Delay locked loop circuit
A delay element generates a delayed clock signal which transitions with a delay from a rising (or falling) of a reference clock signal by a delay amount determined based on an output of a loop filter. A signal generation circuit generates two signals which complementarily change according to rising and falling of the reference clock signal and a transition of the delayed clock signal. A charge pump circuit performs on the loop filter, according to these two signals, a push (or pull) operation during an interval extending from a rising (or falling) of the reference clock signal to the transition of the delayed clock signal and a pull (or push) operation during an interval extending from the transition of the delayed clock signal to a falling (or rising) of the reference clock signal.
Latest Patents:
- Atomic layer deposition and etching of transition metal dichalcogenide thin films
- Sulfur-heterocycle exchange chemistry and uses thereof
- Recyclable heavy-gauge films and methods of making same
- Chemical mechanical polishing solution
- On-board device, information processing method, and computer program product
This application claims priority under 35 U.S.C. § 19(a) on Japanese Patent Application No. 2005-33625 filed on Feb. 9, 2005 and Japanese Patent Application No. 2005-264131 filed on Sep. 12, 2005, the entire contents of which are hereby incorporated by reference.
BACKGROUND OF THE INVENTIONThe present invention relates to a delay locked loop circuit. The delay locked loop circuit (DLL) is used for detecting an optimum strobe point of a clock signal for a data signal during a memory access, or the like. For example, in the case of single data rate (SDR), the delay locked loop circuit detects a ½ phase of a reference clock signal, whereas in the case of double data rate (DDR), the delay locked loop circuit detects a ¼ phase or ¾ phase of the reference clock signal. In general, in a memory, or the like, the delay locked loop circuit is used for timing sequence control of a word line, a sense amplifier, or the like.
In the delay locked loop circuit having the above structure, the delay element 101 at the first stage of the delay circuit 100 outputs a clock signal delayed by a ¼ phase (90°). The delay element 101 at the third stage of the delay circuit 100 outputs a clock signal delayed by a ¾ phase (270°).
In the conventional delay locked loop circuit, the driving capacity and load capacity are different between reference clock signal CLKr and the delay element 101. Therefore, it is difficult to improve the accuracy for ¼ phase and ¾ phase.
In the conventional delay locked loop circuit, the delayed clock signal is generated to have a delay of ¼ phase or ¾ phase from the reference clock signal irrespective of the duty ratio of the reference clock signal. Thus, for example, if the duty ratio of the reference clock signal is lower than 25%, the ¼ phase-delayed clock signal does not rise or fall during an on-duty period of the reference clock signal, and therefore, the conventional delay locked loop circuit cannot be used with DDR. That is, there is a possibility that the conventional delay locked loop circuit does not normally operate with a reference clock signal whose duty ratio is not 50%.
In the conventional delay locked loop circuit, based on its principle, signals UP and DN having extremely short pulses are output even after the delay of delayed clock signal CLKd is locked. Therefore, the conventional delay locked loop circuit has static jitters. Although the static jitters can be suppressed by decreasing a delay gain, the decrease of the delay gain deteriorates the response speed achieved till the delay is locked, i.e., delays the locking time. Alternatively, the static jitters can be suppressed by increasing the capacitance of a loop filter to have a larger filter time constant. However, in this case, the circuit scale increases.
SUMMARY OF THE INVENTIONIn view of the above problems, an objective of the present invention is to realize a delay locked loop circuit which does not have static jitters based on its principle and is capable of generating a delayed clock signal with high accuracy irrespective of the duty ratio of a reference clock signal.
A measure taken by the present invention for achieving the above objective is a delay locked loop circuit, comprising: a delay element for generating a delayed clock signal which transitions from a first logic level to a second logic level with a delay from a first transition of a reference clock signal from a first logic level to a second logic level; a signal generation circuit for generating first and second signals which complementarily change according to the first transition of the reference clock signal, a second transition of the reference clock signal from the second logic level to the first logic level, and a transition of the delayed clock signal; a charge pump circuit for performing, according to the first and second signals, a first operation during an interval extending from the first transition of the reference clock signal to the transition of the delayed clock signal and a second operation during an interval extending from the transition of the delayed clock signal to the second transition of the reference clock signal, the first operation being any one of a push operation and a pull operation, and the second operation being the other of the push operation and the pull operation; and a loop filter which receives an output of the charge pump circuit. The delay element controls a delay amount between the first transition of the reference clock signal and the transition of the delayed clock signal based on an output of the loop filter.
BRIEF DESCRIPTION OF THE DRAWINGS
Hereinafter, the best modes for carrying out the invention will be described with reference to the drawings.
EMBODIMENT 1
In the inversion circuit 11, when signal IN is at Lo (low) level, the transistor 111 which functions as a switch is turned on while the transistor 112 which also functions as a switch is turned off. As a result, the subsequent stage of the inversion circuit 11 is supplied with electric charges from the power supply node so that signal INV rises to Hi level. When signal IN is at Hi level, the transistor 111 is turned off while the transistor 112 is turned on. As a result, the electric charges supplied to the subsequent stage are extracted out to the ground node so that signal INV falls to Lo level.
As described above, as a result of the restriction on extraction of electric charges to the ground node by the transistors 113 and 114, a rising of signal OUT occurs with some delay after the rising of signal IN. By appropriately adjusting control voltage Vc, the state of a channel formed in the transistor 113 changes so that the transition speed of signal INV from Hi level to Lo level changes. As a result, the delay amount of signal OUT is adjusted. It should be noted that the transistor 114 functions as a current supply which introduces an electric current of a certain magnitude. That is, the minimum restriction is placed on extraction of electric current to the ground node. If without this restriction, control voltage Vc would change only a little when an electric current flowing through the transistor 113 is relatively small, and accordingly, the delay amount of delayed clock signal CLKd is greatly varied, resulting in an oscillation.
When reference clock signal CLKr rises, signal UP transitions to Hi level. Accordingly, current I1 is supplied from the charge pump circuit 30 to the loop filter 40, and control voltage Vc gradually increases. When control voltage Vc is relatively low, the delay amount of delayed clock signal CLKd is relatively large. On the contrary, when control voltage Vc is relatively high, the delay amount of delayed clock signal CLKd is relatively small. Therefore, the increase of control voltage Vc results in the decrease of the delay amount of delayed clock signal CLKd. When a certain time period is passed after the rising of reference clock signal CLKr, delayed clock signal CLKd rises. As a result, signal DN rises to Hi level, so that current I2 is introduced from the loop filter 40 to the charge pump circuit 30. Accordingly, control voltage Vc gradually decreases to the original level.
In the delay locked loop circuit of embodiment 1, the rising of delayed clock signal CLKd occurs at a time point determined by internally dividing the on-duty period of reference clock signal CLKr in a certain ratio. This ratio is determined according to the relationship between currents I1 and I2. That is, in the delay locked loop circuit of embodiment 1, a feedback system works to attain equilibrium between the amount of charges transferred by the push operation of the charge pump circuit 30 and the amount of charges transferred by the pull operation of the charge pump circuit 30 and becomes stable at the time where the ratio between Hi periods of signal UP and signal DN is equal to the ratio between the reciprocal of current I1 and the reciprocal of current I2. Thus, by appropriately setting the magnitude of currents I1 and I2, delayed clock signal CLKd can be adjusted so as to rise at a time point which internally divides the on-duty period of reference clock signal CLKr in a desired ratio.
Especially when currents I1 and I2 are equal, the rising of delayed clock signal CLKd occurs just at the midpoint of the on-duty period of reference clock signal CLKr. That is, it is possible to obtain delayed clock signal CLKd which rises at the midpoint of the on-duty period of reference clock signal CLKr irrespective of whether or not the duty ratio of reference clock signal CLKr is 50%.
In a conventional delay locked loop circuit, although none of signals UP and DN is ideally output in a stationary state, very short pulses are output based on its principle in the actuality and cause static jitters. In the delay locked loop circuit of embodiment 1, in a stationary state, signals UP and DN are always output such that equilibrium is attained between the amount of charges transferred by the push operation of the charge pump circuit 30 and the amount of charges transferred by the pull operation of the charge pump circuit 30. Thus, control voltage Vc repeats gradual increase and decrease as shown in
As described above, according to embodiment 1, a delayed clock signal which has no static jitters based on its principle and is highly accurate irrespective of the duty ratio of a reference clock signal can be generated.
It should be noted that the delay locked loop circuit of embodiment 1 may be constructed to operate based on the logic opposite to that described above.
EMBODIMENT 2
When reference clock signal CLKr rises, signal UP and signal DN transition to Hi level, so that the switches 302 and 304 of the charge pump circuit 30 are closed. Accordingly, the difference between current I1 and current I2 is supplied from the charge pump circuit 30 to the loop filter 40, and control voltage Vc gradually increases. When a certain time period is passed after the rising of reference clock signal CLKr, delayed clock signal CLKd rises. As a result, only signal UP falls to Lo level so that only the switch 302 is opened. Current I2 is introduced from the loop filter 40 to the charge pump circuit 30, and accordingly, control voltage Vc gradually decreases to the original level. Thus, by appropriately setting the magnitude of currents I1 and I2, delayed clock signal CLKd can be adjusted so as to rise at a time point which internally divides the on-duty period of reference clock signal CLKr in a desired ratio.
Especially when the magnitude of current I1 is twice that of current I2, the magnitude of a current which is supplied when both the switches 302 and 304 of the charge pump circuit 30 are closed is equal to the magnitude of a current which is introduced when only the switch 304 is closed. As a result, the rising of delayed clock signal CLKd occurs just at the midpoint of the on-duty period of reference clock signal CLKr.
As described above, according to embodiment 2, the structure of the signal generation circuit 20 is simpler than that of the signal generation circuit 20 of embodiment 1. Thus, the circuit scale of the entire delay locked loop circuit is decreased.
EMBODIMENT 3
When reference clock signal CLKr rises, signal UP and signal DN transition to Hi level, so that the switches 302 and 304 of the charge pump circuit 30 are closed. Accordingly, the difference between current I1 and current I2 is supplied from the charge pump circuit 30 to the loop filter 40, and control voltage Vc gradually increases. When a certain time period is passed after the rising of reference clock signal CLKr, delayed clock signal CLKd rises. As a result, only signal UP falls to Lo level so that only the switch 302 is opened while the switch 306 is closed instead. The sum of current I2 and current I3 is introduced from the loop filter 40 to the charge pump circuit 30, and accordingly, control voltage Vc gradually decreases to the original level. When reference clock signal CLKr falls, signal DN transitions to Lo level, so that the switch 304 is opened while the switch 308 is closed instead. Accordingly, the difference between current I3 and current I4 is supplied to the loop filter 40. When currents I3 and I4 are equal, the push current and the pull current cancel each other. During a period when reference clock signal CLKr is at Lo level, the push-pull operation of the charge pump circuit 30 stops in appearance.
Even in the delay locked loop circuit of embodiment 3, by appropriately setting the magnitude of currents I1, I2, I3 and I4, delayed clock signal CLKd can be adjusted so as to rise at a time point which internally divides the on-duty period of reference clock signal CLKr in a desired ratio. Especially when currents I2, I3 and I4 are equal in magnitude and the magnitude of current I1 is three times the magnitude of current I2, I3 or I4, the magnitude of a current which is supplied to the loop filter 40 when the switches 302 and 304 of the charge pump circuit 30 are closed is equal to the magnitude of a current which is introduced from the loop filter 40 when the switches 304 and 306 of the charge pump circuit 30 are closed. As a result, the rising of delayed clock signal CLKd occurs just at the midpoint of the on-duty period of reference clock signal CLKr.
According to embodiment 3, the structure of the signal generation circuit 20 is simpler than that of the signal generation circuit 20 of embodiment 1. Thus, the circuit scale of the entire delay locked loop circuit is decreased.
EMBODIMENT 4
When reference clock signal CLKr rises, signal UP and signal DN transition to Hi level, so that the switches 302 and 304 of the charge pump circuit 30 are closed. Accordingly, the difference between the sum of current I1 and current I5 and current I2 is supplied from the charge pump circuit 30 to the loop filter 40, and control voltage Vc gradually increases. When a certain time period is passed after the rising of reference clock signal CLKr, delayed clock signal CLKd rises. As a result, only signal UP falls to Lo level so that the switch 302 is opened while the switch 306 is closed instead. The difference between the sum of current I2 and current I3 and current I5 is introduced from the loop filter 40 to the charge pump circuit 30, and accordingly, control voltage Vc gradually decreases to the original level. When reference clock signal CLKr falls, signal DN transitions to Lo level, so that the switch 304 is opened while the switch 308 is closed instead. Accordingly, the difference between the sum of current I4 and current I5 and current I3 is supplied to the loop filter 40. When the sum of currents I4 and I5 is equal to current I3, the push current and the pull current cancel each other. During a period when reference clock signal CLKr is at Lo level, the push-pull operation of the charge pump circuit 30 stops in appearance.
Even in the delay locked loop circuit of embodiment 4, by appropriately setting the magnitude of currents I1, I2, I3, I4 and I5, delayed clock signal CLKd can be adjusted so as to rise at a time point which internally divides the on-duty period of reference clock signal CLKr in a desired ratio. Especially when currents I1 and I3 are equal in magnitude, currents I2, I4 and I5 are equal in magnitude, and the magnitude of each of currents I1 and I3 is twice the magnitude of current I2, I4 or I5, the magnitude of a current which is supplied to the loop filter 40 when the switches 302 and 304 of the charge pump circuit 30 are closed is equal to the magnitude of a current which is introduced from the loop filter 40 when the switches 304 and 306 of the charge pump circuit 30 are closed. As a result, the rising of delayed clock signal CLKd occurs just at the midpoint of the on-duty period of reference clock signal CLKr.
According to embodiment 4, the structure of the signal generation circuit 20 is simpler than that of the signal generation circuit 20 of embodiment 1. Thus, the circuit scale of the entire delay locked loop circuit is decreased.
In the charge pump circuit 30 of embodiment 4, an electric current of a constant magnitude continuously flows while changing its direction according to signals UP and DN. Thus, switching control as to conduction/interruption of the current is not necessary any more, and the circuit structure as shown in
In
R2=R3=2R1=R, and
Va=(Vdd−Vss)/2=Vdd/2,
if signals /UP and DN are ground voltage Vss and supply voltage Vdd, respectively, a current which has a magnitude of Vdd/R flows from the resistance 311 to the input terminal of signal /UP, while a current which has a magnitude of Vdd/2/R flows from the input terminal of signal DN to the resistance 312. Further, a current which has a magnitude of Vdd/2/R flows from the connection point of the resistances 311, 312, and 313 to the ground node. Thus, according to the Kirchhoff's principle, current Vdd/R flows from the output side of the operational amplifier 402 to the connection point of the resistances 311, 312, and 313 via the capacitance 401. As a result, control voltage Vc gradually increases.
When a certain time period is passed after the rising of reference clock signal CLKr, delayed clock signal CLKd rises. As a result, signal /UP transitions to supply voltage Vdd so that a current which has a magnitude of Vdd/R flows from the input terminal of signal /UP to the resistance 311. Thus, according to the Kirchhoff's principle, current Vdd/R flows from the connection point of the resistances 311, 312, and 313 to the output side of the operational amplifier 402 via the capacitance 401. As a result, control voltage Vc gradually decreases to the original level.
Thereafter, when reference clock signal CLKr falls, signal DN transitions to ground voltage Vss (=0), so that a current which has a magnitude of Vdd/2/R flows from the resistance 312 to the input terminal of signal DN. Thus, the current which flows from the input terminal of signal /UP to the resistance 311 flows out through the resistances 312 and 313 and stops flowing into the loop filter 40. That is, during a period when reference clock signal CLKr is at Lo level, the push-pull operation of the charge pump circuit 30 stops in appearance.
As described above, the delay locked loop circuit including the charge pump circuit 30 and the loop filter 40 which are shown in
The clock generation circuit 50 generates delayed clock signal CLKd from delayed clock signals CLKdr and CLKdf.
Especially when the first and second delay locked loop circuits are constructed such that delayed clock signals CLKdr and CLKdf rise at the midpoints of the on-duty period and off-duty period of reference clock signal CLKr, respectively, delayed clock signal CLKd rises just at the midpoint of the on-duty period of reference clock signal CLKr and falls just at the midpoint of the off-duty period of reference clock signal CLKr. In this case, the on-duty period of delayed clock signal CLKd is:
αT/2+(1−α)T/2=T/2
where T is a cycle of reference clock signal CLKr, and α is the duty ratio of reference clock signal CLKr. That is, the on-duty period of delayed clock signal CLKd is just a half of a cycle of reference clock signal CLKr (T/2). Namely, the duty ratio of delayed clock signal CLKd is 50% irrespective of the duty ratio of reference clock signal CLKr.
As described above, according to embodiment 5, the logic level of delayed clock signal CLKd changes with a delay of ¼ phase (90°) and a delay of ¾ phase (270°) from reference clock signal CLKr. Further, the duty ratio of reference clock signal CLKr is corrected.
In embodiment 5, when the delay element 10r and the delay element 10f are formed by differential circuits, the delay element 10r and the delay element 10f are more robust against noise. Specifically, the delay element 10r and the delay element 10f each can be formed by the differential circuit shown in
The first and second delay locked loop circuits output delayed clock signals CLKdr and CLKdf, respectively. The logic levels of delayed clock signals CLKdr and CLKdf change after some delay from the rising (or falling) of reference clock signals CLKr and /CLKr, respectively. That is, the second delay locked loop circuit outputs delayed clock signal CLKdf whose logic level substantially changes with some delay from the rising (or falling) of reference clock signal CLKr. Delayed clock signal CLKd generated by the clock generation circuit 50 is the same as that of embodiment 5.
In embodiment 6, the first and second delay locked loop circuits can have the same polarity and therefore can be realized by delay locked loop circuits of the same type. Thus, the circuit design can more readily be achieved.
In embodiments 5 and 6, new delayed clock signal CLKd is generated from delayed clock signals CLKdr and CLKdf which are generated by the delay elements 10r and 10f, respectively, but the present invention is not limited thereto. Delayed clock signal CLKd may be generated from signals other than delayed clock signals CLKdr and CLKdf. For example, delayed clock signal CLKd may be generated from signals which are generated based on delayed clock signals CLKdr and CLKdf and whose logic levels change with the delay of a predetermined phase from the rising (or falling) of reference clock signals CLKr and /CLKr, for example, signal UP and signal DN which are generated by the signal generation circuits 20r and 20f, respectively.
The output clock signal of the delay locked loop circuits of embodiments 1 to 4 is not limited to delayed clock signal CLKd generated by the delay element 10. For example, the output clock signal may be signal UP generated by the signal generation circuit 20 or, in the case of embodiment 1, may be signal DN generated by the signal generation circuit 20. Since signal UP is a result of the waveform shaping of delayed clock signal CLKd, it is rather preferable that signal UP is output from the delay locked loop circuit.
As illustrated in the timing chart of
Claims
1. A delay locked loop circuit, comprising:
- a delay element for generating a delayed clock signal which transitions from a first logic level to a second logic level with a delay from a first transition of a reference clock signal from a first logic level to a second logic level;
- a signal generation circuit for generating first and second signals which complementarily change according to the first transition of the reference clock signal, a second transition of the reference clock signal from the second logic level to the first logic level, and a transition of the delayed clock signal;
- a charge pump circuit for performing, according to the first and second signals, a first operation during an interval extending from the first transition of the reference clock signal to the transition of the delayed clock signal and a second operation during an interval extending from the transition of the delayed clock signal to the second transition of the reference clock signal, the first operation being any one of a push operation and a pull operation, and the second operation being the other of the push operation and the pull operation; and
- a loop filter which receives an output of the charge pump circuit,
- wherein the delay element controls a delay amount between the first transition of the reference clock signal and the transition of the delayed clock signal based on an output of the loop filter.
2. The delay locked loop circuit of claim 1, wherein:
- the first signal generated by the signal generation circuit is at a first logic level during the interval extending from the first transition of the reference clock signal to the transition of the delayed clock signal but otherwise at a second logic level, and the second signal generated by the signal generation circuit is at a first logic level during the interval extending from the transition of the delayed clock signal to the second transition of the reference clock signal but otherwise at a second logic level;
- the charge pump circuit includes a first current source for supplying a first current relevant to the first operation, a second current source for supplying a second current relevant to the second operation, a first switch which conducts the first current when the first signal is at the first logic level but interrupts the first current when the first signal is at the second logic level, and a second switch which conducts the second current when the second signal is at the first logic level but interrupts the second current when the second signal is at the second logic level; and
- the delay element decreases the delay amount according to any one of an increase and decrease in an output voltage of the loop filter but increases the delay amount according to the other of the increase and decrease.
3. The delay locked loop circuit of claim 2, wherein the first current and the second current have the same magnitude.
4. The delay locked loop circuit of claim 1, wherein:
- the first signal generated by the signal generation circuit is at a first logic level during the interval extending from the first transition of the reference clock signal to the transition of the delayed clock signal but otherwise at a second logic level, and the second signal generated by the signal generation circuit is at a first logic level during the interval extending from the first transition to second transition of the reference clock signal but otherwise at a second logic level;
- the charge pump circuit includes a first current source for supplying a first current relevant to the first operation, a second current source for supplying a second current relevant to the second operation, a first switch which conducts the first current when the first signal is at the first logic level but interrupts the first current when the first signal is at the second logic level, and a second switch which conducts the second current when the second signal is at the first logic level but interrupts the second current when the second signal is at the second logic level; and
- the delay element decreases the delay amount according to any one of an increase and decrease in an output voltage of the loop filter but increases the delay amount according to the other of the increase and decrease.
5. The delay locked loop circuit of claim 4, wherein the magnitude of the first current is twice that of the second current.
6. The delay locked loop circuit of claim 1, wherein:
- the first signal generated by the signal generation circuit is at a first logic level during the interval extending from the first transition of the reference clock signal to the transition of the delayed clock signal but otherwise at a second logic level, and the second signal generated by the signal generation circuit is at a first logic level during the interval extending from the first transition to second transition of the reference clock signal but otherwise at a second logic level;
- the charge pump circuit includes first and fourth current sources for respectively supplying first and fourth currents relevant to the first operation, second and third current sources for respectively supplying second and third currents relevant to the second operation, a first switch which conducts the first current when the first signal is at the first logic level but interrupts the first current when the first signal is at the second logic level, a second switch which conducts the second current when the second signal is at the first logic level but interrupts the second current when the second signal is at the second logic level, a third switch which interrupts the third current when the first signal is at the first logic level but conducts the third current when the first signal is at the second logic level, and a fourth switch which interrupts the fourth current when the second signal is at the first logic level but conducts the fourth current when the second signal is at the second logic level; and
- the delay element decreases the delay amount according to any one of an increase and decrease in an output voltage of the loop filter but increases the delay amount according to the other of the increase and decrease.
7. The delay locked loop circuit of claim 6, wherein:
- the second, third and fourth currents have the same magnitude; and
- the magnitude of the first current is three times that of each of the second, third and fourth currents.
8. The delay locked loop circuit of claim 1, wherein:
- the first signal generated by the signal generation circuit is at a first logic level during the interval extending from the first transition of the reference clock signal to the transition of the delayed clock signal but otherwise at a second logic level, and the second signal generated by the signal generation circuit is at a first logic level during the interval extending from the first transition to second transition of the reference clock signal but otherwise at a second logic level;
- the charge pump circuit includes first, fourth and fifth current sources for respectively supplying first, fourth and fifth currents relevant to the first operation, second and third current sources for respectively supplying second and third currents relevant to the second operation, a first switch which conducts the first current when the first signal is at the first logic level but interrupts the first current when the first signal is at the second logic level, a second switch which conducts the second current when the second signal is at the first logic level but interrupts the second current when the second signal is at the second logic level, a third switch which interrupts the third current when the first signal is at the first logic level but conducts the third current when the first signal is at the second logic level, and a fourth switch which interrupts the fourth current when the second signal is at the first logic level but conducts the fourth current when the second signal is at the second logic level; and
- the delay element decreases the delay amount according to any one of an increase and decrease in an output voltage of the loop filter but increases the delay amount according to the other of the increase and decrease.
9. The delay locked loop circuit of claim 8, wherein:
- the first current and the third current have the same magnitude;
- the second, fourth and fifth currents have the same magnitude; and
- the magnitude of each of the first and third currents is twice that of each of the second, fourth and fifth currents.
10. The delay locked loop circuit of claim 1, wherein:
- the first signal generated by the signal generation circuit is at a first voltage during the interval extending from the first transition of the reference clock signal to the transition of the delayed clock signal but otherwise at a second voltage, and the second signal generated by the signal generation circuit is at the second voltage during the interval extending from the first transition to second transition of the reference clock signal but otherwise at the first voltage;
- the charge pump circuit includes a first resistance which receives the first signal, a second resistance which receives the second signal, and a third resistance, one end of which is connected to a connection point of the first and second resistances, the other end being supplied with a third voltage;
- the loop filter includes a capacitance, and an operational amplifier, a negative feedback portion of which is connected to the capacitance, an inversion input terminal of the operational amplifier being connected to a connection point of the first, second and third resistances of the charge pump circuit, and a non-inverted input terminal of the operational amplifier being supplied with a fourth voltage; and
- the delay element decreases the delay amount according to any one of an increase and decrease in an output voltage of the operational amplifier of the loop filter but increases the delay amount according to the other of the increase and decrease.
11. The delay locked loop circuit of claim 10, wherein:
- the second voltage is equal to the third voltage;
- the fourth voltage is at a midlevel between the first voltage and the second voltage;
- the second resistance and the third resistance have the same resistance value; and
- a resistance value of the first resistance is a half of that of each of the second and third resistances.
12. The delay locked loop circuit of claim 1, wherein the delay element includes:
- a first circuit including first and second transistors connected in series which have opposite polarities and receive the reference clock signal at their gates and a third transistor connected between the first and second transistors which receives an output of the loop filter at its gate; a voltage of a predetermined node between the first and second transistors being output from the first circuit as an output signal;
- a second circuit for shaping a waveform of the output signal of the first circuit.
13. The delay locked loop circuit of claim 12, wherein the first circuit includes a current source connected in parallel with the third transistor.
14. The delay locked loop circuit of claim 12, wherein the second circuit includes:
- an inverter which receives the output signal of the first circuit; and
- a transistor which receives an input and output of the inverter at a drain and gate, respectively, a predetermined voltage being applied to the source of the transistor.
15. The delay locked loop circuit of claim 1, wherein the delay amount of the delay element is gradually increased to lock a delay which extends from the first transition of the reference clock signal to the transition of the delayed clock signal.
16. A delay locked loop circuit, comprising:
- first and second delay locked loop circuits, each of which is the delay locked loop circuit of claim 1, the first and second delay locked loop circuits being supplied with a common reference clock signal; and
- a clock generation circuit for generating a delayed clock signal from clock signals output from the first and second delay locked loop circuits, the delayed clock signal including any one of a rising edge and a falling edge with a delay from a rising of the common reference clock signal and including the other edge with a delay from a falling of the common reference clock signal.
17. The delay locked loop circuit of claim 16, wherein:
- the first delay locked loop circuit outputs a clock signal whose logic level transitions with a delay from a rising of the common reference clock signal, the delay being equal to a half of an on-duty period of the common reference clock signal; and
- the second delay locked loop circuit outputs a clock signal whose logic level transitions with a delay from a falling of the common reference clock signal, the delay being equal to a half of an off-duty period of the common reference clock signal.
18. A delay locked loop circuit, comprising:
- a first delay locked loop circuit which is the delay locked loop circuit of claim 1, the first delay locked loop circuit being supplied with a first reference clock signal;
- a second delay locked loop circuit which is the delay locked loop circuit of claim 1, the second delay locked loop circuit being supplied with a second reference clock signal which is in a phase opposite to that of the first reference clock signal; and
- a clock generation circuit for generating a delayed clock signal from clock signals output from the first and second delay locked loop circuits, the delayed clock signal including any one of a rising edge and a falling edge with a delay from a rising of the first reference clock signal and including the other edge with a delay from a falling of the first reference clock signal.
19. The delay locked loop circuit of claim 18, wherein:
- the first delay locked loop circuit outputs a clock signal whose logic level transitions with a delay from a rising of the first reference clock signal, the delay being equal to a half of an on-duty period of the first reference clock signal; and
- the second delay locked loop circuit outputs a clock signal whose logic level transitions with a delay from a rising of the second reference clock signal, the delay being equal to a half of an on-duty period of the second reference clock signal.
Type: Application
Filed: Nov 30, 2005
Publication Date: Aug 10, 2006
Applicant:
Inventors: Shiro Sakiyama (Kyoto), Yusuke Tokunaga (Hyogo), Shiro Dosho (Osaka), Toru Iwata (Osaka), Takashi Hirata (Osaka), Hideki Yoshii (Kyoto), Yasuyuki Doi (Kyoto), Makoto Hattori (Kyoto)
Application Number: 11/289,753
International Classification: H03L 7/06 (20060101);