SiCN film formation method and apparatus
A method for forming an SiCN film on a target substrate in a process field is arranged to perform a plurality of cycles. Each cycle includes a first step of performing supply of a first process gas containing a silane family gas; a second step of performing supply of a second process gas containing a nitriding gas; a third step of performing supply of a third process gas containing a carbon hydride gas; and a fourth step of shutting off supply of the first process gas. Each cycle is arranged not to turn any one of the first, second, and third process gases into plasma outside the process field during supply thereof, but to heat the process field to a first temperature, at which the silane family gas, the nitriding gas, and the carbon hydride gas react with each other.
Latest Patents:
1. Field of the Invention
The present invention relates to a film formation method and apparatus for forming an SiCN film on a target substrate, such as a semiconductor wafer. The term “semiconductor process” used herein includes various kinds of processes which are performed to manufacture a semiconductor device or a structure having wiring layers, electrodes, and the like to be connected to a semiconductor device, on a target substrate, such as a semiconductor wafer or a glass substrate used for an FPD (Flat Panel Display), e.g., an LCD (Liquid Crystal Display), by forming semiconductor layers, insulating layers, and conductive layers in predetermined patterns on the target substrate.
2. Description of the Related Art
In manufacturing semiconductor devices for constituting semiconductor integrated circuits, a target substrate, such as a semiconductor wafer, is subjected to various processes, such as film formation, etching, oxidation, diffusion, reformation, annealing, and natural oxide film removal. US 2006/0286817 A1 discloses a semiconductor processing method of this kind performed in a vertical heat-processing apparatus (of the so-called batch type). According to this method, semiconductor wafers are first transferred from a wafer cassette onto a vertical wafer boat and supported thereon at intervals in the vertical direction. The wafer cassette can store, e.g., 25 wafers, while the wafer boat can support 30 to 150 wafers. Then, the wafer boat is loaded into a process container from below, and the process container is airtightly closed. Then, a predetermined heat process is performed, while the process conditions, such as process gas flow rate, process pressure, and process temperature, are controlled.
In order to improve the performance of semiconductor integrated circuits, it is important to improve properties of insulating films used in semiconductor devices. Semiconductor devices include insulating films made of materials, such as SiO2, PSG (Phospho Silicate Glass), P—SiO (formed by plasma CVD), P—SiN (formed by plasma CVD), and SOG (Spin On Glass), Si3N4 (silicon nitride). Particularly, silicon nitride films are widely used, because they have better insulation properties as compared to silicon oxide films, and they can sufficiently serve as etching stopper films or inter-level insulating films.
Several methods are known for forming a silicon nitride film on the surface of a semiconductor wafer by thermal CVD (Chemical Vapor Deposition). In such thermal CVD, a silane family gas, such as monosilane (SiH4), dichlorosilane (DCS: SiH2Cl2), hexachloro-disilane (HCD: Si2Cl6), or bistertialbutylaminosilane (BTBAS: SiH2(NH(C4H9))2), is used as a silicon source gas. For example, a silicon nitride film is formed by thermal CVD using a gas combination of SiH2Cl2+NH3 (see U.S. Pat. No. 5,874,368 A) or Si2Cl6+NH3.
In recent years, owing to the demands for increased miniaturization and integration of semiconductor integrated circuits, it is required to alleviate the thermal history of semiconductor devices in manufacturing steps, thereby improving the characteristics of the devices. For vertical processing apparatuses, it is also required to improve semiconductor processing methods in accordance with the demands described above. For example, as a film formation process derived from CVD (Chemical Vapor Deposition), there is a method that performs film formation while intermittently supplying a source gas and so forth to repeatedly form layers each having an atomic or molecular level thickness, one by one, or several by several (for example, Jpn. Pat. Appln. KOKAI Publications No. 2-93071 and No. 6-45256 and U.S. Pat. No. 6,165,916 A). In general, this film formation method is called ALD (Atomic Layer Deposition) or MLD (Molecular Layer Deposition), which allows a predetermined process to be performed without exposing wafers to a very high temperature.
For example, where dichlorosilane (DCS) and NH3 are supplied as a silane family gas and a nitriding gas, respectively, to form a silicon nitride film (SiN), the process is performed, as follows. Specifically, DCS and NH3 gas are alternately and intermittently supplied into a process container with purge periods interposed therebetween. When NH3 gas is supplied, an RF (radio frequency) is applied to generate plasma within the process container so as to promote a nitridation reaction. More specifically, when DCS is supplied into the process container, a layer with a thickness of one molecule or more of DCS is adsorbed onto the surface of wafers. The superfluous DCS is removed during the purge period. Then, NH3 is supplied and plasma is generated, thereby performing low temperature nitridation to form a silicon nitride film. These sequential steps are repeated to complete a film having a predetermined thickness.
When an insulating film as one of those described above is formed and then another thin film is formed thereon, contaminants such as organic substances and particles may have stuck to the surface of the insulating film. Accordingly, a cleaning process is performed to remove the contaminants, as needed. In this cleaning process, the semiconductor wafer is immersed in a cleaning solution, such as dilute hydrofluoric acid, to perform etching on the surface of the insulating film. Consequently, the surface of the insulating film is etched by a very small amount, thereby removing the contaminants.
Where such an insulating film is formed by CVD at a higher process temperature of, e.g., about 760° C., the etching rate of the insulating film during the cleaning process is very low. Accordingly, the insulating film is not excessively etched by cleaning, and thus the cleaning process is performed with high controllability in the film thickness. However, where a thin film having a low heat resistance is present as an underlayer, a thermal CVD process at high temperature is unsuitable.
On the other hand, where such an insulating film is formed by ALD film formation at a lower process temperature of, e.g., about 400° C., the etching rate of the insulating film during the cleaning process is relatively high. Accordingly, the insulating film may be excessively etched by cleaning, and thus the cleaning process entails lower controllability in the film thickness.
Further, a silicon nitride film may be used as an etching stopper film or inter-level insulating film. In this case, the etching rate of the silicon nitride film must be very low. However, the conventional film formation method cannot satisfy this requirement.
BRIEF SUMMARY OF THE INVENTIONAn object of the present invention is to provide a method and apparatus for forming an SiC film, which can employ a relatively low process temperature in film formation, and cause the film to be etched by a low amount during a cleaning process, so that the cleaning process can be performed with high controllability in the film thickness, while allowing the film to sufficiently serve as an etching stopper film or inter-level insulating film. It should be noted that the present invention is a modification of the inventions disclosed in US 2005/095770 A1 and US 2007/167028 A1.
According to a first aspect of the present invention, there is provided a method for forming an SiCN film on a target substrate in a process field configured to be selectively supplied with a first process gas containing a silane family gas, a second process gas containing a nitriding gas, and a third process gas containing a carbon hydride gas, the method being arranged to perform a plurality of cycles to laminate thin films respectively formed by the cycles, thereby forming the SiCN film with a predetermined thickness, each of the cycles comprising: a first step of performing supply of the first process gas to the process field; a second step of performing supply of the second process gas to the process field; a third step of performing supply of the third process gas to the process field; and a fourth step of shutting off supply of the first process gas to the process field, wherein each of the cycles is arranged not to turn any one of the first, second, and third process gases into plasma outside the process field during supply thereof, but to heat the process field to a first temperature, at which the silane family gas, the nitriding gas, and the carbon hydride gas react with each other, during the first, second, third, and fourth steps.
According to a second aspect of the present invention, there is provided an apparatus for forming an SiCN film on a target substrate, the apparatus comprising: a process container having a process field configured to accommodate the target substrate; a support member configured to support the target substrate inside the process field; a heater configured to heat the target substrate inside the process field; an exhaust system configured to exhaust gas from the process field; a first process gas supply circuit configured to supply a first process gas containing a silane family gas to the process field; a second process gas supply circuit configured to supply a second process gas containing a nitriding gas to the process field; a third process gas supply circuit configured to supply a third process gas containing a carbon hydride gas to the process field; and a control section configured to control an operation of the apparatus, wherein the control section is preset to conduct a method for forming an SiCN film on the target substrate in the process field by performing a plurality of cycles to laminate thin films respectively formed by the cycles, thereby forming the SiCN film with a predetermined thickness, each of the cycles comprising a first step of performing supply of the first process gas to the process field, a second step of performing supply of the second process gas to the process field, a third step of performing supply of the third process gas to the process field, and a fourth step of shutting off supply of the first process gas to the process field, wherein each of the cycles is arranged not to turn any one of the first, second, and third process gases into plasma outside the process field during supply thereof, but to heat the process field to a first temperature, at which the silane family gas, the nitriding gas, and the carbon hydride gas react with each other, during the first, second, third, and fourth steps.
According to a third aspect of the present invention, there is provided a computer readable medium containing program instructions for execution on a processor, which is used for a film formation apparatus having a process field configured to be selectively supplied with a first process gas containing a silane family gas, a second process gas containing a nitriding gas, and a third process gas containing a carbon hydride gas, wherein the program instructions, when executed by the processor, cause the film formation apparatus to conduct a method for forming an SiCN film on the target substrate in the process field by performing a plurality of cycles to laminate thin films respectively formed by the cycles, thereby forming the SiCN film with a predetermined thickness, each of the cycles comprising a first step of performing supply of the first process gas to the process field, a second step of performing supply of the second process gas to the process field, a third step of performing supply of the third process gas to the process field, and a fourth step of shutting off supply of the first process gas to the process field, wherein each of the cycles is arranged not to turn any one of the first, second, and third process gases into plasma outside the process field during supply thereof, but to heat the process field to a first temperature, at which the silane family gas, the nitriding gas, and the carbon hydride gas react with each other, during the first, second, third, and fourth steps.
Additional objects and advantages of the invention will be set forth in the description which follows, and in part will be obvious from the description, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and obtained by means of the instrumentalities and combinations particularly pointed out hereinafter.
The accompanying drawings, which are incorporated in and constitute a part of the specification, illustrate presently preferred embodiments of the invention, and together with the general description given above and the detailed description of the preferred embodiments given below, serve to explain the principles of the invention.
In the process of developing the present invention, the inventors studied problems of conventional techniques for semiconductor processes, in relation to a method for forming a silicon nitride film. As a result, the inventors have arrived at the findings given below.
The research group including the present inventors has developed a film formation method that combines process gas supply of the ALD or MLD type with process gas activation by plasma (US 2006/205231 A1 and so forth) in light of the problems explained in “Description of the Related Art”. According to this method, NH3 and so forth are activated by use of plasma to promote nitridation process to attain a high throughput, while a certain amount of carbon is introduced into an SiCN film to improve the chemical resistance thereof to some extent. In this case, as compared to the conventional technique, even where an SiCN film is formed at a lower temperature, the film can be provided with properties showing a lower etching rate and suitable for an inter-level insulating film.
However, according to later researches, it has been found that the film formation method using plasma described above is preferable in throughput, but has difficulty in increasing the carbon content (added amount) of the insulating film, resulting in a tight limit on the improvement in chemical resistance.
In recent years, owing to the demands for decreases in the line width and film thickness of semiconductor devices, requirements concerning the processability of insulating films have been becoming stricter. Accordingly, the film formation method described above may be unable to satisfy the requirements.
Embodiment of the present invention achieved on the basis of the findings given above will now be described with reference to the accompanying drawings. In the following description, the constituent elements having substantially the same function and arrangement are denoted by the same reference numerals, and a repetitive description will be made only when necessary.
The apparatus 2 includes a process container 4 shaped as a cylindrical column with a ceiling and an opened bottom, in which a process field 5 is defined to accommodate and process a plurality of semiconductor wafers (target substrates) stacked at intervals in the vertical direction. The entirety of the process container 4 is made of, e.g., quartz. The top of the process container 4 is provided with a quartz ceiling plate 6 to airtightly seal the top. The bottom of the process container 4 is connected through a seal member 10, such as an O-ring, to a cylindrical manifold 8. The process container may be entirely formed of a cylindrical quartz column without a manifold 8 separately formed.
The manifold 8 is made of, e.g., stainless steel, and supports the bottom of the process container 4. A wafer boat 12 made of quartz is moved up and down through the bottom port of the manifold 8, so that the wafer boat 12 is loaded/unloaded into and from the process container 4. A number of target substrates or semiconductor wafers W are stacked on a wafer boat 12. For example, in this embodiment, the wafer boat 12 has struts 12A that can support, e.g., about 50 to 100 wafers having a diameter of 300 mm at essentially regular intervals in the vertical direction.
The wafer boat 12 is placed on a table 16 through a heat-insulating cylinder 14 made of quartz. The table 16 is supported by a rotary shaft 20, which penetrates a lid 18 made of, e.g., stainless steel, and is used for opening/closing the bottom port of the manifold 8.
The portion of the lid 18 where the rotary shaft 20 penetrates is provided with, e.g., a magnetic-fluid seal 22, so that the rotary shaft 20 is rotatably supported in an airtightly sealed state. A seal member 24, such as an O-ring, is interposed between the periphery of the lid 18 and the bottom of the manifold 8, so that the interior of the process container 4 can be kept sealed.
The rotary shaft 20 is attached at the distal end of an arm 26 supported by an elevating mechanism 25, such as a boat elevator. The elevating mechanism 25 moves the wafer boat 12 and lid 18 up and down in unison. The table 16 may be fixed to the lid 18, so that wafers W are processed without rotation of the wafer boat 12.
A gas supply section is connected to the side of the manifold 8 to supply predetermined process gases to the process field 5 within the process container 4. Specifically, the gas supply section includes a third process gas supply circuit 28, a first process gas supply circuit 30, a second process gas supply circuit 32, and a purge gas supply circuit 36. The first process gas supply circuit 30 is arranged to supply a first process gas containing a silane family gas, such as DCS (dichlorosilane) gas. The second process gas supply circuit 32 is arranged to supply a second process gas containing a nitriding gas, such as ammonia (NH3) gas. The third process gas supply circuit 28 is arranged to supply a third process gas containing a carbon hydride gas, such as C2H4 gas (ethylene gas). The purge gas supply circuit 36 is arranged to supply an inactive gas, such as N2 gas, as a purge gas. Each of the first to third process gases is mixed with a suitable amount of carrier gas (such as N2 gas), as needed. However, such a carrier gas will not be mentioned, hereinafter, for the sake of simplicity of explanation.
More specifically, the third, first, and second process gas supply circuits 28, 30, and 32 include gas distribution nozzles 38, 40, and 42, respectively, each of which is formed of a quartz pipe which penetrates the sidewall of the manifold 8 from the outside and then turns and extends upward (see
The nozzles 38, 40, 42, and 46 are connected to gas sources 28S, 30S, 32S, and 36S of C2H4 gas, DCS gas, NH3 gas, and N2 gas, respectively, through gas supply lines (gas passages) 48, 50, 52, and 56, respectively. The gas supply lines 48, 50, 52, and 56 are provided with switching valves 48A, 50A, 52A, and 56A and flow rate controllers 48B, 50B, 52B, and 56B, such as mass flow controllers, respectively. With this arrangement, C2H4 gas, DCS gas, NH3 gas, and N2 gas can be supplied at controlled flow rates. The gas supply lines (gas passages) 48, 50, and 52 are further connected to a gas source of N2 gas (not shown).
A nozzle reception recess 60 is formed at the sidewall of the process container 4 to extend in the vertical direction. The nozzle reception recess 60 has a vertically long and thin opening 64 formed by cutting a predetermined width of the sidewall of the process container 4 in the vertical direction. The opening 64 is covered with a quartz cover 66 airtightly connected to the outer surface of the process container 4. The cover 66 has a vertically long and thin shape with a concave cross-section, so that it projects outward from the process container 4.
Accordingly, the nozzle reception recess 60 is formed such that it projects outward from the sidewall of the process container 4 and is connected on the other side to the interior of the process container 4. In other words, the inner space of the nozzle reception recess 60 communicates through the opening 64 with the process field 5 within the process container 4. The opening 64 has a vertical length sufficient to cover all the wafers W on the wafer boat 12 in the vertical direction.
The gas distribution nozzles 38, 40 and 42 are bent outward in the radial direction of the process container 4 at a position lower than the lowermost wafer W on the wafer boat 12. Then, the gas distribution nozzles 38, 40 and 42 vertically extend side by side at the deepest position (the farthest position from the center of the process container 4) in the nozzle reception recess 60. The gas spouting holes 38A, 40A, and 42A of the gas distribution nozzles 38, 40 and 42 are formed at positions between the wafers W on the wafer boat 12 to respectively deliver the corresponding gases essentially uniformly in the horizontal direction, so as to form gas flows parallel with the wafers W. The gases are spouted inward from the gas spouting holes 38A, 40A, and 42A of the gas distribution nozzles 38, 40 and 42, and are supplied through the opening 64 onto the wafers W on the wafer boat 12. When the inactive gas comprising N2 gas is spouted from the gas distribution nozzles 38, 40 and 42, this gas is supplied in the same manner to form gas flows parallel with the wafers W.
On the other hand, on the side of the process container 4 opposite to the nozzle reception recess 60, a long and thin exhaust port 62 for vacuum-exhausting the inner atmosphere is formed by cutting the sidewall of the process container 4. As shown in
The process container 4 is surrounded by a casing 71. The casing 71 is provided with a heater 72 on the inner surface for heating the atmosphere and wafers W inside the process container 4. For example, the heater 72 is formed of a carbon wire, which causes no contamination and has good characteristics for increasing and decreasing the temperature. A thermocouple (not shown) is disposed near the exhaust port 62 in the process container 4 to control the heater 72.
The operation of the film formation apparatus 2 structured as described above is controlled as a whole by a control section 74, such as a computer. Computer programs for executing operations of the apparatus 2 are stored in a storage section 76 comprising a storage medium, such as a flexible disk, CD (Compact Disc), hard disk, and/or flash memory. In accordance with instructions from the control section 74, the start/stop of supply of the respective gases, the gas flow rates thereof, the process temperature, and the process pressure are controlled.
Next, an explanation will be given of a film formation method (so called ALD or MLD film formation) performed in the apparatus shown in
At first, the wafer boat 12 at room temperature, which supports a number of, e.g., 50 to 100, wafers having a diameter of 300 mm, is loaded into the process container 4 heated at a predetermined temperature, and the process container 4 is airtightly closed. Then, the interior of the process container 4 is vacuum-exhausted and kept at a predetermined process pressure, and the wafer temperature is increased to a process temperature for film formation. At this time, the apparatus is in a waiting state until the temperature becomes stable. Then, while the wafer boat 12 is rotated, the first to third process gases are intermittently or continuously supplied from the respective gas distribution nozzles 40, 42, and 38 at controlled flow rates.
The first process gas containing DCS gas, the second process gas containing NH3 gas, and the third process gas containing C2H4 gas are supplied from the gas spouting holes 40A, 42A, and 38A of the gas distribution nozzles 40, 42, and 38, respectively, to form gas flows parallel with the wafers W on the wafer boat 12. While being supplied, molecules of DCS gas, NH3 gas, and C2H4 gas and molecules and atoms of decomposition products generated by their decomposition are adsorbed on the wafers W. These gas molecules and/or decomposition components react with each other on the wafers W by use of heat of the heater 72, thereby forming a unit thin film of SiCN on the wafers W. Such a cycle for forming a unit thin film is repeated a number of times, and thin films of SiCN formed by respective times are laminated, thereby arriving at an SiCN film having a target thickness.
For example, where each cycle is arranged to supply the first and third process gases prior to the second process gas, DCS and C2H4 first react with each other on the wafer surface and form a thin SiC film adsorbed on the wafers W. Then, when the second process gas is supplied, NH3 reacts with the SiC film adsorbed on the wafers W and forms a unit thin film of SiCN. Alternatively, for example, where each cycle is arranged to supply the first and second process gases prior to the third process gas, DCS and NH3 first react with each other on the wafer surface and form a thin SiN film adsorbed on the wafers W. Then, when the third process gas is supplied, C2H4 reacts with the SiN film adsorbed on the wafers W and forms a unit thin film of SiCN.
Next, an explanation will be given of the gas supply timing according to embodiments of the present invention. In all the drawings showing timing charts, the first process gas is denoted by DCS, the second process gas is denoted by NH3, and the third process gas is denoted by C2H4, as shown in, e.g.,
Specifically, the first period T1 is arranged to perform supply of the first and third process gases to the process field 5, while shutting off supply of the second process gas to the process field 5. The second period T2 is arranged to shut off supply of the first, second, and third process gases to the process field 5. The third period T3 is arranged to perform supply of the second process gas to the process field 5, while shutting off supply of the first and third process gases to the process field 5. The fourth period T4 is arranged to shut off supply of the first, second, and third process gases to the process field 5.
In this embodiment, the first process gas supply step 80, second process gas supply step 84, and third process gas supply step 88 are set to have lengths the same as or close to each other. The first and third process gas supply steps 80 and 88 are performed synchronously (to completely overlap with each other), and thus the first and third process gas shutoff steps 82 and 90 are performed synchronously (to completely overlap with each other). The second process gas supply step 84 is performed essentially in the middle of the first and third process gas shutoff steps 82 and 90. The first and third process gas supply steps 80 and 88 are performed essentially in the middle of the second process gas shutoff step 86.
The second and fourth periods T2 and T4 are respectively used as purge steps P1 and P2 to remove the residual gas within the process container 4. The term “purge” means removal of the residual gas within the process container 4 by vacuum-exhausting the interior of the process container 4 while supplying an inactive gas, such as N2 gas, into the process container 4, or by vacuum-exhausting the interior of the process container 4 while shutting off supply of all the gases. In this respect, the second and fourth periods T2 and T4 may be arranged such that the first half utilizes only vacuum-exhaust and the second half utilizes both vacuum-exhaust and inactive gas supply. Further, the first and third periods T1 and T3 may be arranged to stop vacuum-exhausting the process container 4 while supplying each of the first to third process gases. However, where supplying each of the first to third process gases is performed along with vacuum-exhausting the process container 4, the interior of the process container 4 can be continuously vacuum-exhausted over the entirety of the first to fourth periods T1 to T4.
For example, in
As described above, the period T1 of supplying the first and third process gases simultaneously without turning these gases into plasma (i.e., without turning them into radicals) outside the process field 5, and the period T3 of solely supplying the second process gas without turning this gas into plasma (i.e., without turning it into radicals) outside the process field 5 are alternately performed with the periods T2 and T4 of shutting off supply of the process gases (purge steps P1 and P2) respectively interposed therebetween. In this case, although the film formation temperature is set to be lower than the conventional film formation temperature of, e.g., about 760° C., it is possible to introduce a larger amount of carbon into the formed SiCN film, so as to decrease the etching rate of the film relative to dilute hydrofluoric acid used in a cleaning process or etching process performed on the surface of the film. Consequently, the film is not excessively etched by cleaning, and thus the cleaning process is performed with high controllability in the film thickness. Further, the film can sufficiently serve as an etching stopper film or inter-level insulating film.
Furthermore, as described above, the periods T2 and T4 of shutting off supply of the process gases between the periods T1 and T2 of performing supply of the process gases serve not only as the purge steps P1 and P2 but also as periods for reforming the film quality. The surface of an SiCN film, formed immediately before each of these periods, is reformed in this period, thereby improving the film quality. Consequently, the etching rate of the SiCN film is further decreased. The effect of the reformation process at an atomic level is thought to be as follows. Specifically, when an SiCN film containing carbon atoms is formed, some of the Cl atoms derived from DCS gas are not desorbed but bonded in an activated state to the uppermost surface of this thin film. During the periods T2 and T4 of shutting off supply of DCS gas, C atoms or N atoms derived from C2H4 or and NH3 gas replace Cl atoms on the uppermost surface of the thin film, and reduce Cl components in the film, thereby decreasing the etching rate. Particularly, where C2H4 gas is used, the number of C atoms taken into the film is increased, thereby further decreasing the etching rate.
The process conditions of the film formation process are as follows. The flow rate of DCS gas is set to be within a range of 500 to 5,000 sccm, e.g., at 1,000 sccm (1 slm). The flow rate of NH3 gas is set to be within a range of 100 to 10,000 sccm, e.g., at 1,000 sccm. The flow rate of C2H4 gas is set to be within a range of 100 to 5,000 sccm, e.g., at 500 sccm. The flow rate of C2H4 gas is set to be not more than three times the flow rate of DCS gas. This is so because, if the flow rate of C2H4 gas used as a carbon hydride gas is excessively high, the film quality is undesirably drastically lowered.
The process temperature is lower than ordinary CVD processes, and is set to be within a range of 300 to 700° C., and preferably a range of 550 to 650° C., such as 630° C. If the process temperature is lower than 300° C., essentially no film is deposited because hardly any reaction is caused. If the process temperature is higher than 700° C., a low quality CVD film is deposited, and existing films, such as a metal film, suffer thermal damage.
The process pressure is set to be within a range of 13 Pa (0.1 Torr) to 1,330 Pa (10 Torr), and preferably a range of 40 Pa (0.3 Torr) to 266 Pa (2 Torr). For example, the process pressure is set at 1 Torr during the first period (adsorption step) T1, and at 10 Torr during the third period (nitridation step) T3. If the process pressure is lower than 13 Pa, the film formation rate becomes lower than the practical level. On the other hand, if the process pressure exceeds 1,330 Pa, the reaction mode is shifted from an adsorption reaction to a vapor-phase reaction, which then becomes prevailing on the wafers W. This is undesirable, because the inter-substrate uniformity and planar uniformity of the film are deteriorated, and the number of particles due to the vapor-phase reaction suddenly increases.
The timing chart shown in
In order to control the carbon content of an SiCN film thus formed, the length of the third process gas supply step 88, i.e., C2H4 adsorption time, and/or the length of the second process gas supply step 84, i.e., nitridation time, may be adjusted.
<Examination on SiCN Film>
As present examples, a film formation method according to the first embodiment was used while the lengths of the second and/or third process gas supply steps 84 and/or 88 were adjusted to form SiCN films having different values of carbon concentration (content). As a comparative example CE1, an SiN film was formed without supplying C2H4 gas. As a comparative example CE2, an SiN film was formed by use of plasma (a film formation method according to the disclosure of US 2007/167028 A1). Each of the films thus formed was etched with dilute hydrofluoric acid DHF (200:1).
On the other hand, in the case of a film formation method according to the first embodiment, the carbon concentration in an SiCN film was greatly increased and controllable within a range of 15.2% to 28.5% by condition adjustment. As representatives of the SiCN films formed by a film formation method according to the first embodiment,
Specifically, the first period T1 is arranged to perform supply of the first and second process gases to the process field 5 (first and second process gas supply steps 80 and 84), while shutting off supply of the third process gas to the process field 5. The second period T2 is arranged to shut off supply of the first, second, and third process gases to the process field 5 (purge step P1). The third period T3 is arranged to perform supply of the third process gas to the process field 5 (third process gas supply step 88), while shutting off supply of the first and second process gases to the process field 5. The fourth period T4 is arranged to shut off supply of the first, second, and third process gases to the process field 5 (purge step P2).
This embodiment can also provide the same effect as the first embodiment, i.e., although the film formation temperature is set to be lower, it is possible to introduce a larger amount of carbon into the formed SiCN film. Consequently, the etching rate of the SiCN film is decreased, and thus the cleaning process is performed with high controllability in the film thickness. Further, the SiCN film can sufficiently serve as an insulating film for a specific purpose, such as an etching stopper film or inter-level insulating film.
The timing chart shown in
Specifically, the first period T1 is arranged to perform supply of the first process gas to the process field 5 (first process gas supply step 80), while shutting off supply of the second and third process gases to the process field 5. The second period T2 is arranged to shut off supply of the first, second, and third process gases to the process field 5 (purge step P1). The third period T3 is arranged to perform supply of the third process gas to the process field 5 (third process gas supply step 88), while shutting off supply of the first and second process gases to the process field 5. The fourth period T4 is arranged to shut off supply of the first, second, and third process gases to the process field 5 (purge step P2). The fifth period T5 is arranged to perform supply of the second process gas to the process field 5 (second process gas supply step 84), while shutting off supply of the first and third process gases to the process field 5. The sixth period T6 is arranged to shut off supply of the first, second, and third process gases to the process field 5 (purge step P3).
For example, the first to fourth periods T1 to T4 are set to have the same lengths as those of the first embodiment, while the fifth period T5 is set at about 6 seconds, and the sixth period T6 is set at about 5 seconds. This embodiment can also provide the same effect as the first embodiment, i.e., although the film formation temperature is set to be lower, it is possible to introduce a larger amount of carbon into the formed SiCN film.
The timing chart shown in
This embodiment can also provide the same effect as the first embodiment, i.e., although the film formation temperature is set to be lower, it is possible to introduce a larger amount of carbon into the formed SiCN film.
The timing chart shown in
This embodiment can also provide the same effect as the first embodiment, i.e., although the film formation temperature is set to be lower, it is possible to introduce a larger amount of carbon into the formed SiCN film.
The timing chart shown in
This embodiment can also provide the same effect as the first embodiment, i.e., although the film formation temperature is set to be lower, it is possible to introduce a larger amount of carbon into the formed SiCN film.
The timing chart shown in
This embodiment can also provide the same effect as the first embodiment, i.e., although the film formation temperature is set to be lower, it is possible to introduce a larger amount of carbon into the formed SiCN film.
The timing chart shown in
This embodiment can also provide the same effect as the first embodiment, i.e., although the film formation temperature is set to be lower, it is possible to introduce a larger amount of carbon into the formed SiCN film.
The timing chart shown in
This embodiment can also provide the same effect as the first embodiment, i.e., although the film formation temperature is set to be lower, it is possible to introduce a larger amount of carbon into the formed SiCN film.
The timing chart shown in
This embodiment can also provide the same effect as the first embodiment, i.e., although the film formation temperature is set to be lower, it is possible to introduce a larger amount of carbon into the formed SiCN film.
The timing chart shown in
<Modification of Film Formation Apparatus>
According to this modification, a film formation method may be arranged to store in the storage tank 48C or 50C a process gas in an amount to be subsequently supplied to the process field 5, while shutting off supply of the process gas to the process field 5, and to then supply the gas thus stored in the storage tank 48C or 50C to the process field 5 at once in the next supply step. In this case, a larger amount of process gas can be supplied to the process field 5 in a shorter time, thereby decreasing the adsorption time. Switching between start and stop of supply of the process gas to the process field 5 is performed by opening/closing of the second switching valve 48D or 50D, while switching between start and stop of storing of the process gas in the storage tank 48C or 50C is performed by opening/closing of the upstream switching valve 48A or 50A. The opening/closing of the second switching valve 48D or 50 is controlled by the control section 74 (see
In this modification, both of the gas passage 48 of the third process gas supply circuit 28 and the gas passage 50 of the first process gas supply circuit 30 are respectively provided with the storage tanks 48C and 50C and switching valves 48D and 50D. However, only one of the gas passages is provided with a storage tank. Whether or not the storage tanks 48C and 50C are disposed may be determined in accordance with the manners of supply of the process gases. Where one of the storage tanks 48C and 50C is omitted, a film formation method according to each of the following embodiments is altered not to perform the storage step of the corresponding process gas.
ELEVENTH EMBODIMENTSpecifically, the first period T1 is arranged to perform supply of the first and third process gases (DCS and C2H4) to the process field 5 (first and third process gas supply steps 80 and 88), while shutting off supply of the second process gas (NH3) to the process field 5. The second period T2 is arranged to shut off supply of the first, second, and third process gases to the process field 5 (purge step P1). The third period T3 is arranged to perform supply of the second process gas to the process field 5 (second process gas supply step 84), while shutting off supply of the first and third process gases to the process field 5. The fourth period T4 is arranged to shut off supply of the first, second, and third process gases to the process field 5 (purge step P2).
Further, within a first process gas shutoff step 82 of shutting off supply of the first process gas to the process field 5, a first process gas storage step 94 of storing the first process gas in the storage tank 50C is performed. Similarly, within a third process gas shutoff step 90 of shutting off supply of the third process gas to the process field 5, a third process gas storage step 96 of storing the third process gas in the storage tank 48C is performed.
In the timing chart shown in
As described above, this film formation method is arranged to store in the storage tanks 50C and 48C the first and third process gases each in an amount to be subsequently supplied to the process field 5, while shutting off supply of the first and third process gases to the process field 5, and to then supply the gases thus stored in the storage tank tanks 50C and 48C to the process field 5 at once in the next supply step. In this case, a larger amount of process gases can be supplied to the process field 5 in a shorter time, thereby decreasing the adsorption time (the length of the period T1) and improving the throughput. Further, when the first and third process gases are supplied to the process field 5, the opening degree of the pressure adjustment valve (valve unit 78 in
This embodiment can also provide the same effect as the eleventh embodiment. Further, this embodiment may also be arranged to utilize the first process gas storage step 94, as described in the eleventh embodiment.
THIRTEENTH EMBODIMENTSpecifically, the first period T1 is arranged to perform supply of the first process gas to the process field 5 (first process gas supply step 80), while shutting off supply of the second and third process gases to the process field 5. The second period T2 is arranged to shut off supply of the first, second, and third process gases to the process field 5 (purge step P1). The third period T3 is arranged to perform supply of the third process gas to the process field 5 (third process gas supply step 88), while shutting off supply of the first and second process gases to the process field 5. The fourth period T4 is arranged to shut off supply of the first, second, and third process gases to the process field 5 (purge step P2). The fifth period T5 is arranged to perform supply of the second process gas to the process field 5 (second process gas supply step 84), while shutting off supply of the first and third process gases to the process field 5. The sixth period T6 is arranged to shut off supply of the first, second, and third process gases to the process field 5 (purge step P3).
Further, within a first process gas shutoff step 82 of shutting off supply of the first process gas to the process field 5, a first process gas storage step 94 of storing the first process gas in the storage tank 50C is performed. Similarly, within a third process gas shutoff step 90 of shutting off supply of the third process gas to the process field 5, a third process gas storage step 96 of storing the third process gas in the storage tank 48C is performed.
In the timing chart shown in
This embodiment can also provide the same effect as the eleventh embodiment.
FOURTEENTH EMBODIMENTThis embodiment can also provide the same effect as the eleventh embodiment. Further, this embodiment may also be arranged to utilize the first process gas storage step 94, as described in the eleventh embodiment.
FIFTEENTH EMBODIMENTThis embodiment can also provide the same effect as the eleventh embodiment.
SIXTEENTH EMBODIMENTThis embodiment can also provide the same effect as the eleventh embodiment. Further, this embodiment may also be arranged to utilize the first process gas storage step 94, as described in the eleventh embodiment.
SEVENTEENTH EMBODIMENTThis embodiment can also provide the same effect as the eleventh embodiment.
EIGHTEENTH EMBODIMENTThis embodiment can also provide the same effect as the eleventh embodiment. Further, this embodiment may also be arranged to utilize the first process gas storage step 94, as described in the eleventh embodiment.
NINETEENTH EMBODIMENTThis embodiment can also provide the same effect as the eleventh embodiment. Further, this embodiment may also be arranged to utilize the first process gas storage step 94, as described in the eleventh embodiment.
TWENTIETH EMBODIMENTThis embodiment can also provide the same effect as the eleventh embodiment.
<Common Matters to First to Twentieth Embodiments>
The embodiments described above are exemplified by a case where an SiCN film is formed, but the film may be further doped with an impurity, such as B (boron). The embodiments described above are exemplified by a case where each cycle is arranged to supply the first process gas (DCS) at first, but each cycle may be arranged to supply the second process gas (NH3) or third process gas (C2H4) at first.
The apparatus shown in
The film formation apparatus shown in
In the embodiments described above, the first process gas contains DCS gas as a silane family gas. In this respect, the silane family gas may be one or more gases selected from the group consisting of dichlorosilane (DCS), hexachlorodisilane (HCD), monosilane (SiH4), disilane (Si2Cl6), hexamethyl-disilazane (HMDS), tetrachlorosilane (TCS), disilylamine (DSA), trisilylamine (TSA), bistertial-butylaminosilane (BTBAS), and diisopropylaminosilane (DIPAS).
In the embodiments described above, the second process gas contains NH3 gas as a nitriding gas. In this respect, the nitriding gas may be one or more gases selected from the group consisting of ammonia (NH3), nitrogen (N2), dinitrogen oxide (N2O), and nitrogen oxide (NO).
In the embodiments described above, the third process gas contains ethylene gas as a carbon hydride gas. In this respect, the carbon hydride gas may be one or more gases selected from the group consisting of acetylene, ethylene, methane, ethane, propane, and butane.
A target substrate is not limited to a semiconductor wafer, and it may be another substrate, such as an LCD substrate or glass substrate.
Additional advantages and modifications will readily occur to those skilled in the art. Therefore, the invention in its broader aspects is not limited to the specific details and representative embodiments shown and described herein. Accordingly, various modifications may be made without departing from the spirit or scope of the general inventive concept as defined by the appended claims and their equivalents.
Claims
1. A method for forming an SiCN film on a target substrate in a process field configured to be selectively supplied with a first process gas containing a silane family gas, a second process gas containing a nitriding gas, and a third process gas containing a carbon hydride gas, the method being arranged to perform a plurality of cycles to laminate thin films respectively formed by the cycles, thereby forming the SiCN film with a predetermined thickness, each of the cycles comprising:
- a first step of performing supply of the first process gas to the process field;
- a second step of performing supply of the second process gas to the process field;
- a third step of performing supply of the third process gas to the process field; and
- a fourth step of shutting off supply of the first process gas to the process field,
- wherein each of the cycles is arranged not to turn any one of the first, second, and third process gases into plasma outside the process field during supply thereof, but to heat the process field to a first temperature, at which the silane family gas, the nitriding gas, and the carbon hydride gas react with each other, during the first, second, third, and fourth steps.
2. The method according to claim 1, wherein each of the cycles comprises a fifth step of shutting off supply of the second process gas to the process field.
3. The method according to claim 1, wherein each of the cycles comprises a sixth step of shutting off supply of the third process gas to the process field.
4. The method according to claim 2, wherein the second step comprises two parts with the fifth step interposed therebetween.
5. The method according to claim 3, wherein the third step comprises two parts with the sixth step interposed therebetween.
6. The method according to claim 2, wherein the second step is longer than the first step.
7. The method according to claim 3, wherein the third step is longer than the first step.
8. The method according to claim 1, wherein each of the cycles comprises no step of shutting off supply of the second process gas to the process field.
9. The method according to claim 1, wherein each of the cycles comprises no step of shutting off supply of the third process gas to the process field.
10. The method according to claim 1, wherein the second step does not overlap with the first step.
11. The method according to claim 1, wherein the second step overlaps with the first step.
12. The method according to claim 1, wherein the third step does not overlap with the first step.
13. The method according to claim 1, wherein the third step overlaps with the first step.
14. The method according to claim 1, wherein each of the cycles comprises a step of exhausting gas from the process field while shutting off supply of the first, second, and third process gases to the process field.
15. The method according to claim 1, wherein each of the cycles comprises a step of storing the first process gas in an amount to be subsequently supplied to the process field, in a storage tank disposed between a flow rate controller and the process field, while performing the fourth step.
16. The method according to claim 3, wherein each of the cycles comprises a step of storing the third process gas in an amount to be subsequently supplied to the process field, in a storage tank disposed between a flow rate controller and the process field, while performing the sixth step.
17. The method according to claim 1, wherein the first temperature is at a temperature of 300 to 700° C.
18. The method according to claim 1, wherein the silane family gas comprises at least one gas selected from the group consisting of dichlorosilane, hexachlorodisilane, monosilane, disilane, hexamethyldisilazane, tetrachlorosilane, disilylamine, trisilylamine, bistertialbutylaminosilane, and diisopropylaminosilane, the nitriding gas comprises at least one gas selected from the group consisting of ammonia, nitrogen, dinitrogen oxide, and nitrogen oxide, and the carbon hydride gas comprises at least one gas selected from the group consisting of acetylene, ethylene, methane, ethane, propane, and butane.
19. An apparatus for forming an SiCN film on a target substrate, the apparatus comprising:
- a process container having a process field configured to accommodate the target substrate;
- a support member configured to support the target substrate inside the process field;
- a heater configured to heat the target substrate inside the process field;
- an exhaust system configured to exhaust gas from the process field;
- a first process gas supply circuit configured to supply a first process gas containing a silane family gas to the process field;
- a second process gas supply circuit configured to supply a second process gas containing a nitriding gas to the process field;
- a third process gas supply circuit configured to supply a third process gas containing a carbon hydride gas to the process field; and
- a control section configured to control an operation of the apparatus,
- wherein the control section is preset to conduct a method for forming an SiCN film on the target substrate in the process field by performing a plurality of cycles to laminate thin films respectively formed by the cycles, thereby forming the SiCN film with a predetermined thickness, each of the cycles comprising
- a first step of performing supply of the first process gas to the process field,
- a second step of performing supply of the second process gas to the process field,
- a third step of performing supply of the third process gas to the process field, and
- a fourth step of shutting off supply of the first process gas to the process field,
- wherein each of the cycles is arranged not to turn any one of the first, second, and third process gases into plasma outside the process field during supply thereof, but to heat the process field to a first temperature, at which the silane family gas, the nitriding gas, and the carbon hydride gas react with each other, during the first, second, third, and fourth steps.
20. The apparatus according to claim 19, wherein the first process gas supply circuit comprises a storage tank disposed between a flow rate controller and the process field, and each of the cycles comprises a step of storing the first process gas in an amount to be subsequently supplied to the process field, in the storage tank, while performing the fourth step.
21. The apparatus according to claim 19, wherein the third process gas supply circuit comprises a storage tank disposed between a flow rate controller and the process field, and each of the cycles comprises a step of storing the third process gas in an amount to be subsequently supplied to the process field, in the storage tank, while performing the sixth step.
23. A computer readable medium containing program instructions for execution on a processor, which is used for a film formation apparatus having a process field configured to be selectively supplied with a first process gas containing a silane family gas, a second process gas containing a nitriding gas, and a third process gas containing a carbon hydride gas, wherein the program instructions, when executed by the processor, cause the film formation apparatus to conduct a method for forming an SiCN film on the target substrate in the process field by performing a plurality of cycles to laminate thin films respectively formed by the cycles, thereby forming the SiCN film with a predetermined thickness, each of the cycles comprising
- a first step of performing supply of the first process gas to the process field,
- a second step of performing supply of the second process gas to the process field,
- a third step of performing supply of the third process gas to the process field, and
- a fourth step of shutting off supply of the first process gas to the process field,
- wherein each of the cycles is arranged not to turn any one of the first, second, and third process gases into plasma outside the process field during supply thereof, but to heat the process field to a first temperature, at which the silane family gas, the nitriding gas, and the carbon hydride gas react with each other, during the first, second, third, and fourth steps.
Type: Application
Filed: Feb 13, 2008
Publication Date: Sep 4, 2008
Applicant:
Inventors: Pao-Hwa Chou (Nirasaki-shi), Kazuhide Hasebe (Nirasaki-shi)
Application Number: 12/068,974
International Classification: C23C 16/36 (20060101); C23C 16/455 (20060101); B05C 11/00 (20060101);