Monolithically integrated optical devices with amorphous silicon arrayed waveguidi gratings and INGaAsP gain
An optical waveguide assembly and method of forming the same is described. The optical waveguide assembly includes a waveguide, an amorphous silicon arrayed waveguide grating communicative with the waveguide, and an integrated amorphous silicon waveguide grating laser which communicatively outputs a laser output responsive to the amorphous silicon arrayed waveguide grating. The method includes providing a waveguide, providing an amorphous silicon arrayed waveguide grating communicative with the waveguide, and providing an integrated amorphous silicon waveguide grating laser which communicatively outputs a laser output responsive to the amorphous silicon arrayed waveguide grating.
Latest Novatronix Corporation Patents:
This application is a continuation of U.S. application Ser. No. 11/545,080, filed Oct. 6, 2006, which claims benefit of priority to U.S. Provisional Application No. 60/724,444, entitled “Monolithically Integrated Optical Devices With An Amorphous Silicon Arrayed Waveguide Gratings And InGaAsP Gain Sections”, filed Oct. 7, 2005, the entire disclosures of which are incorporated herein by reference.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCHNot applicable
FIELD OF THE INVENTIONThe present invention is directed generally to waveguides, and, more particularly, to an amorphous silicon arrayed waveguide grating (AWG) and integrated AWG-laser.
BACKGROUND OF THE INVENTIONOptical waveguides are the cornerstone of integrated optical circuits. An optical waveguide or combination of optical waveguides is typically assembled to form devices such as couplers, splitters, ring resonators, arrayed waveguide gratings, mode transformers, and the like. These devices are further combined on an optical chip to create an integrated optical device or circuit for performing the desired optical functions, such as, for example, switching, splitting, combining, multiplexing, demultiplexing, filtering, and clock distribution. As used herein, the expression “integrated optical circuits” may include a combination of optically transparent elongated structures for guiding, manipulating, or transforming optical signals that are formed on a common substrate or chip of monolithic or hybrid construction.
Typically, formation of the waveguide begins with formation of the lower optical cladding on a suitable substrate, followed by formation of an optical core, typically by chemical vapor deposition, lithographic patterning, and etching, and finally, surrounding the core with an upper optical cladding layer. For example, a ridge waveguide is typically formed on a substrate by forming a lower optical cladding, then forming through chemical vapor deposition, lithographic patterning, and etching, an optical core element, and lastly by surrounding the optical core element with an upper optical cladding layer. Other types of optical waveguides used in the formation of integrated optical devices and circuits include slab, ridge loaded, trench defined, and filled trench waveguides.
Further, semiconductor devices often include multiple layers of conductive, insulating, and semiconductive layers. Often, the desirable properties of such layers improve with the crystallinity of the layer. Attempts have been made to fabricate high quality crystalline optical waveguide devices. However, such attempts typically have succeeded only on bulk oxide substrates. Attempts to grow such devices on a single crystal semiconductor or compound semiconductors substrates, such as germanium, silicon, and various insulators, have generally been unsuccessful because crystal lattice mismatches between the host crystal of the substrate and the grown crystal of the optical waveguide layer have caused the resulting crystal of the optical waveguide layer to be of low crystalline quality.
Silicon (Si) is the most widely used semiconductor material in modern electronic devices. Single crystalline Si of high quality is readily available, and the processing and microfabrication of Si are well known. The transparency of Si in the near-infrared makes Si an ideal optical material.
In part due to these ideal optical properties, Si-based waveguides are often employed as optical interconnects on Si integrated circuits, or to distribute optical clock signals on an Si-based microprocessor. In these and other instances, Si provides improved integration with existing electronics and circuits. However, at present pure Si optical waveguide technology is not well developed, in part because fabrication of waveguides in Si requires a core with a higher refractive index than that of crystalline Si (c-Si).
Historically, optical links were single wavelength and point-to-point, with all functionality in the electronics domain. The implementation of telecommunication functions in the optical domain, in conjunction with the aforementioned development of the understanding of silicon as an optical material, led to the development of the optical integrated circuit (OEIC). The OEIC fabrication process borrows heavily from the electronic integrated circuit field, and as such may employ planar deposition, photolithography, and dry etching to form optical waveguides analogous to electronic circuit conductors.
An OEIC developed in the late 1990's is the arrayed waveguide grating (AWG). The AWG added multi-wavelength functionality for a wavelength division multiplexed (WDM) fiber optic network. Attempts to integrate voltage-controlled switching and attenuation functions into a silica glass platform exposed drawbacks stemming from the incorporation of classical IC technology for OEIC, including difficulty in processing optical materials with standard microelectronics fabrication equipment, a lack of repeatability, and high power consumption that caused chip-heating problems. Fortunately, silicon optical waveguiding technology, including and in conjunction with AWG technology, provides for the production of low-cost, reliable, repeatable, low power silicon OEICs.
A need exists to utilize amorphous silicon in conjunction with AWG technology to further meet the needs of OEICs in developing optical devices.
BRIEF SUMMARY OF THE INVENTIONAn optical waveguide assembly and method of forming the same is described. The optical waveguide assembly includes a waveguide, an amorphous silicon arrayed waveguide grating communicative with the waveguide, and an integrated amorphous silicon waveguide grating laser which communicatively outputs a laser output responsive to the amorphous silicon arrayed waveguide grating. The method includes providing a waveguide, providing an amorphous silicon arrayed waveguide grating communicative with the waveguide, and providing an integrated amorphous silicon waveguide grating laser which communicatively outputs a laser output responsive to the amorphous silicon arrayed waveguide grating.
Thus, the present invention utilizes amorphous silicon in conjunction with AWG technology for developing high quality optical devices.
For the present invention to be clearly understood and readily practiced, the present invention will be described in conjunction with the following figures, wherein like reference numerals represent like elements, and wherein:
It is to be understood that the figures and descriptions of the present invention have been simplified to illustrate elements that are relevant for a clear understanding of the present invention, while eliminating, for purposes of clarity, many other elements found in optical waveguiding devices. Those of ordinary skill in the art will recognize that other elements are desirable and/or required in order to implement the present invention. However, because such elements are well known in the art, and because they do not facilitate a better understanding of the present invention, a discussion of such elements is not provided herein.
Amorphous silicon (a-Si) presents advantageous properties as an Si-based waveguide core material. A-Si is a non-crystalline allotropic form of silicon. Silicon is normally tetrahedrally bonded to four neighboring silicon atoms, which is the casein amorphous silicon. However, unlike c-Si, a-Si does not form a continuous crystalline lattice. As such, some atoms in an a-Si structure may have “dangling bonds,” which occur when one of the tetrahedral bonds of the a-Si does not bond to one of the four neighboring atoms. Thus, a-Si is “under-coordinated.” The under-coordination of a-Si may be passivated by introducing hydrogen into the silicon. The introduction of hydrogen for passivation forms hydrogenated a-Si. Hydrogenated a-Si provides high electrical quality and relatively low optical absorption.
The density of pure silicon is lower than that of c-Si, and the refractive index of pure a-Si at near-infrared wavelengths is higher than that of c-Si. A-Si is thus serviceable as a waveguide core material on c-Si. However, as discussed above pure a-Si may contain a large density of point defects and dangling bonds, and as such the optical absorption by an a-Si core at near-infrared wavelengths may be significant without the aforementioned passivation.
Hydrogenated a-Si films may be deposited using a number of different techniques, including plasma enhanced chemical vapor deposition (PECVD), RF sputtering, and hot-filament CVD. Hydrogen content, void density, structural properties and optical and electronic properties of hydrogenated a-Si films are critically dependent on the precise nature of the processing conditions by which the a-Si film is created. Hydrogenated a-Si provides better transparency in the near-infrared than pure a-Si, but pure a-Si can be processed more easily. Pure a-Si has larger thermal stability then hydrogenated a-Si.
Further, such a-Si films may be formed using PECVD to have properties different from those of pure a-Si. For example, an N2-based PECVD formation of a-Si may form an amorphous silicon nitride (a-SiNy). Silicon nitrides generally are used for a myriad of purposes in a variety of compound semi-conductor devices. Such uses include surface passivation, interlayer elements and capacitor dielectrics.
Arrayed waveguide gratings (AWG) are widely used in material systems, such as silica systems, for multiplexing and demultiplexing of optical signals, such as of VV-DM signals. An AWG may combine or split, such as through a star coupler, optical signals of different wavelengths. As illustrated in
AWG's may be formed of hydrogenated amorphous silicon (a-Si). The present invention includes an integrated photonic device that may include an a-Si AWG, and that may include, for example, an Indium Gallium Arsenide Phosphide (InGaAsP) gain section. This integrated device may be a multi-wavelength laser with wavelengths determined by the AWG channels. Similar devices may use Indium Gallium Arsenide Phosphide/Indium Phosphide (InGaAsP/InP) materials for both gain sections and the AWG.
Referring now to
Referring now to
After the selected waveguide is etched, such as by RIE as discussed with respect to
Two bending radii (approximately 600 μm and approximately 1000 μm) and two different schemes for tapping the output light (splitter in input waveguide and second-order tapping of output) are discussed in exemplary embodiments of the present invention. However, these embodiments are merely exemplary, as any bending radius may be used, including, but not limited to, approximately 100 to approximately 600 μm, approximately 600 to approximately 1000 μm, and approximately 1000 μm to approximately 2000 μm. Also, other schemes may be used for tapping the output light as may be understood to those possessing an ordinary skill in the pertinent art.
Bending radii may determine device size and length, but may also be responsible for leakage losses. Together with losses due to material absorption and scattering loss due to etching roughness, an optimal bending radius that may ultimately result in lower overall losses may vary, depending on the results of etching.
Referring now to
Referring now to
Referring now to
Referring now to
Referring now to
According to an aspect of the present invention, the mask for AWG lasers may contain two designs: one with an AWG used with the center input and a splitter to tap the light out of the laser cavity, and the second design using an AWG with waveguides entering on the side of the star-coupler; the latter design may not need an extra coupler. As may be seen in
Referring now to
Referring now to
Referring now to
Referring now to
Those of ordinary skill in the art will recognize that many modifications and variations of the present invention may be implemented. The foregoing description and the following claims are intended to cover all such modifications and variations falling within the scope of the following claims, and the equivalents thereof.
Claims
1. An optical waveguide assembly comprising:
- a plurality of waveguides;
- an amorphous silicon arrayed waveguide grating communicative with said waveguides; and,
- an integrated III-V semiconductor device which communicatively outputs a laser output in cooperation with said amorphous silicon arrayed waveguide grating;
- wherein, the amorphous silicon waveguide grating and III-V semiconductor device are coupled such that the amorphous silicon waveguide grating at least spectrally filters and beam splits a laser output from a lasing cavity.
2. The assembly of claim 1, wherein said waveguide comprises an at least one a-SiNx:H layer and a single mode rib.
3. The assembly of claim 2, wherein said single mode rib is 2 μm wide.
4. The assembly of claim 2, wherein said single mode rib is dry etched using reactive ion etching.
5. The assembly of claim 2, wherein said at least one a-SiNx:H layer is deposited by plasma enhanced chemical vapor deposition.
6. The assembly of claim 1, wherein said waveguide is a buried waveguide.
7. The assembly of claim 1, wherein said waveguide comprises a bending radius, wherein said bending radius is between about 600 μm and about 1000 μm.
8. An optical waveguide assembly comprising:
- a waveguide;
- an amorphous silicon arrayed waveguide grating communicative with said waveguide;
- an integrated amorphous silicon waveguide grating laser which communicatively outputs a laser output responsive to said amorphous silicon arrayed waveguide grating; and
- a beam splitter distinct from the amorphous silicon waveguide grating.
9. The assembly of claim 1, further comprising an InGaAsP gain section to which the laser output is responsive.
10. A method of forming an optical waveguide assembly, said method comprising:
- providing a plurality of waveguides;
- an amorphous silicon arrayed waveguide grating communicative with said waveguides;
- providing an integrated III-V semiconductor device which communicatively outputs a laser output in cooperation with said amorphous silicon arrayed waveguide grating; and
- spectrally filtering and beam splitting a laser output from a lasing cavity using the amorphous silicon waveguide grating.
11. The method of claim 10, wherein said method comprises providing an at least one a-SiNx:H layer and providing a single mode rib.
12. The method of claim 11, wherein said single mode rib is 2 μm wide.
13. The method of claim 11, wherein said single mode rib is dry etched using reactive ion etching.
14. The method of claim 11, wherein said at least one a-SiNx:H layer is deposited by plasma enhanced chemical vapor deposition.
15. The method of claim 10, wherein said waveguide is a buried waveguide.
16. The method of claim 10, wherein said waveguide comprises a bending radius, wherein said bending radius is between about 600 μm and about 1000 μm.
17. The method of claim 10, wherein said providing said amorphous silicon arrayed waveguide grating further comprises providing a splitter.
18. The method of claim 10, further comprising providing an InGaAsP gain section to which the laser output is responsive.
Type: Application
Filed: May 12, 2009
Publication Date: Sep 24, 2009
Applicant: Novatronix Corporation (Seoul)
Inventors: Martin H. Kwakernaak (New Brunswick, NJ), Hooman Mohseni (Wilmette, IL), Gary Pajer (Yardley, PA)
Application Number: 12/454,063
International Classification: G02B 6/34 (20060101); B29D 11/00 (20060101); H05H 1/24 (20060101);