SEMICONDUCTOR DEVICE HAVING SILICIDE THIN FILM AND METHOD OF FORMING THE SAME
The present invention provides a semiconductor device having a silicide thin film and method of forming the same. A semiconductor device comprises a gate insulation layer formed on an active region of a semiconductor substrate. A gate electrode is formed on the gate insulation layer. An impurity region is formed in the active region adjacent the gate electrode. A silicide thin film such as a cobalt silicide thin film is formed to a thickness of less than approximately 200 Å in the impurity region.
Latest Samsung Electronics Patents:
- Multi-device integration with hearable for managing hearing disorders
- Display device
- Electronic device for performing conditional handover and method of operating the same
- Display device and method of manufacturing display device
- Device and method for supporting federated network slicing amongst PLMN operators in wireless communication system
This application is a Divisional of U.S. patent application Ser. No. 10/830,390, filed Apr. 21, 2004, now pending, which is a Divisional of U.S. patent application Ser. No. 10/100,929, filed Mar. 18, 2002, now issued U.S. Pat. No. 6,767,814, which claims the benefit of priority from Korean Patent Application No 2001-14004, filed Mar. 19, 2001, all of which are herein incorporated by reference in their entirety.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates to a semiconductor device and method of forming the same, and more particularly to a semiconductor device having a silicide thin film and method of forming the same.
2. Description of the Related Art
Silicon generally has the properties of semiconductor, but acts as a conductor when impurities are implanted into it, as is the case when used in a semiconductor device. In addition, silicon and metal can be easily transformed into a metal silicide having high conductivity. Accordingly, in a highly-integrated semiconductor device in which resistance increases as the width of a conductive line such as a gate line and contact sizes are reduced, metal silicide is often used to form a portion of a contact interface or a signal line such as the gate line to enhance the conductivity and the performance of the device.
Also, as semiconductor devices are scaled down, the junction depths of source/drain regions are also reduced. To reduce the contact resistance of the source/drain regions, metal silicide can again be used. At this time, a layer of metal silicide is generally formed to a thickness of several hundred angstroms (Å). However, for example, when the metal silicide layer having a thickness of 300 Å is formed on the source/drain regions having a thin junction depth of 1000 Å, the metal silicide layer may be directly connected to the substrate beyond the source/drain regions. Consequently, various problems, such as a junction spiking phenomenon generating a leakage current, can occur. This junction spiking phenomenon is similar to the spiking problem in which the signal current leaks into the substrate when aluminum contact plugs are connected to the source/drain regions.
Cobalt or titanium (Ti) metals, having a low contact interface resistance such as are commonly used to form the metal silicide layer. With cobalt, however, the probability of encountering the junction spiking phenomenon is increased. The cobalt silicide layer is usually formed by coating a cobalt layer on the exposed surface of a substrate through sputtering. Sputtering is followed by a two-step heat treatment, in which a first step takes place at temperatures of 500 to 600° C. and a second step takes place at more than 750° C., or a one-step heat treatment that takes place at a high temperature of more than 750° C. The heat treatment silicifies the cobalt layer. After the heat treatment, non-reacted portions of the cobalt layer are removed in a self-aligned manner by wet etching. Using this technique, it is difficult to control a speed of forming the cobalt silicide layer to form a thin layer. When the cobalt silicide layer is formed, the polysilicon layer and the cobalt layer are usually combined in a ratio of 360 Å to 100 Å. It is further difficult to coat the cobalt layer uniformly at a thickness of less than 80 Å through sputtering and to re-form it repeatedly. The reliability of fabrication process is therefore deteriorated. Thus, forming the cobalt silicide layer of less than 300 Å, as well as preventing the junction spiking phenomenon in the source/drain regions having the thin conjunction depth, is difficult.
When the signal current leaks into the substrate without being transmitted through channels, the consumption of the signal current is increased and the operation speed of transistors slows. Worst yet, the transistors may not operate properly. Particularly, in a low power SRAM device, it is necessary to prevent the generation of leakage current to obtain reliable operation of the device.
To prevent the spiking phenomenon that results from using the cobalt silicide layer, a titanium silicide layer (TiSi2) in the source/drain regions can be formed using titanium to reduce the spiking phenomenon. In this case, however, because titanium exhibits an amount of resistance that depends on the line width, the resistance is abruptly increased in most semiconductor devices having a line width of less than 0.2 μm. Also, the resistance characteristics of the titanium may be degraded following heat treatment.
SUMMARY OF THE INVENTIONAccording to an aspect of the present invention, a semiconductor device comprises a gate insulation layer formed on an active region of a semiconductor substrate. A gate electrode is formed on the gate insulation layer. An impurity region such as a source/drain region is formed in the active region adjacent the gate electrode. A silicide thin film is formed to a thickness of less than approximately 200 Å in the impurity region.
According to another aspect of the present invention, there is provided a method of forming a semiconductor device comprising forming an isolation layer on a surface of a substrate to define an active region, forming at least one gate electrode by sequentially forming a gate insulation layer and a gate layer on the surface of the substrate in the active region and patterning them to expose source/drain regions, forming a metal layer such as a cobalt layer on the surface of the substrate in the exposed source/drain region, forming a low temperature type silicide thin film such as a cobalt silicide thin film by performing a heat treatment at a low temperature of 150 to 450° C., preferably 300 to 400° C. to the substrate on which the cobalt layer is formed, removing non-reacted portions of the cobalt layer from the substrate on which the low temperature type cobalt silicide thin film is formed, and forming a high temperature type metal silicide thin film such as a high temperature type cobalt silicide thin film by performing a heat treatment at a high temperature of more than 700° C., preferably 850° C. to the low temperature type silicide thin film.
In the invention, because the heat treatment after forming the cobalt layer is carried out at a low temperature, it is desirable that the low temperature type cobalt silicide thin film be formed in an in-situ method in a sputtering device after the sputtering. Also, instead of the cobalt layer, a layer of metal such as nickel, titanium and platinum can be used.
BRIEF DESCRIPTION OF THE DRAWINGSThe foregoing and other objects, features and advantages of the invention will become more apparent from the following detailed description of preferred embodiments thereof made with reference to the attached drawings, of which:
The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. Like numbers refer to like elements throughout.
Referring now to
Referring to
Referring to
Referring to
Alternatively, the cobalt silicide thin film 33 can be formed by maintaining a temperature of a sputtering chamber at 200 to 500° C. while sputtering cobalt. At this time, a separate silicification treatment can be skipped. The thickness of the cobalt silicide layer 33 is controlled according to a sputtering time.
Also, when a Ti/Ti-nitride layer as a capping layer is formed by a CVD process after coating the cobalt layer, the cobalt silicide thin film 33 can be formed without a separate heat treatment. That is, because the CVD process is carried out at a process temperature of 300 to 700° C., the separate silicification process can be skipped.
Referring to
Referring to
Referring to
Alternatively, after the non-reacted portions of the cobalt layer 31 are removed, a thin cobalt oxide layer (not shown) can be formed on a surface of the low temperature type cobalt silicide thin film 33. When the silicon oxynitride layer 35 is formed on the thin cobalt oxide layer and the high temperature heat treatment is carried out, the thin cobalt oxide layer provides oxygen to the silicon oxynitride layer 35 and becomes the cobalt silicide layer. Also, the silicon oxynitride layer 35 can limit a value of the contact interface resistance obtained through the high temperature heat treatment to a stable and narrow range. Accordingly, although the silicon oxynitride layer 35 has a low etch selectivity compared with the silicon nitride layer, but it can act as an etch stop layer while forming contact holes.
Referring to
Referring to
Referring to
Then, an ion implantation process is carried out using the gate pattern and the spacers 251 as a mask. Consequently, source/drain regions 27, 29 are formed.
Referring to
Because the upper surface and the upper portions of the side walls of the gate pattern were exposed, a cobalt silicide thin film 331 covering an upper part of the gate pattern and the cobalt silicide thin film 33 covering the source/drain regions 27, 29 can be formed. Thus, without performing a separate process to form a metal silicide layer on the gate layer, the cobalt silicide thin film 331 can be formed during this process, thereby reducing the resistance of the gate line.
The cobalt silicide layer 33 of the source/drain regions 27, 29 is formed to a thickness of 50 to 150 Å. If the cobalt silicide layer 33 is too thin, the contact interface resistance and the resistance in the source/drain regions 27, 29 are increased, and if it is too thick, a spiking phenomenon is increased. Particularly, when the thickness of the cobalt silicide layer 33 is less than 150 Å, the leakage current through connecting surfaces is markedly reduced. At this time, since the polysilicon layer 13 of the gate layer has a structure different from a single crystalline silicon layer of the substrate 10, the cobalt silicide layer 331 forming the upper part of the gate pattern can be formed to a thickness of more than 200 Å. If the cobalt silicide layer 331 forms the upper part of the gate pattern, increasing the thickness of the cobalt silicide layer 331 is desirable because the resistance of the gate line and the delay of resistance capacitance (RC) can be reduced.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Next, non-reacted portions of the metal layer are removed through the wet etching.
As apparent from the foregoing description, the invention can form the cobalt silicide thin film, the thick cobalt silicide layer or other metal silicide layer in the gate pattern depending on the applications. Also, with an embodiment of the invention, the cobalt silicide thin film of less than 200 Å can be formed in the source/drain region, which do not generate the spiking problem. Consequently, according to the invention, a semiconductor device that has superior properties and does not generate the process defect can be obtained.
In the drawings and specification, there have been disclosed typical preferred embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purpose of limitation, the scope of the invention being set forth in the following claims.
Claims
1. A semiconductor device, comprising:
- a gate insulation layer on an active region of a semiconductor substrate;
- a gate electrode on the gate insulation layer;
- a lightly-doped impurity region in the active region at both sides of the gate electrode;
- a first spacer on sidewalls of the gate electrode and on at least a portion of the lightly-doped impurity region, wherein the first spacer is L-shaped and comprises silicon oxide;
- a second spacer on the first spacer, the second spacer comprising silicon nitride;
- a heavily-doped impurity region in the active region at both sides adjacent to the second spacer;
- a first cobalt silicide layer on the heavily-doped impurity region;
- a second cobalt silicide layer on the gate electrode, wherein a top surface of the second cobalt silicide layer is higher than a top surface of the first spacer and a top surface of the second spacer; and
- a subsidiary layer covering the first cobalt silicide layer, the second cobalt silicide layer, the first spacer and the second spacer, wherein the subsidiary layer has a higher oxygen concentration in a lower portion thereof contacting the first cobalt silicide layer and the second cobalt silicide layer than in another portion of the subsidiary layer not contacting the first cobalt silicide layer and the second cobalt silicide layer.
2. The semiconductor device according to claim 1, wherein the subsidiary layer comprises silicon oxynitride.
3. The semiconductor device according to claim 1, further comprising an interlayer insulating layer on the subsidiary layer.
4. The semiconductor device according to claim 1, wherein a thickness of the first cobalt silicide layer and a thickness of the second cobalt silicide layer are different.
5. The semiconductor device according to claim 4, wherein the second cobalt silicide layer is thicker than the first second cobalt silicide layer.
6. The semiconductor device according to claim 1, wherein the lower portion of the subsidiary layer includes oxygen provided from the first cobalt silicide layer and the second cobalt silicide layer.
7. The semiconductor device according to claim 1, wherein the second cobalt silicide layer does not contact the second spacer.
8. The semiconductor device according to claim 1, wherein a lower surface of the second cobalt silicide layer is higher than the top surface of the first spacer and the top surface of the second spacer.
9. A semiconductor device, comprising:
- a gate insulation layer on an active region of a semiconductor substrate;
- a gate electrode on the gate insulation layer;
- an impurity region in the active region, extending outwardly from both sides of the gate electrode;
- a first spacer on both sides of the gate electrode and on the impurity region, wherein the first spacer is L-shaped;
- a second spacer on the first spacer;
- a first cobalt silicide layer on the impurity region, the first cobalt silicide layer being disposed at a height lower than a bottom surface of the second spacer;
- a second cobalt silicide layer on the gate electrode, wherein a top surface of the second cobalt silicide layer is higher than a top surface of the first spacer and a top surface of the second spacer; and
- a subsidiary layer covering the first cobalt silicide layer, the second cobalt silicide layer, the first spacer and the second spacer, wherein a portion of the subsidiary layer facing toward the first cobalt silicide layer and the second cobalt silicide layer has a higher oxygen concentration than a portion of the subsidiary layer facing away from the first cobalt silicide layer and the second cobalt silicide layer.
10. The semiconductor device according to claim 8, wherein the second cobalt silicide layer does not contact the second spacer.
11. The semiconductor device according to claim 8, wherein a lower surface of the second cobalt silicide layer is higher than the top surface of the first spacer and the top surface of the second spacer.
12. A semiconductor device, comprising:
- a gate insulation layer on a semiconductor substrate;
- a gate electrode on the gate insulation layer;
- an impurity region in the semiconductor substrate and at both sides of the gate electrode, the impurity region including a lightly-doped region and a heavily-doped region;
- a first spacer on both sides of the gate electrode and above at least a portion of the lightly doped region, wherein the first spacer comprises a first portion and a second portion connected together to form an L-shape;
- a second spacer covering a region of the first spacer wherein the first portion and the second portion are connected together;
- a first cobalt silicide layer on top of at least a portion of the heavily doped region;
- a second cobalt silicide layer on top of the gate electrode, wherein at least a portion of the second cobalt silicide layer is located at a height above the first spacer and the second spacer; and
- a subsidiary layer covering the first cobalt silicide layer, the second cobalt silicide layer, the first spacer and the second spacer.
13. The semiconductor device according to claim 11, wherein the subsidiary layer has a higher oxygen concentration in a portion contacting the first cobalt silicide layer and the second cobalt silicide layer in comparison to a portion not contacting the first cobalt silicide layer and the second cobalt silicide layer.
14. The semiconductor device according to claim 11, wherein the second cobalt silicide layer does not contact the second spacer.
Type: Application
Filed: Aug 27, 2007
Publication Date: Dec 20, 2007
Applicant: SAMSUNG ELECTRONICS CO., LTD. (Gyeonggi-do)
Inventors: Hyung-Shin KWON (Kyunggi-do), Joon-Yong JOO (Seoul), Kwang-Ok KOH (Kyunggi-do), Sung-Bong KIM (Kyunggi-do)
Application Number: 11/845,700
International Classification: H01L 29/76 (20060101);