TITANIUM INCORPORATION INTO ABSORBER LAYER FOR SOLAR CELL
A method for fabricating a photovoltaic device includes forming a film including titanium on a conductive layer formed on a substrate. An absorber layer is formed including a Cu—Zn—Sn containing chalcogenide compound with a kesterite structure of the formula: Cu2-xZn1+ySn(S1-zSez)4+q wherein 0≦x≦1; 0≦y≦1; 0≦z≦1; −1≦q≦1 (CZTS) on the film. The absorber layer is annealed to diffuse titanium therein and to recrystallize the CZTS material of the film. A buffer layer is formed on the absorber layer, and a transparent conductive layer is formed on the buffer layer.
Latest IBM Patents:
- INTERACTIVE DATASET EXPLORATION AND PREPROCESSING
- NETWORK SECURITY ASSESSMENT BASED UPON IDENTIFICATION OF AN ADVERSARY
- NON-LINEAR APPROXIMATION ROBUST TO INPUT RANGE OF HOMOMORPHIC ENCRYPTION ANALYTICS
- Back-side memory element with local memory select transistor
- Injection molded solder head with improved sealing performance
This application is a Continuation application of co-pending U.S. patent application Ser. No. 14/013,827 filed on Aug. 29, 2013, incorporated herein by reference in its entirety.
BACKGROUND1. Technical Field
The present invention relates to photovoltaic devices and fabrication methods, and more particularly to earth-abundant photovoltaic material having a titanium doped absorber layer.
2. Description of the Related Art
Cu2ZnSnSxSe4-x (CZTS) is a promising earth-abundant photovoltaic material for high-efficiency thin film solar cells. A power conversion efficiency (PCE) of 11.1% has been achieved by Teodor K. Todorov, et al. using a hydrazine-assisted solution approach (Adv. Energy Mater. 3, 34-38, 2013). Other vacuum-based and non-vacuum-based deposition techniques have also been successfully utilized to fabricate CZTS solar cells with PCE above 9%. However, it is very difficult to achieve an efficiency above 11%, and the PCE of CZTS solar cells is still far below the physical limit, known as the Shockley-Queisser (SQ) limit, of about 29% under terrestrial conditions.
One fundamental reason for the relatively low performance of CZTS solar cells is the large Voc deficit of CZTS devices. Voc deficit refers to the fact that Voc (open circuit voltage) is smaller than expected (e.g., a large Voc deficit corresponds to a smaller-than-expected Voc). Voc deficit is defined as Eg/q−Voc, where Eg/q is the band gap expressed in volts (q is the fundamental charge). Thus far, no effective method exists that solves the high Voc deficit issue.
SUMMARYA method for fabricating a photovoltaic device includes forming a film including titanium on a conductive layer formed on a substrate. An absorber layer is formed including a Cu—Zn—Sn containing chalcogenide compound with a kesterite structure of the formula: Cu2-xZn1+ySn(S1-zSez)4+q wherein 0≦x≦1; 0≦y≦1; 0≦z≦1; −1≦q≦1 (CZTS) on the film. The absorber layer is annealed to diffuse titanium therein and to recrystallize the CZTS material of the film. A buffer layer is formed on the absorber layer, and a transparent conductive layer is formed on the buffer layer.
Another method for fabricating a photovoltaic device includes forming a conductive layer on a substrate; forming an absorber layer including a Cu—Zn—Sn containing chalcogenide compound with a kesterite structure of the formula: Cu2-xZn1+ySn(S1-zSez)4+q wherein 0≦x≦1; 0≦y≦1; 0≦z≦1; −1≦q≦1 (CZTS) on the conductive layer; doping the absorber layer with titanium; annealing the absorber layer to recrystallize the CZTS material of the film; forming a buffer layer on the absorber layer; and forming a transparent conductive layer on the buffer layer.
A photovoltaic device includes a substrate having a metal coating thereon. An absorber layer is formed on the metal coating. The absorber layer includes a titanium-doped Cu—Zn—Sn containing chalcogenide compound with a kesterite structure of the formula: Cu2-xZn1+ySn(S1-zSez)4+q wherein 0≦x≦1; 0≦y≦1; 0≦z≦1; −1≦q≦1 (CZTS), wherein an atomic percentage of titanium included in the absorber layer ranges from about 0 to about 0.125. A buffer layer is formed on the absorber layer, and a transparent conductor is formed on the buffer layer.
These and other features and advantages will become apparent from the following detailed description of illustrative embodiments thereof, which is to be read in connection with the accompanying drawings.
The disclosure will provide details in the following description of preferred embodiments with reference to the following figures wherein:
The present principles provide methods and structures that improve open circuit voltage (Voc) deficits by incorporating elemental titanium into Cu2ZnSnSxSe4-x (CZTS) crystals, films and devices. This improves Voc and power conversion efficiency (PCE) of CZTS solar cells. In one embodiment, a molybdenum-coated substrate is employed. Elemental titanium is introduced into CZTS films by either depositing a titanium layer between CZTS and the Mo-coated substrate or doping elemental titanium into CZTS films. CZTS films can be deposited by various deposition techniques on Mo or Mo/Ti films. An n-type semiconductor film may be deposited on top of CZTS to form a p-n heterojunction diode. A transparent conductor may be formed on the n-type semiconductor with a metallic top contact (e.g., Ni/Al). The present embodiments also include an improved CZTS photovoltaic device, with an efficiency over 11%, which is prepared using the methods described herein for achieving better Voc performance.
It is to be understood that the present invention will be described in terms of a given illustrative architecture having substrates and photovoltaic stacks; however, other architectures, structures, substrates, materials and process features and steps may be varied within the scope of the present invention.
It will also be understood that when an element such as a layer, region or substrate is referred to as being “on” or “over” another element, it can be directly on the other element or intervening elements may also be present. In contrast, when an element is referred to as being “directly on” or “directly over” another element, there are no intervening elements present. It will also be understood that when an element is referred to as being “connected” or “coupled” to another element, it can be directly connected or coupled to the other element or intervening elements may be present. In contrast, when an element is referred to as being “directly connected” or “directly coupled” to another element, there are no intervening elements present.
A design for a photovoltaic device may be created for integrated circuit integration or may be combined with components on a printed circuit board. The circuit/board may be embodied in a graphical computer programming language, and stored in a computer storage medium (such as a disk, tape, physical hard drive, or virtual hard drive such as in a storage access network). If the designer does not fabricate chips or the photolithographic masks used to fabricate chips or photovoltaic devices, the designer may transmit the resulting design by physical means (e.g., by providing a copy of the storage medium storing the design) or electronically (e.g., through the Internet) to such entities, directly or indirectly. The stored design is then converted into the appropriate format (e.g., GDSII) for the fabrication of photolithographic masks, which typically include multiple copies of the chip design in question that are to be formed on a wafer. The photolithographic masks are utilized to define areas of the wafer (and/or the layers thereon) to be etched or otherwise processed.
Methods as described herein may be used in the fabrication of photovoltaic devices and/or integrated circuit chips with photovoltaic devices. The resulting devices/chips can be distributed by the fabricator in raw wafer form (that is, as a single wafer that has multiple unpackaged devices/chips), as a bare die, or in a packaged form. In the latter case the device/chip is mounted in a single chip package (such as a plastic carrier, with leads that are affixed to a motherboard or other higher level carrier) or in a multichip package (such as a ceramic carrier that has either or both surface interconnections or buried interconnections). In any case, the devices/chips are then integrated with other chips, discrete circuit elements, and/or other signal processing devices as part of either (a) an intermediate product, such as a motherboard, or (b) an end product. The end product can be any product that includes integrated circuit chips, ranging from toys, energy collectors, solar devices and other applications including computer products or devices having a display, a keyboard or other input device, and a central processor. The photovoltaic devices described herein are particularly useful for solar cells or panels employed to provide power to electronic devices, homes, buildings, vehicles, etc.
It should also be understood that material compounds will be described in terms of listed elements, e.g., Cu—Zn—Sn—S(Se) (CZTSSe), etc. The compounds described herein may include different proportions of the elements within the compound, e.g., Cu2-xZn1+ySn(S1-z Sez)4+q wherein 0≦x≦1; 0≦y≦1; 0≦z≦1; −1≦q≦1. In addition, other elements may be included in the compound, such as, e.g., dopants and crystallization promoters, including but not limited to sodium (Na) and antimony (Sb), and still function in accordance with the present principles. Compositions may optionally include Ge replacing some or all of the Sn, Ag replacing some or all of the Cu, Cd replacing some or all of the Zn, and that may also include dopants, such as, e.g., Sb, Bi, Na, K, Li, Ca, etc. The compounds with additional elements will be referred to herein as alloys.
The present embodiments may be part of a photovoltaic device or circuit, and the circuits as described herein may be part of a design for an integrated circuit chip, a solar cell, a light sensitive device, etc. The photovoltaic device may be a large scale device on the order of feet or meters in length and/or width, or may be a small scale device for use in calculators, solar powered lights, etc.
It is also to be understood that the present invention may be employed in a tandem (multi-junction) structure. Other architectures, structures, substrate materials and process features and steps may be varied within the scope of the present invention. The tandem structure may include one or more stacked cells.
Reference in the specification to “one embodiment” or “an embodiment” of the present principles, as well as other variations thereof, means that a particular feature, structure, characteristic, and so forth described in connection with the embodiment is included in at least one embodiment of the present principles. Thus, the appearances of the phrase “in one embodiment” or “in an embodiment”, as well any other variations, appearing in various places throughout the specification are not necessarily all referring to the same embodiment.
It is to be appreciated that the use of any of the following “/”, “and/or”, and “at least one of”, for example, in the cases of “A/B”, “A and/or B” and “at least one of A and B”, is intended to encompass the selection of the first listed option (A) only, or the selection of the second listed option (B) only, or the selection of both options (A and B). As a further example, in the cases of “A, B, and/or C” and “at least one of A, B, and C”, such phrasing is intended to encompass the selection of the first listed option (A) only, or the selection of the second listed option (B) only, or the selection of the third listed option (C) only, or the selection of the first and the second listed options (A and B) only, or the selection of the first and third listed options (A and C) only, or the selection of the second and third listed options (B and C) only, or the selection of all three options (A and B and C). This may be extended, as readily apparent by one of ordinary skill in this and related arts, for as many items listed.
Referring now to the drawings in which like numerals represent the same or similar elements and initially to
A metal film 15 is deposited on the conductive layer 14 by, e.g., a physical vapor deposition (PVD) process (e.g., sputtering, evaporation, etc.). The film 15 preferably includes Ti. A thickness of the film 15 impacts the amount of titanium available for incorporation into a CZTS absorber layer 16 to be formed. A Ti layer thickness of between about 0.5 nm and about 500 nm may be employed, preferably, between about 5 nm and about 50 nm. The atomic percentage of titanium included in the absorber layer 16 ranges from about 0 to about 0.125.
The film 15 should be substantially free of any impurities that can adversely affect solar cell performance. Impurities that are known to degrade device performance are iron (Fe) and nickel (Ni), but other foreign transition metal elements may also serve as recombination centers and thereby reduce solar cell performance. Generally, the film 15 needs to be prepared from a Ti source that has a purity of 99% or better. More preferably, the purity should be 99.9% or better. Optionally, the film 15 may include elements that are known to be beneficial to device performance. For example, Na or Sb are known to be beneficial for device performance and may be co-deposited with the film 15 in a back layer, such that it can distribute the Na and/or Sb into the CZTS layer 16 during the film formation process and therefore improve device performance.
An absorber layer 16 is formed on the film 15 and includes a Cu—Zn—Sn containing chalcogenide compound with a kesterite structure of the formula: Cu2-xZn1+ySn(S1-zSez)4+q wherein 0≦x≦1; 0≦y≦1; 0≦z≦1; −1≦q≦1 (hereinafter CZTS), although other I2-II-IV-VI4 semiconductors may be employed. Although the major elements in CZTS are Cu, Zn, Sn, S, Se, reference to CZTSSe or Cu—Zn—Sn containing chalcogenide material also includes compositions that optionally include Ge replacing some or all of the Sn, Ag replacing some or all of the Cu, Cd replacing some or all of the Zn, and that may also include other dopants, including Sb, Bi, Na, K, Li, Ca, etc.
In a particularly useful embodiment, the Cu—Zn—Sn-containing chalcogenide includes Cu2ZnSn(S,Se)4. In one embodiment, the CZTS film or layer 16 has a thickness of between about 0.5 microns to about 5 microns. Layer 16 may be deposited on the film 15 by any vacuum- or solution-based deposition method (e.g., painting, sputtering, co-evaporation, electroplating, spin coating, slit casting, doctor blading, dip coating or other simple coating processes). As-prepared CZTS films are subject to annealing under a controlled environment to produce recrystallized CZTS films.
A controlled environment is employed to react Ti from film 15 with the CZTS film 16. The controlled environment and reaction is one important factor for ultimate device performance. The atmosphere used can be a chemically inert environment, such as under nitrogen, helium or argon, or it can be a reactive environment, such as one containing sulfur vapor, selenium vapor, hydrogen sulfide, hydrogen selenide, a volatile sulfur-containing compound, a volatile selenium-containing compound, a forming gas, etc. Volatile sulfur-containing compounds may include metal sulfides, carbon disulfide, thiourea, thioacetamide and organic thiol compounds. Volatile selenium compounds may include metal selenides, carbon diselenide, selenourea and organic selenol compounds.
A temperature profile for the reaction/CZTS recrystallization step needs to be controlled, as well. Heating may be provided by a laboratory furnace, tube furnace, rapid thermal processing tool, hot plate, or by other methods known by those skilled in the art. The temperature during the heating step may be between about 300° C. and about 800° C. More preferably, the temperature is between about 550° C. and about 650° C.
A buffer layer 20 may be formed on layer 16. The buffer layer 20 may include CdS, which forms a high quality junction with layer 16, although other materials may be employed, including but not limited to Zn(O,S), ZnO, In2S3, (Cd,Zn)S. The buffer layer 20 may include an n-type CdS film formed on CZTS of layer 16 by a chemical bath deposition. The buffer layer 20 may include one or more sublayers. For example, the buffer layer may include distinct sublayers of CdS and intrinsic zinc oxide.
A transparent conductive layer 22 is formed over layer 16 or the buffer layer 20, if present. The transparent conductive layer 22 may include a transparent conductive oxide (TCO), such as, e.g., aluminum doped zinc oxide (AZO), boron doped zinc oxide (BZO), indium tin oxide (ITO) or other TCO materials or combinations thereof.
The deposition process for forming the transparent conductive layer 22 may include a sputtering process, an evaporation process, a low temperature plasma enhanced chemical vapor deposition (PECVD) process or other suitable deposition process. The transparent conductive layer 22 forms a light receiving electrode for the device.
Metal contacts 24, e.g., a Ni/Al multilayer, may be formed on the transparent conductive layer 22 to further enhance the conductive properties of the transparent conductive layer 22. An additional anti-reflection coating (ARC) (not shown) may also be formed on top of the device 10.
Referring to
The absorber layer 116 includes a Cu—Zn—Sn containing chalcogenide compound with a kesterite structure of the formula: Cu2-xZn1+ySn(S1-zSez)4+q wherein 0≦x≦1; 0≦y≦1; 0≦z≦1; −1≦q≦1 (hereinafter CZTS), although other I2-II-IV-VI4 semiconductors may be employed. Although the major elements in CZTS are Cu, Zn, Sn, S, Se, reference to CZTSSe or Cu—Zn—Sn containing chalcogenide material also includes compositions that optionally include Ge replacing some or all of the Sn, Ag replacing some or all of the Cu, Cd replacing some or all of the Zn, and that may also include other dopants, including Sb, Bi, Na, K, Li, Ca, etc.
In a particularly useful embodiment, the Cu—Zn—Sn-containing chalcogenide includes Cu2ZnSn(S,Se)4. In one embodiment, the CZTS film or layer 116 has a thickness of between about 0.5 microns to about 5 microns.
For vacuum-based deposition methods, titanium metal can be incorporated into source metal materials or target metal materials which include copper, zinc and tin metals. For solution-based deposition methods, titanium metal or compounds can be dissolved into precursor solutions which include copper, zinc, tin and chalcogens to form CZTS.
Vacuum-based deposition methods for layer 116 may include co-evaporation, sputtering, laser ablation, flash evaporation and other techniques known by those skilled in the art. As an example, for co-evaporation, independent elemental Cu, Zn, Sn, Ti, S and Se Knudsen-type sources may be used. The substrate 12 may be maintained at relatively low temperature (e.g., about 150 degrees C.) during film deposition thereby needing a short, e.g., from about 5 min to about 15 min, post deposition heat treatment at a high temperature, e.g., from about 550 degrees C. to about 650 degrees C., to complete the film processing. Alternatively, the substrate 12 can be maintained at high temperature during the growth process, in which case it is possible to avoid the need for a high-temperature post-deposition heat treatment.
Solution-based approaches for forming layer 116 may include a hydrazine-assisted method, metal nanoparticles, binary chalcogenide nanoparticles, ternary chalcogenide nanoparticles, quaternary metal salt solutions, electrodeposition, hydrothermal methods, and other techniques known by those skilled in the art. As an example, for the hydrazine-assisted method, elemental Cu, Zn, Sn, Ti or Ti-containing compounds, S and Se powders may be dissolved or dispersed in pure hydrazine. An obtained colloid solution may be deposited on the conductive layer 14 by spin casting, followed by a post deposition heat treatment at high temperature, e.g., from about 550 degrees C. to about 650 degrees C., to complete the film processing. Ti-containing compounds may include elemental titanium, titanium halides, titanium chalcogenides, titanium oxide, titanium isopropoxide, Ammonium bis(oxalato)oxotitanate(IV) and other organic titanium-containing compounds.
As-prepared CZTS films are subject to annealing under a controlled environment to produce recrystallized CZTS films. The atmosphere used can be a chemically inert environment, such as under nitrogen, helium or argon, or it can be a reactive environment, such as one containing sulfur vapor, selenium vapor, hydrogen sulfide, hydrogen selenide, a volatile sulfur-containing compound, a volatile selenium-containing compound, a forming gas, etc. Volatile sulfur-containing compounds may include metal sulfides, carbon disulfide, thiourea, thioacetamide and organic thiol compounds. Volatile selenium compounds may include metal selenides, carbon diselenide, selenourea and organic selenol compounds.
A temperature profile for the CZTS recrystallization step needs to be controlled. Heating may be provided by a laboratory furnace, tube furnace, rapid thermal processing tool, hot plate, or by other methods known by those skilled in the art. The temperature during the heating step may be between about 300° C. and about 800° C. More preferably, the temperature is between about 550° C. and about 650° C.
The buffer layer 20 may be formed on layer 116. The buffer layer 20 may include CdS, which forms a high quality junction with layer 116, although other materials may be employed, including but not limited to Zn(O,S), ZnO, In2S3, (Cd,Zn)S. The buffer layer 20 may include an n-type CdS film formed on CZTS of layer 16 by a chemical bath deposition. The buffer layer 20 may include one or more sublayers. For example, the buffer layer may include distinct sublayers of CdS and intrinsic zinc oxide.
The transparent conductive layer 22 is formed over layer 116 or the buffer layer 20, if present. The transparent conductive layer 22 may include a transparent conductive oxide (TCO), such as, e.g., aluminum doped zinc oxide (AZO), boron doped zinc oxide (BZO), indium tin oxide (ITO) or other TCO materials or combinations thereof.
The deposition process for forming the transparent conductive layer 22 may include a sputtering process, an evaporation process, a low temperature plasma enhanced chemical vapor deposition (PECVD) process or other suitable deposition process. The transparent conductive layer 22 forms a light receiving electrode for the device.
Metal contacts 24, e.g., Ni/Al, may be formed on the transparent conductive layer 22 to further enhance the conductive properties of the transparent conductive layer 22. An additional anti-reflection coating (ARC) (not shown) may also be formed on top of the device 100.
In accordance with the present principles, a Ti-substituted absorber is employed to improve open circuit voltage and power conversion efficiency (PCE). The following are non-limiting illustrative examples describing implementations of exemplary embodiments.
Example 1For making Ti-free devices, solution A (3.3M Cu2S) was made by dissolving Cu and S in hydrazine. Similarly, Sn and Se were stirred in hydrazine to form slurry B (1.5 M SnSes); Solution A and slurry B were mixed together and transferred to a vial containing zinc formate, yielding solution C with final composition Cu/(Zn+Sn)=0.8, Zn/Sn=1.22 and nominal kesterite CZTSSe concentration of approximately 0.4 M. The thin film CZTS absorber layer with final thickness of 2-2.5 microns was prepared by spin coating this mixture over six consecutive layers at 600 rpm and then subsequently subjecting it to a short anneal on a ceramic hot plate with a set point of 630 degrees C.
The CdS buffer, ZnO window, and indium doped tin oxide (ITO) layers were subsequently deposited by chemical bath deposition and RF magnetron sputtering, respectively, giving a CZTSSe device structure with a device area of approximately 0.45 cm2, as defined by mechanical scribing. A Ni/Al collection grid and 110-nm-thick MgF2 antireflection coating were deposited on top of the device by electron-beam evaporation. Example 1 describes a preparation and characteristics of a CZTS solar cell without Ti (graph 204) having a PCE equal to 10.03% shown in
For making Ti-incorporating devices, a solution A (3.3M Cu2S) was made by dissolving Cu and S in hydrazine. Similarly, Sn and Se were stirred in hydrazine to form slurry B (1.5 M SnSes); Solution A and slurry B were mixed together and transferred to a vial containing zinc formate, yielding solution C with final composition Cu/(Zn+Sn)=0.8, Zn/Sn=1.22 and nominal kesterite CZTSSe concentration of approximately 0.4 M. A 20 nm titanium thin film was deposited on molybdenum-coated glass by electron-beam evaporation. The Ti- and Mo-coated glass was used as a substrate for CZTS deposition.
The thin film CZTS absorber layer with final thickness of 2-2.5 microns was prepared by spin coating this mixture over six consecutive layers at 600 rpm and then subsequently subjecting it to a short anneal on a ceramic hot plate with a set point of 630 degrees C. The CdS buffer, ZnO window, and indium doped tin oxide (ITO) layers were subsequently deposited by chemical bath deposition and RF magnetron sputtering, respectively giving a CZTSSe device structure with a device area of approximately 0.45 cm2, as defined by mechanical scribing. A Ni/Al collection grid and 110-nm-thick MgF2 antireflection coating were deposited on top of the device by electron-beam evaporation. Example 2 describes a preparation and characteristics of a Ti-incorporated CZTS solar cell (graph 202) having a PCE equal to 11.14% shown in
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
In block 310, an absorber layer is formed including a Cu—Zn—Sn containing chalcogenide compound with a kesterite structure of the formula: Cu2-xZn1+ySn(S1-zSez)4+q wherein 0≦x≦1; 0≦y≦1; 0≦z≦1; −1≦q≦1 (CZTS) on the film.
In block 312, a vacuum-based deposition may be performed by one of co-evaporation, sputtering, laser ablation, flash evaporation, etc. In block 314, a solution-based deposition may be performed by one of a hydrazine-assisted solution, metal nanoparticles, binary chalcogenide nanoparticles, ternary chalcogenide nanoparticles, quaternary metal salt solutions, electrodeposition, a hydrothermal method, etc.
In block 316, the absorber layer is annealed to diffuse titanium therein and to recrystallize the CZTS material of the film. In block 318, the absorber layer is annealed in a controlled environment to produce a recrystallized CZTS film. The controlled environment includes one of a chemically inert environment and a reactive environment. The anneal includes heating the absorber layer to between about 300° C. and about 800° C.
In block 320, a buffer layer is formed on the absorber layer. In block 322, a transparent conductive layer is formed on the buffer layer. Metal contacts, anti-reflection coatings, etc. may also be formed.
Referring to
In block 410, the absorber layer is doped with titanium. In block 412, titanium is incorporated in one of source metal materials and target metal materials during the formation of the absorber layer in a vacuum-based deposition. In block 414, titanium is incorporated using one of titanium metal and titanium compounds dissolved into precursor solutions in a solution-based deposition.
In block 416, the absorber layer is annealed to recrystallize the CZTS material of the film. In block 418, the absorber layer is annealed in a controlled environment to produce a recrystallized CZTS film. The controlled environment includes one of a chemically inert environment and a reactive environment. The anneal includes heating the absorber layer to between about 300° C. and about 800° C.
In block 420, a buffer layer is formed on the absorber layer. In block 422, a transparent conductive layer is formed on the buffer layer. Metal contacts, anti-reflection coatings, etc. may also be formed.
Having described preferred embodiments for titanium incorporation into an absorber layer for a solar cell (which are intended to be illustrative and not limiting), it is noted that modifications and variations can be made by persons skilled in the art in light of the above teachings. It is therefore to be understood that changes may be made in the particular embodiments disclosed which are within the scope of the invention as outlined by the appended claims. Having thus described aspects of the invention, with the details and particularity required by the patent laws, what is claimed and desired protected by Letters Patent is set forth in the appended claims.
Claims
1. A photovoltaic device, comprising:
- a substrate having a metal coating thereon;
- an absorber layer formed on the metal coating, the absorber layer including a titanium-doped Cu—Zn—Sn containing chalcogenide compound with a kesterite structure of the formula: Cu2-xZn1+ySn(S1-zSez)4+q wherein 0≦x≦1; 0≦y≦1; 0≦z≦1; −1≦q≦1 (CZTS), wherein an atomic percentage of titanium included in the absorber layer ranges from about 0 to about 0.125;
- a buffer layer formed on the absorber layer; and
- a transparent conductor formed on the buffer layer.
2. The device as recited in claim 1, further comprising a titanium containing layer disposed between the absorber layer and the metal coating.
3. The device as recited in claim 2, wherein the titanium containing layer includes a thickness of between about 0.5 nm and about 500 nm.
4. The device as recited in claim 1, further comprising an open circuit voltage deficit of less than about 670 mV.
5. The device as recited in claim 1, wherein the device includes a power conversion efficiency (PCE) of greater than 11.0%.
Type: Application
Filed: Sep 25, 2013
Publication Date: Mar 5, 2015
Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION (Armonk, NY)
Inventors: Marinus J. Hopstaken (Carmel, NY), David B. Mitzi (Mahopac, NY), Wei Wang (Yorktown Heights, NY), Mark T. Winkler (New York, NY)
Application Number: 14/036,255
International Classification: H01L 31/032 (20060101);