REDUCTION OF STI CORNER DEFECTS DURING SPE IN SEMICONDCUTOR DEVICE FABRICATION USING DSB SUBSTRATE AND HOT TECHNOLOGY
A device and method of reducing residual STI corner defects in a hybrid orientation transistor comprising, forming a direct silicon bonded substrate wherein a second silicon layer with a second crystal orientation is bonded to a handle substrate with a first crystal orientation, forming a pad oxide layer on the second silicon layer, forming a nitride layer on the pad oxide layer, forming an isolation trench within the direct silicon bonded substrate through the second silicon layer and into the handle substrate, patterning a PMOS region of the direct silicon bonded substrate utilizing photoresist including a portion of the isolation trench, implanting and amorphizing an NMOS region of the direct silicon bonded substrate, removing the photoresist, performing solid phase epitaxy, performing a recrystallization anneal, forming an STI liner, completing front end processing, and performing back end processing.
Latest TEXAS INSTRUMENTS INCORPORATED Patents:
- Laterally diffused metal-oxide semiconductor (LDMOS) transistor with integrated back-gate
- LTE transmission mask adjustment to maximize performance and reduce interference
- Monitoring circuit for photovoltaic module
- RGB-IR pixel pattern conversion via conversion engine
- Multi-peripheral and/or multi-function export
This is a continuation of U.S. application Ser. No. 11/847,053 filed Aug. 29, 2007, the entirety of which is incorporated herein by reference.
FIELD OF INVENTIONThe invention relates generally to semiconductor devices and more particularly to methods for reducing corner defects generated during SPE in shallow trench isolation in the manufacture of semiconductor devices.
BACKGROUNDComplementary metal oxide semiconductor (CMOS) devices (e.g., NMOS or PMOS transistors) have conventionally been fabricated on semiconductor workpieces with a single crystal orientation (e.g., silicon having a Miller index (100)). Transistors within the CMOS devices, for example, are used in cell phones, laptop computers, etc., requiring greater speed, lower power consumption, higher reliability, and the like. The speed of the devices can be improved by increasing electron mobility, hole mobility, or both, using hybrid orientation technology (HOT). Electron mobility/movement for NMOS devices, for example, is high (e.g., 2-4 times higher) when the NMOS devices are built on a Miller index (100) substrate, however the hole mobility for PMOS devices is enhanced when the PMOS devices are fabricated on a Miller index (110) substrate. As a result, PMOS devices formed on a Miller index (110) surface will exhibit significantly higher drive currents than PMOS devices formed on a Miller index (100) surface. In other words, there is a desire to exploit the substrate orientation with Miller index (110) for pFETs and Miller index (100) for nFETs, for example. Previous endeavors to take advantage of this difference between NMOS and PMOS devices has resulted in hybrid substrates with different surface orientations using workpiece composites to optimize the crystalline orientation of the NMOS and PMOS devices, for example.
Direct silicon bonded (DSB) substrates are fabricated by chemo-mechanically bonding a film of single-crystal silicon of a first crystal orientation onto a base substrate having a different or second crystal orientation. Unlike, silicon-on-insulator (SOI) substrates, DSB substrates demonstrate “bulk-like” properties.
The industry continues to seek new approaches to “force” electric charges to move at faster rates through the semiconductor device channels in an endless pursuit of increased circuit speeds and power consumption reductions. The ever decreasing size and scale of semiconductor device technology has presented numerous challenges. For example, gate leakage current due to sharp corner effects in thin silicon gate oxide is a more pronounced problem with smaller devices. These sharp features can also increase stresses, produce large electric fields, create dislocations in the silicon, and ultimately fail the device, for example.
Crystallographic planes are significant in both the semiconductor characteristics and applications since different crystallographic planes can exhibit significantly diverse physical properties. For example, surface density of atoms (i.e., atoms/cm2) on various crystallographic planes can differ substantially from each other. One of the standard notations for the various planes is the Miller indices that are used to denote the crystallographic planes and the directions normal to those planes. The general crystal lattice is represented by a set of unit vectors (e.g., a, b, and c) such that an entire crystal can be replicated by copying the unit cell of the crystal and duplicating it at a given integer offset along the unit vectors. For example, reproducing the basic cell at positions (na)a+(nb)b+(nc)c, wherein na, nb, and nc are integers. It is not a requirement that the unit vectors be orthogonal.
Amorphization templated recrystallization (ATR) is an approach for providing planar hybrid orientation substrates. Silicon is easily amorphized by ion implantation and easily recrystallized by a subsequent annealing.
Subsequently,
Subsequently,
As illustrated for the device 1500 in
Accordingly, there is a need for improved semiconductor processes and devices to overcome the problems in the art, such as outlined above.
SUMMARYIn one aspect, the invention provides a device with reduced residual STI corner defects formed by the process of forming a direct silicon bonded substrate wherein a second silicon layer with a second crystal orientation is bonded to a handle substrate with a first crystal orientation, forming a pad oxide layer on the second silicon layer, forming a nitride layer on the pad oxide layer, forming an isolation trench within the direct silicon bonded substrate through the second silicon layer and into the handle substrate, patterning a PMOS region of the direct silicon bonded substrate utilizing photoresist including a portion of the isolation trench, implanting and amorphizing an NMOS region of the direct silicon bonded substrate, removing the photoresist, performing solid phase epitaxy, performing a recrystallization anneal, completing front end processing, and performing back end processing.
In another aspect, the invention provides a method of fabricating a semiconductor device with reduced residual STI corner defects comprising forming a direct silicon bonded substrate wherein a second silicon layer with a second crystal orientation is bonded to a handle substrate with a first crystal orientation forming a pad oxide layer on the second silicon layer, forming a nitride layer on the pad oxide layer, forming an isolation trench within the direct silicon bonded substrate through the second silicon layer and into the handle substrate, patterning a PMOS region of the direct silicon bonded substrate utilizing photoresist including a portion of the isolation trench, implanting and amorphizing an NMOS region of the direct silicon bonded substrate, removing the photoresist, performing solid phase epitaxy, performing a recrystallization anneal, forming an STI liner, completing front end processing and performing back end processing.
An example implementation of the principles of the invention is described in the context of embodiment of a semiconductor device including an STI (shallow trench isolation) region. In the fabrication of semiconductor devices, isolation structures are formed between active areas in which electrical devices such as transistors, memory cells, or the like, are to be formed. The isolation structures, in this case STI structures, are typically formed during initial processing of a semiconductor substrate, prior to the formation of such electrical devices.
A modified amorphization templated recrystallization (ATR) approach for providing planar hybrid orientation substrates can be utilized in the invention. As discussed supra, silicon is easily amorphized by ion implantation and easily recrystallized by subsequent SPE processing and annealing. The inventive solution enables the elimination of STI corner defects without the use of a subsequent anneal at extremely high temperature (e.g., greater than 1250 degrees Celsius) that can generate undesired mechanical stresses resulting in workpiece warping, and the like.
Device 2100 in
The nitride layer 2104 can provide protection for an electrical device active area formation during shallow trench creation. The nitride layer 2104 can be, for example, SiN, silicon nitride (Si3N4), reaction bonded silicon nitride (RBSN), hot pressed silicon nitride (HPSN), sintered silicon nitrides (SSN), and the like. The dielectric layer 2102 and the nitride layer 2104 together form what is referred to as a “hard mask”. During pattern transfer to an integrated circuit device, the hard mask layer is consumed during an etching process, for example. However, it is to be appreciated that any hard mask techniques may be practiced in this invention, and that other hard mask materials and masking processes are contemplated as falling within the scope of the invention.
A conventional photoresist (not shown) can be applied, for example and can be utilized to pattern and etch the nitride layer 2104 and the pad oxide layer 2102 in order to result in a patterned and etched device 2200 with a resultant STI trench 2206. The photoresist can be, for example, a solvent-based, light-sensitive resin solution that is uniformly applied, for example, on the nitride layer 2104 of the device 2200, utilizing a spin type process, and the like. The photoresist can, for example, be a chemical, negative photoresist that hardens when exposed to ultraviolet light or other light wavelengths and the unexposed photoresist can be dissolved by employing a developer solvent, leaving openings in the exposed photoresist. Another approach involves utilizing a positive photoresist that is initially insoluble, and when exposed to e.g., UV, mercury light, laser, x-rays, electron beam, etc., becomes soluble. After exposure, the photoresist can create the etch pattern needed to form the active STI trenches 2206 during, for example, reactive ion etching (RIE).
Referring to
In
The device 2400 in
In
Referring to
Beginning at 2602 of
At 2608 a pad oxide layer (e.g., 10-20 nm) can be formed over the second substrate (110) utilizing a thermal oxide process, for example. Any appropriate process steps and materials can be employed in the formation of the oxide layer at 2608, including oxidation processes as are well known to those of ordinary skill in the art. At 2610 a nitride layer (e.g., 150-200 nm) can be formed over the oxide layer at 2608. Known deposition processes by those of ordinary skill in the art can be employed in the formation of the nitride layer at 2610. The nitride layer, as discussed in
The methodology continues at 2614, where a soluble photoresist (exposed or un-exposed), for example is developed or etched away exposing the outer surface of the nitride layer formed at 2610. The process at 2614 results in a pattern being formed on the substrate allowing for STI trench formation. At 2616 a nitride layer and oxide layer etching process can be performed. As disclosed in
At 2616 a recessed active trench can be created in the substrate. The etching procedure may be, for example, a single step or multi-step process, a wet or dry etch process, by which material is removed in the exposed isolation regions in the semiconductor substrate to form the isolation trenches. At 2618 the photoresist is removed. The process of removing photoresist is well known by those of ordinary skill in the art. The oxide and nitride layers can protect the surface of “active areas” from subsequent chemical mechanical polishing (CMP), for example. The nitride layer can provide protection for an electrical device active area formation during shallow trench creation. The nitride layer can be, for example, SiN, silicon nitride (Si3N4), reaction bonded silicon nitride (RBSN), hot pressed silicon nitride (HPSN), sintered silicon nitrides (SSN), and the like. The example method 2600 continues at 2620, for example, a photoresist can be formed over the PMOS active area as illustrated. The photoresist can be applied to the device followed by patterning involving photoresist removal and a standard clean in that is well known by those of ordinary skill in the art. The device can be implanted utilizing Si+ and/or Ge+ at 2622 through the nitride-oxide hard mask, for example as discussed supra. The implant dose and energy can be in the range of 2.5-5.0E15/cm2 and 200-300 keV, respectively, for example. The device after the first silicon layer has been amorphized (α-Si) by ion implantation to create an amorphous layer. The amorphized layer can be approximately 250-350 nm deep, for example.
The change of the crystal orientation of the top silicon layer can be realized as an amorphized top layer which will re-grow aligned to the handle workpiece crystalline structure, for example. SPE can be employed at 2624 by a low temperature anneal in an Ar, N2 or H2 environment, for example. Typical ranges for temperatures can be respectively 400-700 degrees Celsius. After SPE, an anneal (e.g., greater than 1050 but less than 1250 degrees Celsius, 10 sec, N2, Ar or H2 environment) can be applied to reduce residual crystal damage. The damage can be in the form of stable end-of-range damage induced dislocation loops located at the amorphous/silicon interface, STI corner defects, and the like, for example. The inventors recognized that by keeping the anneal temperature below 1250 degrees Celsius that wafer warpage defects, and the like would be reduced. In order to be able to remove the corner defects without applying extremely high conventional temperature anneals (e.g., greater than 1250 degrees Celsius) the SPE can be conducted before the oxide lining and oxide filling of the trench. The “free” sidewall surface of the trench provides the silicon atoms more freedom in realigning to the handle workpiece crystalline structure during SPE. The atoms are not constrained and there for can move at the sidewall surface.
This can be followed at 2626 with the deposition or forming of a dielectric trench liner that can be formed over the exposed portions of the STI trench. The trench dielectric liner can be deposited or formed in any suitable process step, such as, a thermal growth process at the exposed trench surfaces, including sidewall recesses and center section of the etched STI trench. As discussed supra, the trench dielectric liner can be deposited to act as a protective layer of the trench, to act as a high purity spacer between the silicon and the fill dielectric, and the like. The trench lining process can be, for example, a thermal process, a LVCVD process, a thermal process bi-layered liner, a chemical oxide process in combination with LPCVD films, and the like. It should be apparent to those of ordinary skill in the art that other trench liner materials (e.g., nitride), multiple isolation liners, no liners at all, and the like are contemplated with this invention. At 2626 the front end processing can be completed, for example. Front end processing can include filling the STI trench with oxide and chemical mechanical polishing, and the like.
The example method 2600 continues at 2628, for example, where back end processing can be completed. The back end processing of CMOS devices is well known by those of ordinary skill in the art and can include forming metal interconnect layers, and the like. The process ends at 2630.
Those skilled in the art to which the invention relates will appreciate that other embodiments and modifications are possible within the scope of the claimed invention.
Claims
1-7. (canceled)
8. A method of fabricating a semiconductor device, comprising:
- forming a direct silicon bonded substrate wherein a second silicon layer with one of a (100) or (110) crystal orientation is bonded to a first silicon layer of a handle substrate with the other of the (100) or (110) crystal orientation;
- forming a pad oxide layer over the second silicon layer;
- forming a nitride layer over the pad oxide layer;
- forming an isolation trench within the direct silicon bonded substrate through the second silicon layer and into the first silicon layer;
- after forming the isolation trench, performing a patterned implant to amorphize a region of the second silicon layer;
- performing solid phase epitaxy at a temperature of less than about 700° C. to recrystallize the amorphized region of the second silicon layer to the same crystal orientation as the first silicon layer; and
- after performing the solid phase epitaxy, filling the isolation trench with an isolation material.
9. The method of claim 8, further comprising, after performing the solid phase epitaxy, performing an anneal at a temperature of greater than about 1050° C. but less than 1250° C. to repair residual crystal damage.
10. The method of claim 9, wherein filling the isolation trench with an isolation material comprises growing an oxide liner on sidewalls of the isolation trench, forming a layer of oxide including over the oxide liner to fill the trench, and mechanically planarizing the layer of oxide to remove portions outside the isolation trench.
11. The method of claim 10, wherein the solid phase epitaxy is performed at a temperature of 550-650° C. for a time of 0.6-35 minutes.
12. The method of claim 10, wherein the patterned implant is performed by implanting at least one of silicon or germanium into the second silicon layer.
13. The method of claim 12, wherein the implant is performed using a dosage of 2.5-5.0E15 atoms/cm2 at an energy of 200-300 keV.
14. The method of claim 12, wherein one of an NMOS or PMOS transistor is formed in the amorphized region of the second silicon layer after recrystallization, and the other of the NMOS or PMOS transistor is formed in an unamorphized region of the second silicon layer, with the oxide filled trench serving to isolate the NMOS transistor from the PMOS transistor.
15. The method of claim 8, wherein filling the isolation trench with an isolation material comprises growing an oxide liner on sidewalls of the isolation trench, forming a layer of oxide including over the oxide liner within the trench, and mechanically planarizing the layer of oxide to remove portions outside the isolation trench.
16. The method of claim 8, wherein filling the isolation trench with an isolation material comprises growing an oxide liner on sidewalls of the isolation trench, forming a layer of oxide including over the oxide liner to fill the trench, and mechanically planarizing the layer of oxide to remove portions outside the isolation trench.
17. The method of claim 16, wherein one of an NMOS or PMOS transistor is formed in the amorphized region of the second silicon layer after recrystallization, and the other of the NMOS or PMOS transistor is formed in an unamorphized region of the second silicon layer, with the oxide filled trench serving to isolate the NMOS transistor from the PMOS transistor.
18. The method of claim 8, wherein the solid phase epitaxy is performed at a temperature of 550-650° C. for a time of 0.6-35 minutes.
19. A method of fabricating a semiconductor device, comprising:
- forming a direct silicon bonded substrate wherein a second silicon layer with a (110) crystal orientation is bonded to a first silicon layer of a handle substrate with the (100) crystal orientation;
- forming a hardmask over the second silicon layer, the hardmask comprising a silicon oxide layer and a silicon nitride layer;
- patterning the hardmask with an opening, and etching the second silicon layer and at least a portion of the first silicon layer through the opening to form an isolation trench to separate PMOS and NMOS active areas within the direct silicon bonded substrate;
- after forming the isolation trench, performing a patterned implant to amorphize the second silicon layer selectively in the NMOS active area;
- performing solid phase epitaxy at a temperature of less than about 700° C. to recrystallize the amorphized region of the second silicon layer to the same crystal orientation as the first silicon layer; and
- after performing the solid phase epitaxy, filling the isolation trench with an isolation material by growing an oxide liner on sidewalls of the isolation trench, forming a layer of oxide including over the oxide liner within the trench, and mechanically planarizing the layer of oxide to remove portions outside the isolation trench.
20. The method of claim 19, wherein the patterned implant comprises implanting at least one of silicon or germanium through the hardmask.
21. The method of claim 20, wherein the implant of at least one of silicon or germanium is performed using a dosage of 2.5-5.0E15 atoms/cm2 at an energy of 200-300 keV.
22. The method of claim 21, further comprising, after performing the solid phase epitaxy, performing an anneal at a temperature of greater than about 1050° C. but less than 1250° C. to repair residual crystal damage.
23. The method of claim 22, wherein the solid phase epitaxy is performed at a temperature of 550-650° C. for a time of 0.6-35 minutes.
24. The method of claim 19, wherein the solid phase epitaxy is performed at a temperature of 550-650° C. for a time of 0.6-35 minutes; and further comprising, after performing the solid phase epitaxy, performing an anneal at a temperature of greater than about 1050° C. but less than 1250° C. to repair residual crystal damage.
25. The method of claim 19, wherein the second silicon layer is bonded to the first silicon layer at an interface; and the patterned implant also amorphizes a portion of the first silicon layer to create an amorphous layer extending below the location of the interface.
26. The method of claim 25, wherein the amorphized portion of the first silicon layer comprises a portion located below the isolation trench.
27. The method of claim 26, wherein the second silicon layer has a thickness of approximately 100-300 nm and the amorphous layer is approximately 250-350 nm deep.
Type: Application
Filed: Dec 14, 2009
Publication Date: Dec 2, 2010
Applicant: TEXAS INSTRUMENTS INCORPORATED (Dallas, TX)
Inventors: Angelo Pinto (San Diego, CA), Periannan R. Chidambaram (Richardson, TX), Rick L. Wise (Fairview, TX)
Application Number: 12/637,279
International Classification: H01L 21/76 (20060101);