Grooved And Refilled With Deposited Dielectric Material Patents (Class 438/424)
  • Patent number: 12382673
    Abstract: A method of making a Fin Field-effect transistor includes: providing a substrate and a plurality of fin structures on a surface of the substrate; forming a shallow trench isolation structure between the plurality of fin structures; forming a stress layer on a side of the shallow trench isolation structure away from the substrate; heat treating the stress layer and the plurality of fin structures; and removing the stress layer. The fin structures are spaced apart from each other. The stress layer covers a part of the fin structures away from the substrate.
    Type: Grant
    Filed: January 27, 2022
    Date of Patent: August 5, 2025
    Assignee: HON HAI PRECISION INDUSTRY CO., LTD.
    Inventor: Kuang-Hao Chiang
  • Patent number: 12374612
    Abstract: A microelectronic device package includes a microelectronic device, a masking material defined (MMD) contact, and a non-masking material defined (NMMD) contact. The microelectronic device is supported on, and electrically connected to, one of a package substrate and a redistribution layer. The MMD contact is located in a first region of the one of the package substrate and the redistribution layer and facilitates a first electrical connection between the microelectronic device and the one of the package substrate and the redistribution layer. The NMMD contact is located in a second, different region of the one of the package substrate and the redistribution layer and facilitates a second electrical connection between the microelectronic device and the one of the package substrate and the redistribution layer. Related methods and systems are also disclosed.
    Type: Grant
    Filed: September 7, 2022
    Date of Patent: July 29, 2025
    Assignee: Micron Technology, Inc.
    Inventors: Kelvin Tan Aik Boo, Wen Wei Lum, Hong Wan Ng
  • Patent number: 12376369
    Abstract: FinFET devices and processes to prevent fin or gate collapse (e.g., flopover) in finFET devices are provided. The method includes forming a first set of trenches in a semiconductor material and filling the first set of trenches with insulator material. The method further includes forming a second set of trenches in the semiconductor material, alternating with the first set of trenches that are filled. The second set of trenches form semiconductor structures which have a dimension of fin structures. The method further includes filling the second set of trenches with insulator material. The method further includes recessing the insulator material within the first set of trenches and the second set of trenches to form the fin structures.
    Type: Grant
    Filed: February 28, 2023
    Date of Patent: July 29, 2025
    Assignee: Adeia Semiconductor Solutions LLC
    Inventors: Veeraraghavan S. Basker, Kangguo Cheng, Theodorus E. Standaert, Junli Wang
  • Patent number: 12336209
    Abstract: A method for fabricating semiconductor device includes the steps of: forming a fin-shaped structure on a substrate; forming a gate dielectric layer on the fin-shaped structure; forming a gate electrode on the fin-shaped structure; performing a nitridation process to implant ions into the gate dielectric layer adjacent to two sides of the gate electrode; and forming an epitaxial layer adjacent to two sides of the gate electrode.
    Type: Grant
    Filed: March 7, 2023
    Date of Patent: June 17, 2025
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chung-Fu Chang, Kuan-Hung Chen, Guang-Yu Lo, Chun-Chia Chen, Chun-Tsen Lu
  • Patent number: 12317482
    Abstract: A method of manufacturing a semiconductor structure and a semiconductor structure are provided. The method includes: providing a sacrificial structure disposed on a substrate; arranging a photomask to cover the sacrificial structure, wherein the photomask includes a plurality of transparent portions, a plurality of central opaque portions, at least one first edge opaque portion and at least one second edge opaque portion between the first edge opaque portion and the central opaque portions; removing portions of the sacrificial structure to form a plurality of central openings, at least one first edge opening and at least one second edge opening through the central opaque portions, the first edge opaque portion, the second edge opaque portion and the transparent portions; and forming at least one edge word line on the substrate through the second edge opening and forming a plurality of central word lines on the substrate through the central openings.
    Type: Grant
    Filed: August 3, 2022
    Date of Patent: May 27, 2025
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Yu-Ting Lin
  • Patent number: 12317527
    Abstract: The present disclosure provides a semiconductor structure. The semiconductor structure includes device fins formed on a substrate; fill fins formed on the substrate and disposed among the device fins; and gate stacks formed on the device fins and the fill fins. The fill fins include a first dielectric material layer and a second dielectric material layer deposited on the first dielectric material layer. The first and second dielectric material layers are different from each other in composition.
    Type: Grant
    Filed: April 15, 2024
    Date of Patent: May 27, 2025
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Kuo-Cheng Chiang, Teng-Chun Tsai, Kuan-Lun Cheng, Chih-Hao Wang
  • Patent number: 12289916
    Abstract: The invention provides a semiconductor structure, the semiconductor structure includes a substrate, a transistor disposed on the substrate, wherein the transistor comprises a gate structure, a source and a drain, and the gate structure of the transistor located on the substrate and extending along a first direction, and a plurality of supporting patterns located in the gate structure of the transistor, wherein the plurality of supporting patterns are separated from each other and arranged along a second direction, wherein the second direction is perpendicular to the first direction, and wherein at least four supporting patterns of the plurality of supporting patterns constitute a supporting pattern dashed line, wherein the supporting pattern dashed line extends along the second direction.
    Type: Grant
    Filed: March 19, 2024
    Date of Patent: April 29, 2025
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Wei-Cheng Hung, Yu-Jen Liu
  • Patent number: 12278265
    Abstract: A method for fabricating minimal fin length includes the steps of first forming a fin-shaped structure extending along a first direction on a substrate, forming a first single-diffusion break (SDB) trench and a second SDB trench extending along a second direction to divide the fin-shaped structure into a first portion, a second portion, and a third portion, and then performing a fin-cut process to remove the first portion and the third portion.
    Type: Grant
    Filed: June 7, 2023
    Date of Patent: April 15, 2025
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Chien-Heng Liu, Chia-Wei Huang, Hsin-Jen Yu, Yung-Feng Cheng, Ming-Jui Chen
  • Patent number: 12261042
    Abstract: A method includes forming a silicon layer on a wafer, forming an oxide layer in contact with the silicon layer, and, after the oxide layer is formed, annealing the wafer in an environment comprising ammonia (NH3) to form a dielectric barrier layer between, and in contact with, the silicon layer and the oxide layer. The dielectric barrier layer comprises silicon and nitrogen.
    Type: Grant
    Filed: June 6, 2022
    Date of Patent: March 25, 2025
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wan-Yi Kao, Chung-Chi Ko
  • Patent number: 12262557
    Abstract: A vertical, fin-based field effect transistor (FinFET) device includes an array of individual FinFET cells. The array includes a plurality of rows and columns of separated fins. Each of the separated fins is in electrical communication with a source contact. The vertical FinFET device also includes one or more rows of first inactive fins disposed on a first set of sides of the array of individual FinFET cells, one or more columns of second inactive fins disposed on a second set of sides of the array of individual FinFET cells, and a gate region surrounding the individual FinFET cells of the array of individual FinFET cells, the first inactive fins, and the second inactive fins.
    Type: Grant
    Filed: March 29, 2022
    Date of Patent: March 25, 2025
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Clifford Drowley, Andrew P. Edwards, Hao Cui, Subhash Srinivas Pidaparthi
  • Patent number: 12198926
    Abstract: In some embodiments a method comprises depositing a first silicon nitride layer on a top surface of a semiconductor wafer and forming one or more first gaps in the first silicon nitride layer. The one or more first gaps can relieve stress formed in the first silicon nitride layer. A first fill material is deposited on the first silicon nitride layer and the first silicon nitride layer is planarized. A second silicon nitride layer is deposited across the first silicon nitride layer and one or more second gaps are formed in the second silicon nitride layer. The one or more second gaps can relieve stress formed in the second silicon nitride layer. A second fill material is deposited across the second silicon nitride layer and the second silicon nitride layer is planarized.
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: January 14, 2025
    Assignee: Psiquantum, Corp.
    Inventors: Yong Liang, Ann Melnichuk
  • Patent number: 12193221
    Abstract: A semiconductor structure includes a semiconductor substrate and an isolation structure disposed in the semiconductor substrate. The isolation structure includes a lining layer disposed along a boundary between the semiconductor substrate and the isolation structure, a first oxide fill layer disposed over the lining layer, a dielectric barrier structure surrounding the first oxide fill layer in a closed loop, and a second oxide fill layer disposed over the dielectric barrier structure and adjacent to the lining layer.
    Type: Grant
    Filed: June 7, 2021
    Date of Patent: January 7, 2025
    Assignee: WINBOND ELECTRONICS CORP.
    Inventors: Wei-Che Chang, Kai Jen, Yu-Po Wang
  • Patent number: 12170255
    Abstract: A semiconductor device is configured to include: a base member of a semiconductor material which forms a thin plate shape; a front face electrode which is placed on a front surface of the base member; a rear face electrode which covers a rear surface of the base member; and a via hole which forms a hole shape provided with the front face electrode as a bottom and being open onto the rear surface, and through which the front face electrode and the rear face electrode are electrically connected to each other; wherein, at a circumferential edge portion of the base member on its side where the rear surface is located, a protrusion portion which protrudes in a thickness direction is disposed.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: December 17, 2024
    Assignee: Mitsubishi Electric Corporation
    Inventor: Toshiaki Kitano
  • Patent number: 12154821
    Abstract: A method of manufacturing a semiconductor device is provided. The method includes providing a substrate. The method also includes forming a first trench within the substrate. The method further includes forming a first nitridation layer within the first trench. In addition, the method includes forming a first isolation layer on the first nitridation layer to form a first isolation structure.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: November 26, 2024
    Assignee: NANYA TECHNOLOGY CORPORATION
    Inventor: Ying-Cheng Chuang
  • Patent number: 12148766
    Abstract: Embodiments of the disclosure generally provide methods of forming a capacitor layer or a gate insulating layer with high dielectric constant as well as low film current leakage and desired film qualities for display applications. In one embodiment, a thin film transistor structure includes a dielectric layer formed on a substrate, wherein the dielectric layer is a zirconium containing material comprising aluminum, and gate, source and drain electrodes formed on the substrate, wherein the gate, source and drain electrodes formed above or below the dielectric layer.
    Type: Grant
    Filed: December 19, 2023
    Date of Patent: November 19, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Xiangxin Rui, Lai Zhao, Jrjyan Jerry Chen, Soo Young Choi, Yujia Zhai
  • Patent number: 12080758
    Abstract: The present disclosure provides a manufacturing method of a semiconductor structure and a semiconductor structure. The manufacturing method of a semiconductor structure includes: providing a substrate, the substrate includes active regions and isolation regions, each of the isolation regions includes a first trench and an isolation layer formed in the first trench; removing part of the isolation layer to form first grooves; forming a first mask layer, the first mask layer covers upper surfaces of the active regions and fills the first grooves; planarizing the first mask layer, such that an upper surface of a portion of the first mask layer located above the active regions is flush with an upper surface of a portion of the first mask layer located above the isolation regions; removing part of the first mask layer, part of the isolation layer, and part of the substrate, to form second trenches and third trenches.
    Type: Grant
    Filed: November 15, 2021
    Date of Patent: September 3, 2024
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventor: Weichao Zhang
  • Patent number: 12054827
    Abstract: Embodiments herein provide methods of plasma treating an amorphous silicon layer deposited using a flowable chemical vapor deposition (FCVD) process. In one embodiment, a method of processing a substrate includes plasma treating an amorphous silicon layer by flowing a substantially silicon-free hydrogen treatment gas into a processing volume of a processing chamber, the processing volume having the substrate disposed on a substrate support therein, forming a treatment plasma of the substantially silicon-free hydrogen treatment gas, and exposing the substrate having the amorphous silicon layer deposited on a surface thereof to the treatment plasma. Herein, the amorphous silicon layer is deposited using an FCVD process.
    Type: Grant
    Filed: April 1, 2019
    Date of Patent: August 6, 2024
    Assignee: Applied Materials, Inc.
    Inventors: Shishi Jiang, Pramit Manna, Abhijit Basu Mallick, Suresh Chand Seth, Srinivas D. Nemani
  • Patent number: 12040370
    Abstract: The invention provides a semiconductor structure, the semiconductor structure includes a substrate, a gate structure which extends along a first direction, and a plurality of supporting patterns which are separated from each other and arranged along a second direction which is perpendicular to the first direction.
    Type: Grant
    Filed: July 14, 2021
    Date of Patent: July 16, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Wei-Cheng Hung, Yu-Jen Liu
  • Patent number: 11996317
    Abstract: A method includes etching a semiconductor substrate to form a trench and a semiconductor strip. A sidewall of the semiconductor strip is exposed to the trench. The method further includes depositing a silicon-containing layer extending into the trench, wherein the silicon-containing layer extends on the sidewall of the semiconductor strip, filling the trench with a dielectric material, wherein the dielectric material is on a sidewall of the silicon-containing layer, and oxidizing the silicon-containing layer to form a liner. The liner comprises oxidized silicon. The liner and the dielectric material form parts of an isolation region. The isolation region is recessed, so that a portion of the semiconductor strip protrudes higher than a top surface of the isolation region and forms a semiconductor fin.
    Type: Grant
    Filed: January 15, 2021
    Date of Patent: May 28, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Po-Kai Hsiao, Han-De Chen, Tsai-Yu Huang, Huicheng Chang, Yee-Chia Yeo
  • Patent number: 11967520
    Abstract: A method for making a high-voltage thick gate oxide, which includes depositing a pad silicon oxide on a silicon substrate and depositing a pad silicon nitride on the pad silicon oxide; performing shallow trench isolation photolithography, etching, silicon oxide filling and chemical mechanical polishing; sequentially depositing a mask silicon nitride and a mask silicon oxide on a silicon wafer; removing the mask silicon oxide and the mask silicon nitride in a high-voltage thick gate oxide region, and remaining the pad silicon nitride between two shallow trench isolations in the high-voltage thick gate oxide region; performing first thermal oxidation growth; removing the pad silicon nitride between the two shallow trench isolations in the high-voltage thick gate oxide region; performing second thermal oxidation growth to produce a high-voltage thick gate oxide.
    Type: Grant
    Filed: November 19, 2021
    Date of Patent: April 23, 2024
    Assignee: Hua Hong Semiconductor (Wuxi) Limited
    Inventor: Junwen Liu
  • Patent number: 11955369
    Abstract: An approach for creating a buried local interconnect around a DDB (double diffusion break) to reduce parasitic capacitance on a semiconductor device is disclosed. The approach utilizes a metal, as the local interconnect, buried in a cavity around the DDB region of a semiconductor substrate. The metal is disposed by two dielectric layers and the substrate. The two dielectric layers are recessed beneath two gate spacers. The buried local interconnect is recessed into the cavity where the top surface of the interconnect is situated below the top surface of the surrounding S/D (source/drain) epi (epitaxy). The metal of the local interconnect can be made from W, Ru or Co.
    Type: Grant
    Filed: June 8, 2021
    Date of Patent: April 9, 2024
    Assignee: International Business Machines Corporation
    Inventors: Lan Yu, Chen Zhang, Huimei Zhou, Ruilong Xie
  • Patent number: 11929418
    Abstract: A gate structure includes a substrate divided into an N-type transistor region and a P-type transistor region. An interlayer dielectric covers the substrate. A first trench is embedded in the interlayer dielectric within the N-type transistor region. A first gate electrode having a bullet-shaped profile is disposed in the first trench. A gate dielectric contacts the first trench. An N-type work function layer is disposed between the gate dielectric layer and the first gate electrode. A second trench is embedded in the interlayer dielectric within the P-type transistor region. A second gate electrode having a first mushroom-shaped profile is disposed in the second trench. The gate dielectric layer contacts the second trench. The N-type work function layer is disposed between the gate dielectric layer and the second gate electrode. A first P-type work function layer is disposed between the gate dielectric layer and the N-type work function layer.
    Type: Grant
    Filed: November 11, 2021
    Date of Patent: March 12, 2024
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Jie-Ning Yang, Wen-Tsung Chang, Po-Wen Su, Kuan-Ying Lai, Bo-Yu Su, Chun-Mao Chiou, Yao-Jhan Wang
  • Patent number: 11908729
    Abstract: Techniques of fabricating shallow trench isolation structures that reduce or minimize the number of trench cones during the formation of shallow trenches. The disclosed techniques introduce separate etch steps for etching shallow trenches with small feature dimensions and for etching shallow trenches with large feature dimensions. As an example, the disclosed techniques involve etching a first shallow trench in a first region of a substrate with a first etching parameter, and etching a second shallow trench in a second region of a substrate with a second etching parameter different from the first etching parameter. Among other things, the etching parameter may include an etching selectivity ratio of silicon to an etch retardant that contributes to cone formations. Because of the separate etch steps, the disclosed techniques allow the sidewall slopes between the first and second shallow trenches to be within a few degrees of deviation.
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: February 20, 2024
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Karen Hildegard Ralston Kirmse, Jonathan Philip Davis
  • Patent number: 11910594
    Abstract: A semiconductor device includes a substrate including first and second region, a bit line structure on the first region, key structures on the second region, each key structure having an upper surface substantially coplanar with an upper surface of the bit line structure, a first trench disposed between two adjacent key structures spaced apart from each other in a first direction, a filling pattern in a lower portion of the first trench, the filling pattern having a flat upper surface and including a first conductive material, and a first conductive structure on the flat upper surface of the filling pattern, an upper sidewall of the first trench, and the upper surface of each of the plurality of key structures, the first conductive structure including a second conductive material.
    Type: Grant
    Filed: July 7, 2022
    Date of Patent: February 20, 2024
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yanghee Lee, Jonghyuk Park, Ilyoung Yoon, Boun Yoon, Heesook Cheon
  • Patent number: 11901237
    Abstract: A device includes a semiconductor fin, a gate structure, gate spacers, and a dielectric feature. The semiconductor fin is over a substrate. The gate structure is over the semiconductor fin and includes a gate dielectric layer over the semiconductor fin and a gate metal covering the gate dielectric layer. The gate spacers are on opposite sides of the gate structure. The dielectric feature is over the substrate. The dielectric feature is in contact with the gate metal, the gate dielectric layer, and the gate spacers, and an interface between the gate metal and the dielectric feature is substantially aligned with an interface between the dielectric feature and one of the gate spacers.
    Type: Grant
    Filed: July 25, 2022
    Date of Patent: February 13, 2024
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Chang-Yun Chang, Bone-Fong Wu, Ming-Chang Wen, Ya-Hsiu Lin
  • Patent number: 11894396
    Abstract: Embodiments of the disclosure generally provide methods of forming a capacitor layer or a gate insulating layer with high dielectric constant as well as low film current leakage and desired film qualities for display applications. In one embodiment, a thin film transistor structure includes a dielectric layer formed on a substrate, wherein the dielectric layer is a zirconium containing material comprising aluminum, and gate, source and drain electrodes formed on the substrate, wherein the gate, source and drain electrodes formed above or below the dielectric layer.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: February 6, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Xiangxin Rui, Lai Zhao, Jrjyan Jerry Chen, Soo Young Choi, Yujia Zhai
  • Patent number: 11881402
    Abstract: A method for forming a nanostructure on a substrate includes performing a first lithography-and-etch process, including patterning a mandrel layer disposed on a first dielectric layer, performing a spacer patterning process, including forming a spacer layer on sidewalls of the patterned mandrel layer, performing a first gap-filling process, including forming a gap-filling layer in openings of the spacer layer on the first dielectric layer and over the patterned mandrel layer, performing a second lithography-and-etch process, including patterning the gap-filling layer and further patterning the patterned mandrel layer, performing a second gap-filling process, including further forming the gap-filling layer in openings of the twice patterned mandrel layer, and performing a spacer removing process, including removing the patterned spacer layer and the twice patterned mandrel layer.
    Type: Grant
    Filed: July 20, 2021
    Date of Patent: January 23, 2024
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Lili Feng, Madhur Singh Sachan, Regina Germanie Freed
  • Patent number: 11837504
    Abstract: The present disclosure relates to a semiconductor device and a manufacturing method, and more particularly to a semiconductor device having self-aligned isolation structures. The present disclosure provides self-aligned isolation fins that can be formed by depositing dielectric material in openings formed in a spacing layer or by replacing portions of fins with dielectric material. The self-aligned isolation fins can be separated from each other by a critical dimension of the utilized photolithography process. The separation between self-aligned isolation fins or between the self-aligned isolation fins and active fins can be approximately equal to or larger than the separations of the active fins.
    Type: Grant
    Filed: March 8, 2021
    Date of Patent: December 5, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Kuo-Cheng Chiang, Chih-Hao Wang, Shi Ning Ju, Kuan-Lun Cheng, Kuan-Ting Pan
  • Patent number: 11830765
    Abstract: In some embodiments, the present disclosure relates to a method that includes forming a shallow trench isolation (STI) structure that extends into a substrate. A masking layer is formed over the substrate and includes an opening overlying the STI structure. A first removal process removes portions of the STI structure underlying the opening of the STI structure. A second removal process laterally removes portions of the substrate below the STI structure. A third removal process removes portions of the substrate that directly underlie the opening of the masking layer. An insulator liner layer is formed within inner surfaces of the substrate as defined by the first, second, and third removal processes. Further, a fourth removal process removes portions of the insulator liner layer covering a lower surface of the substrate. A semiconductor material is then formed over the SOI substrate and on the insulator liner layer.
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: November 28, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Hung-Ling Shih
  • Patent number: 11791336
    Abstract: Semiconductor devices and methods of forming the same are provided. In an embodiment, a semiconductor device includes a first fin extending along a first direction, a second fin extending parallel to the first fin, and a gate structure over and wrapping around the first fin and the second fin, the gate structure extending along a second direction perpendicular to the first direction. The first fin bents away from the second fin along the second direction and the second fin bents away from the first fin along the second direction.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: October 17, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Jiun-Ming Kuo, Pei-Ling Gao, Chen-Hsuan Liao, Hung-Ju Chou, Chih-Chung Chang, Che-Yuan Hsu
  • Patent number: 11792925
    Abstract: A printed wiring board includes a first resin insulating layer, a second resin insulating layer formed on a surface of the first layer, and a conductor layer formed on the surface of the first layer such that the second layer is covering the conductor layer and that the conductor layer includes first, second, third, fourth, fifth, and sixth circuits such that the third and fourth circuits are sandwiching the first circuit and that the fifth and sixth circuits are sandwiching the second circuit. Widths between the first and third circuits and between the first and fourth circuits are 5 ?m to 14 ?m, and when a width between the second and fifth circuits and a width between the second and sixth circuits is 20 ?m or more, the upper surface of the first circuit, and the upper surface and side walls of the second circuit are formed to have unevenness.
    Type: Grant
    Filed: December 20, 2021
    Date of Patent: October 17, 2023
    Assignee: IBIDEN CO., LTD.
    Inventor: Kyohei Yoshikawa
  • Patent number: 11777011
    Abstract: Integrated circuitry comprises an electronic component. Insulative silicon dioxide is adjacent the electronic component. The insulative silicon dioxide has at least one of (a) and (b), where: (a): an average concentration of elemental-form H of 0.002 to 0.5 atomic percent; and (b): an average concentration of elemental-form N of 0.005 to 0.3 atomic percent. Other embodiments, including method, are disclosed.
    Type: Grant
    Filed: September 21, 2020
    Date of Patent: October 3, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Masihhur R. Laskar, Jeffery B. Hull, Hung-Wei Liu
  • Patent number: 11764103
    Abstract: A semiconductor feature includes: a semiconductor substrate; a dielectric structure and a semiconductor device disposed on the semiconductor substrate; an interconnecting structure disposed in the dielectric structure and connected to the semiconductor device; an STI structure disposed in the semiconductor substrate and surrounding the semiconductor device; two DTI structures penetrating the semiconductor substrate and the STI structure and surrounding the semiconductor device; a passivation structure connected to the semiconductor substrate and the DTI structures and located opposite to the interconnecting structure; and a conductive structure surrounded by the passivation structure, penetrating the semiconductor substrate and the STI structure into the dielectric structure, located between the DTI structures and electrically connected to the semiconductor device via the interconnecting structure.
    Type: Grant
    Filed: September 10, 2021
    Date of Patent: September 19, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Harry-Hak-Lay Chuang, Chung-Jen Huang, Wen-Tuo Huang, Wei-Cheng Wu
  • Patent number: 11735692
    Abstract: Methods, systems, and apparatuses are described for a CMOS compatible substrate having multiple stacks of semiconductor layers. The multiple stacks, at least, each include i) a layer of a tellurium based semiconductor layer on top of ii) a porous silicon layer. The porous silicon layer is a compliant layer to accept structural defects from the tellurium based semiconductor layer into the porous silicon layer. The multiple stacks are grown on the CMOS compatible substrate.
    Type: Grant
    Filed: August 22, 2019
    Date of Patent: August 22, 2023
    Assignee: SRI International
    Inventor: Winston K. Chan
  • Patent number: 11735498
    Abstract: A semiconductor includes a substrate having a first surface and a second surface opposite to each other, the substrate having a via hole extending in a thickness direction from the first surface, a circuit pattern in the first surface of the substrate, a through electrode structure in the via hole, a device isolation structure in a first trench extending in one direction in the first surface of the substrate, the device isolation structure between the via hole and the circuit pattern, the device isolation structure including a first oxide layer pattern and a first nitride layer pattern sequentially stacked on an inner surface of the first trench, the first nitride layer pattern filling the first trench, and an insulation interlayer on the first surface of the substrate and covering the circuit pattern.
    Type: Grant
    Filed: March 26, 2021
    Date of Patent: August 22, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kwangwuk Park, Youngmin Lee, Sungdong Cho, Eunji Kim, Hyoungyol Mun, Seokhwan Jeong
  • Patent number: 11728206
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a first fin structure and an adjacent second fin structure protruding from the semiconductor substrate and an isolation structure formed in the semiconductor substrate and in direct contact with the first fin structure and the second fin structure. The first fin structure and the second fin structure each include a first portion protruding above a top surface of the isolation structure, a second portion in direct contact with a bottom surface of the first portion, and a third portion extending from a bottom of the second portion. A top width of the third portion is different than a bottom width of the third portion and a bottom width of the second portion.
    Type: Grant
    Filed: January 25, 2022
    Date of Patent: August 15, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Ta-Chun Lin, Tien-Shao Chuang, Kuang-Cheng Tai, Chun-Hung Chen, Chih-Hung Hsieh, Kuo-Hua Pan, Jhon-Jhy Liaw
  • Patent number: 11728424
    Abstract: According to an aspect, a semiconductor device for integrating multiple transistors includes a wafer substrate including a first region and a second region. The first region defines at least a portion of at least one first transistor. The second region defines at least a portion of at least one second transistor. The semiconductor device includes an isolation area located between the first region and the second region, at least one terminal of the at least one first transistor contacting the first region of the wafer substrate, at least one terminal of the at least one second transistor contacting the second region of the wafer substrate, and an encapsulation material, where the encapsulation material includes a portion located within the isolation area.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: August 15, 2023
    Assignee: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC
    Inventors: Takashi Noma, Yusheng Lin, Kazuo Okada, Hideaki Yoshimi, Shunsuke Yasuda
  • Patent number: 11703681
    Abstract: A method for producing a MEMS device comprises fabricating a first semiconductor layer and selectively depositing a second semiconductor layer over the first semiconductor layer, wherein the second semiconductor layer comprises a first part composed of monocrystalline semiconductor material and a second part composed of polycrystalline semiconductor material. The method furthermore comprises structuring at least one of the semiconductor layers, wherein the monocrystalline semiconductor material of the first part and underlying material of the first semiconductor layer form a spring element of the MEMS device and the polycrystalline semiconductor material of the second part and underlying material of the first semiconductor layer form at least one part of a comb drive of the MEMS device.
    Type: Grant
    Filed: May 17, 2021
    Date of Patent: July 18, 2023
    Assignee: Infineon Technologies AG
    Inventors: Stephan Gerhard Albert, Marten Oldsen
  • Patent number: 11688792
    Abstract: Dual self-aligned gate endcap (SAGE) architectures, and methods of fabricating dual self-aligned gate endcap (SAGE) architectures, are described. In an example, an integrated circuit structure includes a first semiconductor fin having a cut along a length of the first semiconductor fin. A second semiconductor fin is parallel with the first semiconductor fin. A first gate endcap isolation structure is between the first semiconductor fin and the second semiconductor fin. A second gate endcap isolation structure is in a location of the cut along the length of the first semiconductor fin.
    Type: Grant
    Filed: November 15, 2021
    Date of Patent: June 27, 2023
    Assignee: Intel Corporation
    Inventors: Sairam Subramanian, Walid M. Hafez, Sridhar Govindaraju, Mark Liu, Szuya S. Liao, Chia-Hong Jan, Nick Lindert, Christopher Kenyon
  • Patent number: 11600644
    Abstract: In some embodiments, the present disclosure relates to an image sensor, including a first photodiode and a second photodiode disposed in a semiconductor substrate. A floating diffusion node is disposed along a frontside of the semiconductor substrate and between the first and second photodiodes. A partial backside deep trench isolation (BDTI) structure is disposed within the semiconductor substrate and between the first and second photodiodes. The partial BDTI extends from a backside of the semiconductor substrate and is spaced from the floating diffusion node. A full BDTI structure extends from the backside of the semiconductor substrate to the frontside of the semiconductor substrate.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: March 7, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Yimin Huang
  • Patent number: 11562923
    Abstract: A semiconductor arrangement includes an isolation structure having a first electrical insulator layer in a trench in a semiconductor substrate and a second electrical insulator layer in the trench and over the first electrical insulator layer.
    Type: Grant
    Filed: May 5, 2020
    Date of Patent: January 24, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, ltd.
    Inventors: Wei-Liang Chen, Cheng-Hsien Chen, Yu-Lung Yeh, Chuang Chihchous, Yen-Hsiu Chen
  • Patent number: 11563319
    Abstract: Disclosed herein is a single integrated circuit chip with a main logic that operates a vehicle component such as a valve driver. Isolated from the main logic within the chip is a safety area that operates to verify proper operation of the main logic. The safety area is internally powered by an internal regulated voltage generated by an internal voltage regulator that generates the internal regulated voltage from an external voltage while protecting against shorts of the external line delivering the external voltage. The safety area includes protection circuits that level shift external analog signals downward in voltage for monitoring within the safety area, the protection circuits serving to protect against shorts of the external line delivering the external analog signals.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: January 24, 2023
    Assignee: STMicroelectronics S.r.l.
    Inventors: Marco Cignoli, Nicola Errico, Paolo Vilmercati, Stefano Castorina, Enrico Ferrara
  • Patent number: 11527610
    Abstract: An integrated circuit structure comprises a silicon substrate and a III-nitride (III-N) substrate over the silicon substrate. A first III-N transistor and a second III-N transistor is on the III-N substrate. An insulator structure is formed in the III-N substrate between the first III-N transistor and the second III-N, wherein the insulator structure comprises one of: a shallow trench filled with an oxide, nitride or low-K dielectric; or a first gap adjacent to the first III-N transistor and a second gap adjacent to the second III-N transistor.
    Type: Grant
    Filed: June 5, 2018
    Date of Patent: December 13, 2022
    Assignee: Intel Corporation
    Inventors: Marko Radosavljevic, Sansaptak Dasgupta, Han Wui Then
  • Patent number: 11462546
    Abstract: A method may include providing a substrate, the substrate comprising a substrate base and a patterning stack, disposed on the substrate base. The substrate may include first linear structures in the patterning stack, the first linear structures being elongated along a first direction; and second linear structures in the patterning stack, the second linear structures being elongated along a second direction, the second direction forming a non-zero angle with respect to the first direction. The method may also include selectively forming a set of sidewall spacers on one set of sidewalls of the second linear structures.
    Type: Grant
    Filed: January 31, 2020
    Date of Patent: October 4, 2022
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Sony Varghese, Naushad Variam
  • Patent number: 11456179
    Abstract: Disclosed are approaches for forming a semiconductor device. In some embodiments, a method may include providing a patterned hardmask over a substrate, and providing, from an ion source, a plasma treatment to a first section of the patterned hardmask, wherein a second section of the patterned hardmask does not receive the plasma treatment. The method may further include etching the substrate to form a plurality of fins in the substrate, wherein the first section of the patterned hardmask is etched faster than the second section of the patterned hardmask.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: September 27, 2022
    Assignee: Applied Materials, Inc.
    Inventor: Min Gyu Sung
  • Patent number: 11450661
    Abstract: A first Fin Field-Effect Transistor (FinFET) and a second FinFET are adjacent to each other. Each of the first FinFET and the second FinFET includes a semiconductor fin, a gate dielectric on sidewalls and a top surface of the semiconductor fin, and a gate electrode over the gate dielectric. The semiconductor fin of the first FinFET and the semiconductor fin of the second FinFET are aligned to a straight line. An isolation region is aligned to the straight line, wherein the isolation region includes a portion at a same level as the semiconductor fins of the first FinFET and the second FinFET. A continuous straight semiconductor strip is overlapped by the semiconductor fins of the first FinFET and the second FinFET. A Shallow Trench Isolation (STI) region is on a side of, and contacts, the semiconductor strip. The isolation region and the first STI region form a distinguishable interface.
    Type: Grant
    Filed: April 20, 2018
    Date of Patent: September 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Chih-Yu Hsu, Yi-Tang Lin, Clement Hsingjen Wann, Chih-Sheng Chang, Wei-Chun Tsai, Jyh-Cherng Sheu, Chi-Yuan Shih
  • Patent number: 11450584
    Abstract: A method is provided. A bottom passivation layer is formed on a dielectric layer over a semiconductor substrate. Then, a first opening is formed in the bottom passivation layer to expose a portion of the dielectric layer. Next, a metal pad is formed in the first opening. Afterwards, a first oxide-based passivation layer is formed over the metal pad. Then, a second oxide-based passivation layer is formed over the first oxide-based passivation layer. The second oxide-based passivation layer has a hardness less than a hardness of the first oxide-based passivation layer.
    Type: Grant
    Filed: August 19, 2020
    Date of Patent: September 20, 2022
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yun-Ting Wang, Yi-An Lin, Ching-Chuan Chang, Po-Chang Kuo
  • Patent number: 11444183
    Abstract: A semiconductor structure and a formation method thereof are provided. In one form, the method includes: providing a base; patterning the base to form a substrate and discrete fins and pseudo fins which protrude from the substrate, wherein the fins are located in a device region, and the pseudo fins are located in isolation regions; removing the pseudo fins in the isolation regions; forming isolation layers on the substrate exposed by the fins, wherein the isolation layers cover part of the side walls of the fins; and thinning the isolation layers in the isolation regions, wherein the remaining isolation layers in the isolation regions are regarded as target isolation layers, and the surfaces of the target isolation layers are lower than the surfaces of the isolation layers between the discrete fins.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: September 13, 2022
    Assignees: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATION, SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATION
    Inventor: Nan Wang
  • Patent number: 11411004
    Abstract: A semiconductor device includes a substrate including first and second region, a bit line structure on the first region, key structures on the second region, each key structure having an upper surface substantially coplanar with an upper surface of the bit line structure, a first trench disposed between two adjacent key structures spaced apart from each other in a first direction, a filling pattern in a lower portion of the first trench, the filling pattern having a flat upper surface and including a first conductive material, and a first conductive structure on the flat upper surface of the filling pattern, an upper sidewall of the first trench, and the upper surface of each of the plurality of key structures, the first conductive structure including a second conductive material.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: August 9, 2022
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yanghee Lee, Jonghyuk Park, Ilyoung Yoon, Boun Yoon, Heesook Cheon
  • Patent number: 11403454
    Abstract: A system and method for placement and simulation of a cell in proximity to a cell with a diffusion break is herein disclosed. According to one embodiment, an integrated circuit is designed to include a first cell that has a first edge and a second edge opposite the first edge. The first cell may also include a diffusion region that extends from the first edge to the second edge with a diffusion break separating the diffusion region. The diffusion break may be spaced away from the second edge by a distance that degrades a metric (e.g., a delay, a slew, dynamic power, or leakage) of a second cell placed next to the second edge beyond a threshold level.
    Type: Grant
    Filed: November 9, 2020
    Date of Patent: August 2, 2022
    Assignee: Synopsys, Inc.
    Inventors: Deepak Dattatraya Sherlekar, Shanie George