of the leads and the frangible ends of the leads to the contacts may be conducted simultaneously or at different times. During the moving step, the frangible ends of the leads may be detached from main body portions of the leads. When the second ends of the conductive wires are attached to the frangible ends of the leads, a support may be provided under the frangible ends of the leads.
In certain preferred embodiments, the connection component may include electrically conductive pads that are provided in substantial alignment with the leads extending over the connection component. In these embodiments, the second ends of the wire bonds may be initially attached to the conductive pads. The conductive wires may then be broken adjacent the second ends thereof so that the conductive wires may be bonded to the contacts of the microelectronic element. A curable liquid material may then be introduced between the connection component and the microelectronic element.
In other preferred embodiments of the present invention, a method of making a microelectronic assembly may include providing a first microelectronic element having a top surface with leads having fixed ends and releasable ends, the top surface of the microelectronic element having contacts. The method may also include juxtaposing a second microelectronic element having contacts on a contact bearing face and a rear surface with the first microelectronic element so that the contact bearing face of the second microelectronic element confronts the top surface of the first microelectronic element. A third microelectronic element having a contact bearing face and a rear surface may be juxtaposed with the second microelectronic element so that the rear surfaces of the respective second and third microelectronic elements confront one another, whereby contacts of the third microelectronic element face away from the first microelectronic element. The rear surfaces of the second and third microelectronic elements may be attached together using an adhesive, such as a thermally conductive adhesive. The contacts of the third microelectronic element may be wire bonded with the contacts of the connection component, and the second and third microelectronic elements may be moved away from the first microelectronic element so as to deform the bonding wires. The assembly may be encapsulated using a curable liquid material, such as a curable elastomer or polymer. The curable liquid material may be cured to provide a compliant layer.
In yet further preferred embodiments of the present invention, a packaged microelectronic element includes a microelectronic element having contacts on a contact bearing surface, and a dielectric sheet having connection terminals exposed at a top surface thereof, the sheet being disposed above the microelectronic element with the top surface facing away from the microelectronic element. The packaged microelectonic element desirably includes leads connecting the connection terminals to the contacts of the microelectronic element. An encapsulant layer may be provided between the dielectric sheet and the front surface of the microelectronic element, whereby the encapsulant layer includes projections formed integrally therewith and extending upwardly beyond the top surface of the dielectric layer. The packaged microelectronic element may also include masses of an electrically conductive bonding material engaged with the connection terminals and projecting upwardly from the top surface of the dielectric sheet beyond the projections. The leads may extend within the projections formed integrally with the encapsulant layer. The leads are preferably curved in vertical directions and include loops projecting upwardly from the top surface of the dielectric sheet within the projections.
These and other preferred embodiments of the present invention will be described in more detail below.
BRIEF DESCRIPTION OF THE DRAWINGS
One embodiment of the present invention provides a method of making a semiconductor chip package 10 having an expandable structure. As shown in
Referring to
In the particular embodiments shown in
After the wire bonding step, the expandable structure 30, including the thermoplastic film and foaming agent, is exposed to sufficient heat so that the thermoplastic film will soften and the foaming agent will vaporize, thereby causing the thermoplastic film to foam and expand. Expansion of the expandable structure 30 causes the connection component 14 to move away from the chip 12, as shown in
In the next stage of the process, a dielectric encapsulant is allowed to flow between the connection component 14 and the semiconductor chip 12 and around the expandable structure 30 and the conductive wires 32. Preferred dielectric encapsulants may include a liquid silicone rubber or other curable liquid elastomer. The encapsulant 36 is cured using energy such as heat, ultraviolet light or other radiant energy to form a substantially uniform, planer, compliant layer between the semiconductor chip 12 and the connection component 14. Because the encapsulant 36 is applied after the wire bonding operation, there is no risk of the encapsulant 36 coming in contact with the wires 32 or the electrically conductive parts of the chip 12 and the connection component 14 before the bonding step, which could diminish the strength of the bonds.
Referring to
After the expandable structure 130 has been assembled between the front face 116 of the semiconductor chip 112 and the first surface 120 of the dielectric film 114, each terminal 124 is connected with a contact 118 by bonding the leads 132 to the contacts 118. The terminals 124 and leads 132 may be formed from substantially any electrically conductive material 124, but preferably are formed from metallic materials such as copper and copper alloys, noble metals and noble metal alloys and are typically fabricated by conventional photolithographic and etching or deposition techniques. The leads 132 are electrically connected to the contacts 118 on the chip 112 by a conventional wire bonding operation, or by a bonding operation as shown in U.S. Pat. Nos. 5,398,863; 5,390,844; 5,536,909 and 5,491,302. Referring to
In the next stage of the process, a dielectric encapsulant 136 is allowed to flow between the dielectric film 114 and the chip 112 and around the expandable structure 130 and the leads 132 while the chip 112 and dielectric film are compressed together or held in place. Preferred dielectric encapsulants may comprise a liquid silicone rubber or other curable liquid elastomer. A mask or coverlay 142 may be placed over the bond windows 138 to prevent the encapsulant 136 from flowing through the bond windows 138 during the encapsulation process. The encapsulant 136 is then cured by energy such as heat, ultraviolet light or other radiant energy to form a substantially uniform, planer, compliant layer between the chip 112 and the dielectric sheet 114. Because the encapsulant 136 is applied after bonding, there is minimal risk of the encapsulant 136 coming in contact with the leads 132 or contacts 118 before bonding, which could diminish the strength of the bond
Referring to
In other embodiments the expandable structure 330 may comprise a plurality of compliant pads connected by a web; a sheet having a plurality of compliant pads formed on opposite sides of the sheet; or a unitary structure having a square or rectangular shape. These various embodiments of the expandable structure 330 can be used in processes as described above, and in other processes for fabricating connection components or microelectronic packages. Further, the expandable structure according to the present invention may be stored and shipped with liner films applied to the surface regions thereof, as described in commonly assigned U.S. patent application Ser. No. 08/897,922, filed Jun. 20, 1997, the disclosure of which is hereby incorporated by reference herein.
In the next stage of the process, after expansion, a dielectric encapsulant is allowed to flow between the substrate 314 and the rear face 334 of the semiconductor chip 312 and within the channels 338. In one preferred embodiment, the encapsulant 336 is a curable silicone elastomer such as the silicone elastomer 6811 manufactured by Dow Corning. In other preferred embodiments, the encapsulant may comprise a compliant filler material, such as a liquid silicone rubber or other curable liquid elastomer. The encapsulant 336 material flows within the channels 338 running between the array of pads 330 while the semiconductor chip 312 and the substrate 314 are compressed together or held in place. The encapsulant 336 is preferably substantially similar to the expandable material which forms the expandable structure 330 in order to provide a compliant interface having a more homogenous structure, thereby minimizing problems associated with thermal cycling. Further, the semiconductor chip package assembly is preferably entirely encapsulated with the encapsulant (not shown) so that the semiconductor chip 312, electrically conductive wires 332 and substrate 314 are all covered by a second encapsulant. The first encapsulant and the second encapsulant may comprise the same material and may be deposited at the same time. After the encapsulant 336 has been allowed to flow within the channels 338 between the chip 312 and around the conductive wires 332, the encapsulant 336 is cured by using energy such as heat, ultraviolet light or other radiant energy to form a substantially uniform, planar compliant layer between the semiconductor chip 312 and the substrate 314.
A still further embodiment of the present invention is shown in
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
In another preferred embodiment of the present invention, referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
A curable liquid material 836 may be introduced between dielectric sheet 814 and microelectronic element 812. The curable liquid material may be introduced either before, during or after the moving step. The curable liquid material may then be cured, such as by using heat or light, so as to provide a compliant layer between dielectric sheet 814 and microelectronic element 812. As mentioned above, the compliant layer 836 allows the components to move relative to one another during thermal cycling of the microelectronic assembly. The compliant layer 836 also allows the conductive wires 832 and leads 826 to flex as necessary so as to maintain a reliable electrical interconnection between chip contacts 818 and leads 826.
In accordance with another preferred embodiment of the present invention, a microelectronic assembly includes a connection component 914 such as a dielectric sheet 914 having a first surface 922 and a second surface 920 remote therefrom. The dielectric sheet 914 preferably includes a plurality of flexible, conductive leads 926 having terminal ends 924 permanently attached to dielectric sheet 914 and tip ends 928 releasably attached to dielectric sheet 914. Releasable leads are disclosed in certain preferred embodiments of commonly assigned U.S. Pat. Nos. 5,763,941 and 5,904,498, and U.S. patent application Ser. No. 09/020,750 filed Feb. 9, 1998, Ser. No. 09/195,371 filed Nov. 18, 1998, Ser. No. 09/200,100 filed Nov. 25, 1998, and Ser. No. 09/471,973 filed Dec. 23, 1999, the disclosures of which are hereby incorporated by reference herein. The first surface 922 of dielectric sheet 914 also preferably includes one or more connection component contacts 970. The assembly also desirably includes a first microelectronic element 912 having a contact bearing face 916 with a plurality of contacts 918.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
These and other variations and combinations of the features discussed above can be utilized without departing from the present invention as defined by the claims. For example, in other embodiments the foaming agent for expanding the substrate may be a chemically reactive material. In addition, many microelectronic packages may be simultaneously manufactured using the processes described above. These packages are then separated from one another using a standard dicing technique and the individual microelectronic packages may be attached to a supporting substrate such as a standard printed circuit board. Accordingly, the foregoing description of the preferred embodiments should be taken by way of illustration rather than by way of limitation of the invention.
Claims
1. A method of making a microelectronic assembly comprising:
- (a) juxtaposing a first element having conductive leads thereon with a second element having contacts thereon;
- (b) wire bonding the conductive leads on the first element to the contacts on the second element so that elongated bonding wires extend between said conductive leads and said contacts;
- (c) after said wire bonding step, moving the first and second elements through a preselected displacement relative to one another so as to deform the bonding wires.
2. The method as claimed in claim 1, further comprising bonding said microelectronic assembly to a printed circuit board.
3. The method as claimed in claim 1, wherein said first element includes a dielectric substrate having top and bottom surfaces, said conductive leads being exposed to the top surface of said dielectric substrate, said juxtaposing step including juxtaposing the bottom surface of said dielectric substrate with said second element.
4. The method as claimed in claim 3, wherein said dielectric substrate has one or more apertures therein, said apertures being substantially aligned with the contacts of said second element during the juxtaposing step, the wire bonding step including extending the bonding wires between said conductive leads and said contacts and through said one or more apertures in said dielectric substrate.
5. The method as claimed in claim 3, wherein said second element includes one or more semiconductor chips.
6. The method as claimed in claim 5, wherein said second element includes a plurality of semiconductor chips.
7. The method as claimed in claim 6, further comprising severing said first element and separating said chips from one another to form a plurality of individual packages, each said package including at least one of said chips and a portion of said first element.
8. The method as claimed in claim 6, wherein said second element is a semiconductor wafer including a plurality of semiconductor chips.
9. The method as claimed in claim 7, wherein said second element is a semiconductor wafer including a plurality of semiconductor chips.
10. The method as claimed in claim 6, wherein said second element includes a plurality of semiconductor chips attached to a supporting substrate, the method further comprising severing the supporting substrate for separating the semiconductor chips from one another after the wire bonding step.
11. The method as claimed in claim 7, wherein said second element includes a plurality of semiconductor chips attached to a supporting substrate, the method further comprising severing the supporting substrate for separating the semiconductor chips from one another after the wire bonding step.
12. The method as claimed in claim 3, further comprising introducing a flowable dielectric material between said first and second elements and around the bonding wires during or after the moving step and then curing the flowable material so as to form an encapsulant around at least a portion of said bonding wires.
13. The method as claimed in claim 12, wherein said encapsulant is compliant.
14. The method as claimed in claim 12, wherein said step of introducing a flowable material includes introducing said flowable material under pressure between said first and second elements.
15. The method as claimed in claim 14, wherein said step of introducing said flowable material is performed during the moving step so that said first and second elements move away from one another at least partially under the influence of the pressure of said flowable material.
16. The method as claimed in claim 12, wherein said dielectric support has one or more apertures therein, said apertures being substantially aligned with said contacts during the juxtaposing step, said step of wire bonding being performed so that the bonding wires extend through said one or more apertures, the method further comprising the step of sealing said apertures prior to introducing said flowable material.
17. The method as claimed in claim 13, wherein said dielectric support has one or more apertures therein, said apertures being substantially aligned with said contacts during the juxtaposing step, said step of wire bonding being performed so that the bonding wires extend through said one or more apertures, the method further comprising the step of sealing said apertures prior to introducing said flowable material.
18. The method as claimed in claim 14, wherein said dielectric support has one or more apertures therein, said apertures being substantially aligned with said contacts during the juxtaposing step, said step of wire bonding being performed so that the bonding wires extend through said one or more apertures, the method further comprising the step of sealing said apertures prior to introducing said flowable material.
19. The method as claimed in claim 15, wherein said dielectric support has one or more apertures therein, said apertures being substantially aligned with said contacts during the juxtaposing step, said step of wire bonding being performed so that the bonding wires extend through said one or more apertures, the method further comprising the step of sealing said apertures prior to introducing said flowable material.
20. The method as claimed in claim 16, wherein said step of sealing said apertures includes applying a sealing sheet on the top surface of said dielectric support so as to close said apertures.
21. The method as claimed in claim 17, wherein said step of wire bonding is performed so that prior to said moving step, said bonding wires include loop portions projecting upwardly from said top surface of said dielectric support, and wherein said step of applying a sealing sheet includes forming said sealing sheet so that portions of the sealing sheet remote from the loop portions of said bonding wires lie against the top surface of the sheet whereas other portions of the sealing sheet extend over the loop portions of the bonding wires.
22. The method as claimed in claim 17, wherein said step of wire bonding is performed so that prior to said moving step, said bonding wires project in a plane substantially parallel to said top surface, from said bonding terminals to said apertures, said bonding wires being curved in horizontal directions.
23. The method as claimed in claim 16, wherein said step of sealing said apertures includes engaging a mold plate with said top surface of said dielectric sheet.
24. The method as claimed in claim 23, wherein said step of wire bonding is performed so that prior to said moving step, said bonding wires include loop portions projecting upwardly from said top surface of said dielectric support, and wherein said mold plate has an abutment surface for engaging said top surface of said dielectric sheet and upwardly-extending recesses extending into said mold plate from said abutment surface, said loop portions being received in said recesses.
25. The method as claimed in claim 24, wherein portions of said flowable material penetrate into said recesses and form projections extending from said top surface of said dielectric sheet after said curing step.
26. The method as claimed in claim 1, further comprising providing an expandable structure between the first and second microelectronic elements, wherein the moving step includes expanding the expandable structure.
27. A microelectronic assembly made according to the process of claim 1.
28. A method of making a microelectronic assembly comprising:
- (a) juxtaposing a first element with a second element so that said first element is disposed above said second element;
- (b) providing leads extending between said elements, said leads being curved in a vertical direction, said leads including loop portions projecting upwardly from said dielectric sheet;
- (c) after providing said leads, moving the first and second elements through a preselected displacement relative to one another so as to deform the leads, wherein said loop portions are pulled toward said dielectric sheet during said moving step.
29. The method as claimed in claim 28, wherein said moving step includes moving said elements with a vertical component of motion relative to one another.
30. The method as claimed in claim 28, wherein said dielectric sheet includes at least one aperture and wherein, prior to said moving step, said loops project upwardly from said top surface and downwardly into said at least one aperture so that portions of said leads extending into said at least one apertures connect with said second element, said loops being pulled downward into said aperture during said moving step.
31. The method as claimed in claim 28, further comprising providing an expandable structure between said first and second microelectronic elements, wherein the moving step includes expanding the expandable structure.
32. A microelectronic assembly made according to the process of claim 28.
33. A method of making a microelectronic assembly comprising:
- juxtaposing a connection component having leads with a microelectronic element having contacts thereon;
- electrically interconnecting the leads and the contacts using conductive wires having first ends attached to the leads and second ends connected to the contacts;
- after the electrically interconnecting step, moving the connection component and the microelectronic element relative to one another so as to deform the conductive wires.
34. The method as claimed in claim 33, wherein the moving step includes securing a first platen to said connection component and a second platen to said microelectronic element and moving said platens through a preselected displacement.
35. The method as claimed in claim 33, wherein said connection component has a top surface, a bottom surface and a bond window extending between the top and bottom surfaces, and wherein said leads include frangible ends extending into the bond window.
36. The method as claimed in claim 35, wherein the electrically interconnecting step includes bonding the second ends of the conductive wires to the frangible ends of said leads.
37. The method as claimed in claim 36, wherein the electrically interconnecting step further includes bonding the frangible ends of the leads to the contacts of the microelectronic element.
38. The method as claimed in claim 37, further comprising separating the frangible ends of the leads from the leads during the moving step.
39. The method as claimed in claim 33, further comprising providing a support surface under the frangible ends of the leads when attaching the second ends of the conductive wires to the frangible ends of the leads.
40. The method as claimed in claim 33, wherein the connection component includes a top surface, a bottom surface and one or more bond windows extending between the top and bottom surfaces, said connection component including the leads extending adjacent the bond windows and conductive pads in substantial alignment with the leads.
41. The method as claimed in claim 40, wherein the second ends of the wire bonds are attached to the conductive pads.
42. The method as claimed in claim 41, wherein the conductive wires are broken adjacent the second ends thereof, the second ends being bonded to the contacts during the electrically interconnecting step.
43. The method as claimed in claim 33, further comprising introducing a curable liquid material between the connection component and the microelectronic element.
44. The method as claimed in claim 33, further comprising providing an expandable structure between said connection component and said microelectronic element, wherein the moving step includes expanding the expandable structure.
45. A microelectronic assembly made according to the process of claim 33.
46. A method of making a microelectronic assembly comprising:
- providing a first microelectronic element including a top surface having leads with fixed ends and releasable ends, the top surface of the first microelectronic element having contacts;
- juxtaposing a second microelectronic element having contacts on a contact bearing face and a rear surface with the first microelectronic element so that the contact bearing face confronts the top surface of said first microelectronic element;
- attaching the contacts of said second microelectronic element with the releasable ends of the leads of the first microelectronic element;
- juxtaposing a third microelectronic element having a contact bearing face and a rear surface with the rear surface of said second microelectronic element so that the rear surfaces of said first and second microelectronic elements confront one another and the contacts of the third element face away from the first microelectronic element;
- wire bonding the contacts of the third microelectronic element with the contacts of the connection component;
- moving said second and third microelectronic elements away from said first microelectronic element so as to deform the bonding wires.
47. A microelectronic assembly made according to the process of claim 46.
Type: Application
Filed: Jan 26, 2005
Publication Date: Jul 21, 2005
Applicant: Tessera, Inc. (San Jose, CA)
Inventors: Joseph Fjelstad (Maple Valley, WA), Masud Beroz (Livermore, CA), John Smith (Horseshore Bay, TX), Belgacem Haba (Cupertino, CA)
Application Number: 11/043,354