Semiconductor device with multiple gate dielectric layers and method for fabricating the same
Disclosed are a semiconductor device with dual gate dielectric layers and a method for fabricating the same. The semiconductor device includes: a silicon substrate divided into a cell region where NMOS transistors are formed and a peripheral region where NMOS and PMOS transistors are formed; a targeted silicon oxide layer formed on the silicon substrate in the cell region; an oxynitride layer formed on the silicon substrate in the peripheral region; a first gate structure formed in the cell region; a second gate structure formed on the oxynitride layer in an NMOS region of the peripheral region; and a third gate structure formed on the oxynitride layer in a PMOS region of the peripheral region.
Latest Patents:
The present application claims the benefit of priority to the Korean patent application No. KR 2004-0115352, filed in the Korean Patent Office on Dec. 29, 2004, the entire contents of which are incorporated herein by reference.
TECHNICAL FIELDThe present invention relates to a semiconductor device and method for fabricating the same, and, more particularly, to a semiconductor device and method for forming multiple gate dielectric layers in a semiconductor device.
BACKGROUNDRecently, there has been an active study on a system-on-chip (SOC) in which various devices with different functions have been integrated into one chip. For example, a thick gate dielectric layer is required for devices applied with high voltages to improve reliability, and a thin gate dielectric layer is required for devices sensitive to operation speed. Also, a dual polysilicon gate structure has been studied to improve the device operation speed and to get an N-channel metal oxide semiconductor field effect transistor (NMOSFET) and a P-channel metal oxide semiconductor field effect transistor (PMOSFET) to have a symmetric threshold voltage.
As shown in
A first gate structure 21 including an n+-type silicon electrode 14A, a low dielectric metal electrode 15 and a gate hard mask 16 is formed on the first gate dielectric layer 12 in the cell region. In the peripheral region, a second gate structure 22 including the n+-type silicon electrode 14A, the low dielectric metal electrode 15 and the gate hard mask 16 is formed on the second insulation layer 13A. Also, a third gate dielectric layer 13B including a p+-type silicon electrode 14B, the low dielectric metal electrode 15 and the gate hard mask 16 is formed on the third gate dielectric layer 13B in the peripheral region.
Herein, the first gate dielectric layer 12 formed in the cell region is thicker than the second and the third gate dielectric layers 13A and 13B formed in the peripheral region. Also, the first and the second gate dielectric layers 12 and 13A are silicon oxide (SiO2) layers formed by employing a thermal oxidation process, while the third gate dielectric layer 13B is a nitride layer.
However, there are several difficulties in forming the first to the third gate dielectric layers with different thicknesses in one chip. First, it is complicated to form the gate dielectric layers 12, 13A and 13B with different thicknesses in different regions through employing a thermal process. Second, the gate dielectric layer 13B formed beneath the P+-type silicon electrode 14B of the PMOS transistor in the peripheral region should be made of nitride instead of oxide in order to prevent penetration of boron. When the gate dielectric layer 13B is made of nitride, nitrogen exists at an interface between the gate dielectric layer 13B and the silicon substrate 11. The nitrogen existing at the interface results in a decrease in mobility of carriers which further causes a device speed to decrease.
As shown in
Consistent with embodiments of the present invention, there is provided a semiconductor memory device, including: a silicon substrate including a cell region where NMOS transistors are formed and a peripheral region where NMOS and PMOS transistors are formed; a targeted silicon oxide layer on the silicon substrate in the cell region; an oxynitride layer on the silicon substrate in the peripheral region; a first gate structure formed on the targeted silicon layer and including an n+-type silicon electrode, a low resistance metal electrode, and a gate hard mask; a second gate structure formed on the oxynitride layer in an NMOS region of the peripheral region and including an n+-type silicon electrode, a low resistance metal electrode, and a gate hard mask; and a third gate structure formed on the oxynitride layer in a PMOS region of the peripheral region and including a p+-type silicon electrode, a low resistance metal electrode, and a gate hard mask.
Also consistent with embodiments of the present invention, there is provided a method for fabricating a semiconductor device, including: forming a silicon oxide layer on a silicon substrate through a first oxidation process, the silicon substrate including a cell region where NMOS transistors are formed and a peripheral region where NMOS and PMOS transistors are formed; selectively removing the silicon oxide layer in the peripheral region; simultaneously forming silicon-nitrogen bonds on an exposed surface of the silicon substrate in the peripheral region and silicon-oxygen-nitrogen bonds on a surface of the silicon oxide layer remaining in the cell region; and forming an oxynitride layer on the surface of the silicon substrate with the silicon-nitrogen bonds and transforming the remaining silicon oxide layer with the silicon-oxygen-nitrogen bonds into a targeted silicon oxide layer through performing a second oxidation process.
The above and other features consistent with the present invention will become better understood with respect to the following description of the embodiments given in conjunction with the accompanying drawings, in which:
A semiconductor device with multiple gate dielectric layers and a method for fabricating the same consistent with the present invention will be described in detail with reference to the accompanying drawings.
As shown in
A first gate structure 100 including an n+-type silicon layer 37B, a low resistance metal electrode 40 and a gate hard mask 41 is formed on the targeted silicon oxide layer 36B in the cell region. Also, a second gate structure 200 including the n+-type silicon layer 37B, the low resistance metal electrode 40 and the gate hard mask 41 is formed on the oxynitride layer 36A in an NMOS region of the peripheral region. A third gate structure 300 including a p+-type silicon electrode 37A, the low resistance metal electrode 40 and the gate hard mask 41 is formed on the oxynitride layer 36A in a PMOS region of the peripheral region.
In the semiconductor device shown in
Referring to
Referring to
Referring to
Herein, the plasma nitridation process proceeds by using one of a method for generating nitrogen plasma directly on the silicon substrate 31 and a method for generating nitrogen plasma first at a different place and then nitriding the silicon substrate 31 by applying only nitrogen radicals thereto. The latter method is called a remote plasma nitridation method.
For the above described plasma nitridation process, a source gas for generating the plasma is selected from a group consisting of Ar/N2, Xe/N2, N2, NO, N2O and a mixture of these listed gases. At this time, a power for generating the plasma ranges from approximately 100 W to approximately 3,000 W, and the plasma nitridation process is carried out for approximately 5 seconds to approximately 600 seconds. Also, a temperature of the silicon substrate 31 is set to be in a range from approximately 0° C. to approximately 600° C., and a quantity of flowed source gas ranges from approximately 5 sccm (standard cubic centimeter per minute) to approximately 2,000 sccm.
Referring to
As a result of the re-oxidation process, the thickness of the oxynitride layer 36A is thinner than the targeted silicon oxide layer 36B because the nitrogen of the silicon-nitrogen bond 35A suppresses the oxidation during the re-oxidation process. In contrast, during the re-oxidation process, the nitrogen of the silicon-oxygen-nitrogen bond 35B is diffused out and thus, the suppression effect by the silicon-oxygen-nitrogen bond 35B is weaker than that by the silicon-nitrogen bond 35A. For this reason, during the concurrently applied re-oxidation process, the increase in the thickness of the targeted silicon oxide layer 36B is more pronounced than that of the oxynitride layer 35A.
Herein, since the silicon-nitrogen bond 35A has a stronger bonding force than that of the silicon-oxygen-nitrogen bond 35B, nitrogen of the silicon-nitrogen bond 35A barely diffuses out. Also, the remaining first silicon oxide layer 33A that is nitrided has a low level of resistance to the oxidation and as a result, the thickness of the nitrided remaining first silicon oxide layer 33A increases to a greater extent. On the other hand, the nitrided silicon substrate 31 has a high level of resistance to the oxidation and as a result, the increase in the thickness of the silicon substrate_31 is low.
Referring to
Next, dopants of an element in the third period, i.e., p-type dopants are ion-implanted by using the second mask pattern 38 as an ion implantation barrier. The dopant of the third period element is selected from a group consisting of boron (B), boron fluoride (BF) and boron difluoride (BF2). The ion implantation is carried out by applying energy ranging from approximately 2 keV to approximately 30 keV and a dose of the dopants ranges from approximately 1×1015 atoms/cm2 to approximately 1×1016 atoms/cm2.
Especially, the ion implantation with the above mentioned dopants of the third period element is applied to the undoped silicon layer 37 disposed in the PMOS region of the peripheral region. Through the ion implantation process, the undoped silicon layer 37 in the PMOS region of the peripheral region is transformed to a p+-type silicon electrode 37A. Also, a portion of the undoped silicon layer 37 masked by the second mask pattern 38 is not transformed.
Referring to
Subsequently, the undoped silicon layer 37 is subjected to an ion implantation process employing dopants of an element in the fifth period, i.e., n-type dopants. The fifth period element dopant is one of phosphorus (P) and arsenic (As). This ion implantation process is carried out with an energy ranging from approximately 3 keV to approximately 50 keV and a dose ranging from approximately 1×1015 atoms/cm2 to approximately 1×1016 atoms/cm2. As a result of this ion implantation process, the undoped silicon layer 37 disposed in the cell region and the NMOS region of the peripheral region is transformed into an n+-type silicon electrode 37B.
Referring to
As shown in
For the oxygen profiles, the thickness of the silicon oxide layer increases by the re-oxidation process.
Consistent with the present invention, the NMOS transistor in the cell region uses the targeted silicon oxide layer 36B as a gate dielectric layer while the NMOS transistor and the PMOS transistor in the peripheral region use the oxynitride layer 36A as the gate dielectric layer which is thin. Therefore, it is possible to form dual gate dielectric layers with different thicknesses within one chip.
As mentioned above, the targeted silicon oxide layer 36B and the oxynitride layer 36A each having a different thickness can be selectively formed within one chip through simple processes such as the plasma nitridation process and the re-oxidation process. Thus, the NMOS transistor in the cell region requiring high sensitivity to carrier mobility and good reliability uses the targeted silicon oxide layer 36B as the gate dielectric layer, while the PMOS transistor in the peripheral region requiring high sensitivity to penetration of boron uses the oxynitride layer 36A as a gate dielectric layer.
For instance, in case of implementing this dual gate electric layer to DRAM devices, since the NMOS transistor in the cell region requires high sensitivity to the carrier mobility and good reliability, the thick targeted silicon oxide layer 36B is used as the gate dielectric layer. Also, the PMOS transistor in the peripheral region uses the oxynitride layer 36A as the gate dielectric layer to prevent the dopants of the third period element doped onto the p+-type silicon electrode 37A from penetrating into the gate dielectric layer.
Thus, consistent with the present invention, the selectively formed dual dielectric layers, i.e., the targeted silicon oxide layer and the oxynitride layer, provide an effect of securing intended levels of carrier mobility and reliability required in the transistor in the cell region and solving the boron penetration problem in the peripheral region. Also, the dual gate dielectric layers with different thicknesses provide another effect of realizing transistors usable for various purposes.
It will be apparent to those skilled in the art that various modifications and variations can be made in the disclosed process without departing from the scope or spirit of the invention. Other embodiments will be apparent to those skilled in the art from consideration of the specification and practice of the invention disclosed herein. It is intended that the specification and examples be considered as exemplary only, with a true scope and spirit of the invention being indicated by the following claims.
Claims
1. A semiconductor memory device, comprising:
- a silicon substrate comprising a cell region where NMOS transistors are formed and a peripheral region where NMOS and PMOS transistors are formed;
- a targeted silicon oxide layer on the silicon substrate in the cell region;
- an oxynitride layer on the silicon substrate in the peripheral region;
- a first gate structure formed on the targeted silicon layer and including an n+-type silicon electrode, a low resistance metal electrode, and a gate hard mask;
- a second gate structure formed on the oxynitride layer in an NMOS region of the peripheral region and including an n+-type silicon electrode, a low resistance metal electrode, and a gate hard mask; and
- a third gate structure formed on the oxynitride layer in a PMOS region of the peripheral region and including a p+-type silicon electrode, a low resistance metal electrode, and a gate hard mask.
2. The semiconductor device of claim 1, wherein the targeted silicon oxide layer has a thickness greater than that of the oxynitride layer.
3. The semiconductor device of claim 1, wherein the oxynitride layer is formed by oxidizing a surface portion of the silicon substrate on which silicon-nitrogen bonds are formed and the targeted silicon oxide layer is formed by oxidizing a silicon oxide layer formed on the silicon substrate and on which silicon-oxygen-nitrogen bonds are formed.
4. The semiconductor device of claim 1, wherein the oxynitride layer contains nitrogen of a concentration ranging from approximately 5% to approximately 30% in atomic percent.
5. The semiconductor device of claim 1, wherein the n+-type silicon electrode is formed by ion implanting one of phosphorus and arsenic.
6. The semiconductor device of claim 1, wherein the p+-type silicon electrode is formed by ion implanting one of boron, boron fluoride and boron difluoride.
Type: Application
Filed: Jun 15, 2009
Publication Date: Jan 21, 2010
Applicant:
Inventors: Cho Heung-Jae (Ichon-shi), Lim Kwan-Yong (Ichon-shi), Lee Seung-Ryong (Ichon-shi)
Application Number: 12/457,540
International Classification: H01L 27/105 (20060101); H01L 29/792 (20060101);