Method for processing semiconductor structure and device based on the same
Methods for fabricating a device and related device structures are provided herein. According to one embodiment, a method for fabricating a device includes the acts of producing a substrate; forming a structure on the substrate having a lower dielectric layer, a metal layer, an upper dielectric layer, a planarizing layer, and a layer of photoresist material; developing the photoresist material according to a mask pattern; etching the planarizing layer and the upper dielectric layer according to the mask pattern; removing the photoresist material and the planarizing layer upon etching of the planarizing layer and the upper dielectric layer; applying a selective metal growth or metal/organic film to respective exposed portions of the metal layer following etching of the upper dielectric layer, thereby obtaining an inverted mask pattern; and etching at least the metal layer and the lower dielectric layer according to the inverted mask pattern.
Latest Kabushiki Kaisha Toshiba Patents:
- ENCODING METHOD THAT ENCODES A FIRST DENOMINATOR FOR A LUMA WEIGHTING FACTOR, TRANSFER DEVICE, AND DECODING METHOD
- RESOLVER ROTOR AND RESOLVER
- CENTRIFUGAL FAN
- SECONDARY BATTERY
- DOUBLE-LAYER INTERIOR PERMANENT-MAGNET ROTOR, DOUBLE-LAYER INTERIOR PERMANENT-MAGNET ROTARY ELECTRIC MACHINE, AND METHOD FOR MANUFACTURING DOUBLE-LAYER INTERIOR PERMANENT-MAGNET ROTOR
Embodiments described herein relate generally to semiconductor devices and methods for fabricating semiconductor devices.
BACKGROUNDSilicon large-scale integrated circuits, among other device technologies, are increasing in use in order to provide support for the advanced information society of the future. An integrated circuit can be composed of respective semiconductor devices, such as transistors or the like, which can be produced according to a variety of techniques. By way of example, high-performance semiconductor devices can be fabricated using photolithography. In the process of photolithography, a mask pattern is transferred via light to a light-sensitive photoresist material on a semiconductor device substrate. Subsequently, techniques such as chemical treatments are utilized to engrave the transferred pattern into the material beneath the photoresist (e.g., by removing material on the substrate not located under the photoresist).
As semiconductor device features have become smaller and more advanced, conventional patterning techniques utilized in connection with photolithography have been limited in their ability to produce finely defined features, such as trenches or the like. Accordingly, to enhance the ability of existing semiconductor device fabrication techniques to create the smaller features demanded by high-performance devices, patterning techniques such as double patterning, tone-inversion patterning, or the like can be utilized. However, such patterning schemes can in some cases be ineffective at accurately recreating a desired feature set. Further, such patterning schemes can be susceptible to cracking, delamination, and/or other manufacturing defects. Accordingly, it would be desirable to implement techniques for producing semiconductor devices with features of varying sizes with minimal potential for defects in fabrication.
The subject innovation provides methods of fabricating a semiconductor device via improved tone inversion photolithography techniques. In various embodiments, semiconductor device fabrication can be performed via etching one or more layers of a semiconductor device structure using photoresist material as a mask in a similar manner to conventional non-tone inversion lithography. The etching can be performed until it stops at the top of a metal layer formed below a first dielectric layer, after which selective metal growth or metal/organic film can be deposited by electroless deposition, epitaxial growth, chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), and/or other techniques. If present, any overburden of the deposited material can be removed via chemical-mechanical planarization (CMP) or etchback. Subsequently, the deposited material can be utilized as a hardmask that is substantially identical to the inversion of the original photoresist pattern, thereby enabling etching of a second dielectric layer formed below the metal layer according to a desired tone inversion pattern. In addition, semiconductor device products exhibiting a structure that can be utilized for device fabrication according to various embodiments herein are provided.
According to one embodiment, a method for fabricating a semiconductor device includes the acts of producing a substrate; forming a semiconductor structure on the substrate having a lower dielectric layer on the substrate, a metal layer on the lower dielectric layer, an upper dielectric layer on the metal layer, a planarizing layer on the upper dielectric layer, and a layer of photoresist material on the planarizing layer; developing the photoresist material according to a mask pattern; etching the planarizing layer and the upper dielectric layer according to the mask pattern; removing the photoresist material and the planarizing layer upon etching of the planarizing layer and the upper dielectric layer; applying a selective metal growth to respective exposed portions of the metal layer following etching of the upper dielectric layer in order to obtain an inverted mask pattern composed of the selective metal growth; and etching at least the metal layer and the lower dielectric layer according to the inverted mask pattern.
In an example, the upper dielectric layer can be removed prior to etching the metal layer and the lower dielectric layer. In another example, the selective metal growth can be applied via, e.g., electroless plating, epitaxial growth, CVD, PVD, or ALD. The upper dielectric layer can have a thickness that is, e.g., between approximately 10 nm and approximately 100 nm. Additionally or alternatively, the metal layer can have a thickness that is, e.g., between approximately 5 nm and approximately 20 nm. The selective metal growth can be composed of at least one element, which can include, but is not limited to, Co, Ni, Cu, Fe, Ru, Rh, Pd, Ag, Os, Ir, Sn, Pb, Pt, and/or Au. Further, the selective metal growth can include at least one co-deposit metal that can be composed of at least one element that can include, but is not limited to, V, Cr, Mn, Mo, Tc, W, Rc, In, Ti, Zn, Si, Ge, and/or B. In further examples, further processing, such as removal of the selective metal growth and the metal layer following etching of the metal layer and the lower dielectric layer, metallization of one or more removed portions of the lower dielectric layer post-etching, and formation of a cap layer on the lower dielectric layer after metallization, can be performed.
According to one embodiment, a method for fabricating a semiconductor device includes the acts of producing a substrate; forming a semiconductor structure on the substrate having a lower dielectric layer on the substrate, a metal layer on the lower dielectric layer, an upper dielectric layer on the metal layer, a planarizing layer on the upper dielectric layer, and a layer of photoresist material on the planarizing layer; developing the photoresist material according to a mask pattern; etching the planarizing layer and the upper dielectric layer according to the mask pattern; removing the photoresist material and the planarizing layer upon etching of the planarizing layer and the upper dielectric layer; depositing a metal or organic film on the upper dielectric layer and respective exposed portions of the metal layer following etching of the upper dielectric layer; removing respective portions of the metal or organic film that are located on one or more portions of the upper dielectric layer in order to obtain an inverted mask pattern composed of the metal or organic film; and etching at least the metal layer and the lower dielectric layer according to the inverted mask pattern.
In an example, the upper dielectric layer can be removed prior to etching the metal layer and the lower dielectric layer. In another example, the metal or organic film can be applied via, e.g., electroless plating, epitaxial growth, CVD, PVD, or ALD. The upper dielectric layer can have a thickness that is, e.g., between approximately 10 nm and approximately 100 nm. Additionally or alternatively, the metal layer can have a thickness that is, e.g., between approximately 5 nm and approximately 20 nm. In one example, the metal or organic film can be a metal film that is composed of at least one material including, but not limited to, W, Cu, Ti, TiN, Ru, Ta, TaN, Co, Ni, and/or Si, carbon combined with one or more of these materials, or an alloy combined with one or more of these materials. In another example, the metal or organic film can be an organic film composed of amorphous carbon. In some examples, the metal or organic film can have a thickness that is, e.g., between approximately 10 nm and approximately 300 nm. In other examples, deposition of the metal or organic film can be achieved by depositing an initial layer of metal or organic film on the upper dielectric layer and respective exposed portions of the metal layer following etching of the upper dielectric layer and depositing a primary layer of metal or organic film on the initial layer of metal or organic film. In such an example, the initial film layer can be composed of, e.g., at least one of Ti, TiN, Ta, or TaN, and can exhibit a thickness that is, e.g., between approximately 1 nm and approximately 10 nm. In further examples, further processing, such as removal of the metal or organic film and the metal layer following etching of the metal layer and the lower dielectric layer, metallization of one or more removed portions of the lower dielectric layer post-etching, and formation of a cap layer on the lower dielectric layer after metallization, can be performed.
According to a further embodiment, a semiconductor product includes a substrate and a semiconductor region formed on the substrate. The semiconductor region can be composed of a lower dielectric layer formed in the semiconductor region, a metal layer deposited onto the lower dielectric layer, an upper dielectric layer formed onto the metal layer, a planarizing layer formed onto the upper dielectric layer, and photoresist material deposited onto the planarizing layer. The photoresist material can be configured to be selectively removed according to a mask pattern. Further, the planarizing layer and the upper dielectric layer can be configured for etching according to the mask pattern. In addition, one or more regions of the metal layer can be configured to receive selective metal growth, metal film, and/or organic film, such that this material forms an inverted mask pattern for etching of at least the metal layer and the lower dielectric layer
The following description and the annexed drawings set forth certain illustrative aspects of the specification. These aspects are indicative, however, of but a few of the various ways in which the principles of the specification may be employed. Other advantages and novel features of the specification will become apparent from the following detailed description of the disclosed information when considered in conjunction with the drawings.
The claimed subject matter is now described with reference to the drawings, wherein like reference numerals are used to refer to like elements throughout. In the following description, for purposes of explanation, numerous specific details are set forth in order to provide a thorough understanding of the claimed subject matter. It may be evident, however, that the claimed subject matter may be practiced without these specific details. In other instances, well-known structures and devices may be shown in block diagram form in order to facilitate describing the claimed subject matter. In addition, it should be appreciated that for simplicity of illustration, the features illustrated by the drawings provided herein are not illustrated to scale within the respective drawings and/or between drawings and that, unless explicitly stated otherwise, the drawings provided herein are not intended to convey scaling relationships between respective illustrated features.
Referring first to
Upon preparation of the semiconductor wafer for photolithography, a layer of photoresist or resist 130 is applied to the surface of the wafer via spin coating and/or other suitable techniques. Upon application of resist 130 and removal of any excess resist 130 from the wafer, the resist 130 is exposed to a pattern of ultraviolet light and/or other light at a substantially high intensity, thereby enabling a chemical development process to remove respective portions of the resist 130 based on the light pattern. According to an embodiment, resist 130 that is removed via development can vary based on the properties of the resist 130. For example, if resist 130 is a positive photoresist, the resist 130 will become soluble in chemicals applied during development, thereby being removed during the development stage, upon being exposed to the light pattern. Alternatively, if the resist 130 is a negative photoresist, the resist 130 can initially be soluble in chemicals applied during development and become insoluble in such chemicals upon exposure to the light pattern.
Subsequent to photoresist exposure and development, a resist pattern can be left on the semiconductor wafer, as shown by diagram 102 in
According to an embodiment, the tone-inversion patterning scheme illustrated by
As shown in diagram 202, one technique that can be utilized to remove excessive hardmask material is an etchback. As
As a second example shortcoming of conventional tone-inversion lithography techniques, organic planarizing layer utilized for tone inversion in some cases exhibits a substantially high degree of vulnerability to damage in the event that CMP is used to remove excessive hardmask material. Thus, for example, as illustrated by
As a third example shortcoming of conventional tone inversion techniques, resist profile irregularities, intra-level overlay (e.g., resulting from irregularities in a double exposure process, etc.), and/or other factors can adversely impact the profile of SiTH/IRM material 120 and/or other hardmask material after removal of the resist 130. By way of example,
As illustrated by configurations 412-414 in
According to an embodiment, to mitigate at least the shortcomings of conventional tone inversion lithography techniques as described above, techniques are described herein for enhanced tone inversion patterning. In one example, an improved tone inversion patterning scheme as provided herein can utilize a photoresist layer and an organic planarizing layer that are applied to a stack of two dielectric layers separated by a metal layer. Using this structure, etching can be performed using the resist as a mask in a similar manner to conventional (e.g., non-tone inversion) photolithography. The etching can be configured to stop once the top of the metal layer below the first dielectric layer is reached, at which point metal, metal film, and/or organic film can be deposited onto the etched stack. A CMP, etchback, or other process can be utilized to remove any overburden of the deposited material, at which point the remaining material can be utilized as a hardmask to etch the tone inversion pattern into the second dielectric layer. According to various embodiments, respective acts that can be performed in a tone inversion lithography process according to the above are illustrated by
Turning first to diagram 500 in
Upon exposure and development, etching can be performed as shown by diagram 600 in
Once etching of the organic planarizing layer 140 and first dielectric 510 are completed as shown by diagram 600, the resist 130 and organic planarizing layer 140 can be removed as shown by diagram 700 in
Upon removal of the resist 130 and organic planarizing layer 140, a mask can be applied to the remaining semiconductor stack for tone inversion etching in a variety of manners. In a first example illustrated by diagram 800 in
According to an embodiment, application of selective metal growth 810 as shown in
A variety of surface activation techniques that precede electroless plating or deposition can be utilized as generally known in the art. For example, an application of electroless plating to integrated circuit manufacturing can include the deposition of nickel, cobalt, palladium, or copper onto one of two types of substrate surfaces. The first type of substrate surface comprises conductive regions of substrates that are generally formed of silicon, aluminum, or aluminum alloys. The second type of substrate comprises a non-conductor, such as silicon dioxide or a polymeric insulator. The reported surface activation techniques applied to these substrates usually fall into one of four categories: (1) catalyst film deposition by evaporation or sputtering, (2) catalyst film deposition by electrochemical or chemical surface modification, (3) catalytic film deposition from a colloidal suspension, and (4) photon-enhanced activation by laser or wide spectrum irradiation.
Metals of Group VIII, such as palladium and platinum, can be utilized as catalytic surface activators in electroless deposition or plating methods. Catalytic films of palladium or platinum for subsequent electroless deposition can be readily deposited by evaporation or sputtering techniques. The films deposited with these techniques can be patterned by well-known lithographic techniques, e.g., subtractive etching or liftoff. Large features and/or dense patterns of small features are relatively easy to plate with this method.
In another example, metal growth and/or metal/organic film deposition can be performed via ALD, which is a thin film deposition technique that is based on the sequential use of a gas phase chemical process. According to an embodiment, ALD reactions can utilize two chemicals, often referred to as precursors. These precursors can react one at a time with a surface in a sequential manner, and by exposing the precursors to the growth surface repeatedly, a thin film can be deposited. In one example, the growth of material via ALD can be conducted by repeating a series of four steps: (1) exposure of a first precursor; (2) purging or evacuation of the reaction chamber to remove non-reacted precursors and gaseous reaction by-products; (3) exposure of a second precursor, or an additional treatment to reactivate the surface for the reaction of the first precursor; and (4) a second purging or evacuation of the reaction chamber. Each of these reaction cycles can add a given amount of material to the surface, which can be referred to as the growth per cycle. To grow a material layer via ALD, reaction cycles can be repeated as many times as required for the desired film thickness. Prior to beginning the ALD process, the surface can be stabilized to a known, controlled state, e.g., by a heat treatment. As ALD is composed of self-terminating reactions, ALD is a surface-controlled process, wherein process parameters other than the precursors, substrate, and temperature have little or no influence. These properties enable films grown via ALD to exhibit a high degree of conformity and uniformity.
More generally, it can be appreciated that any suitable CVD process, including ALD and/or any other suitable CVD process, can be utilized to deposit metal and/or organic film as described herein. In general, CVD can refer to any process that involves the exposure of a substrate to one or more volatile precursors, which can react and/or decompose on the substrate surface to produce the desired deposit. Alternatively, deposition of metal and/or organic film can be conducted via a PVD process, by which a thin film is deposited by the condensation of a vaporized form of the material to be deposited onto the semiconductor surface. By definition, coating methods utilized in connection with PVD can utilize purely physical processes, such as high temperature vacuum evaporation, plasma sputter bombardment, or the like. It should be appreciated, however, that metal growth as shown by
As described above with reference to
Upon completion of selective metal growth as shown by
In an alternative example, the remaining portions of the first dielectric layer 510 can be removed by wet chemistry and/or other means as shown by diagram 1004 prior to etching as shown by diagram 1002. This can be done, for example, to obtain a topography for improved etching (e.g., a topography for an improved reactive-ion etching (RIE) process window).
Upon completion of etching as shown in
Turning next to
As described above, various embodiments described herein provide techniques for semiconductor device fabrication that initially leverage the use of etching using a resist layer as a mask in a similar manner to that performed in conventional non-tone inversion lithography. This etching can be configured to stop at the top of the metal layer below the dielectric layer. Next, metal or organic film can be deposited by either electroless deposition, epitaxial growth, CVD/PVD/ALD, and/or any other suitable technique(s). Any of the overburden of this material on top of the dielectric can be removed by CMP or an etchback process, after which the remaining material can be used as a hardmask. This hardmask can, in turn, be used to etch the dielectric in order to obtain the tone-inversion pattern.
With specific reference now to
Turning next to
With reference again generally to
According to another embodiment, materials chosen for the metal layer 520 as described herein can be dependent on the deposition method utilized. For example, in the case of selective growth, materials such as TiN or TaN can be utilized via deposition according to a CVD, PVD, ALD, and/or other suitable method. In the event that metal deposition by CVD, PVD, ALD, or the like is utilized, then a metal with a barrier property (e.g., Ti, TiN, Ta, TaN, etc.) can be utilized.
According to a further embodiment, the deposited material (e.g., selective growth or deposited film) can be selected based on the deposition method utilized. For example, in the case of selective growth, a primary metal (e.g., approximately 80% of the composition) can be chosen from a list of candidates including, but not limited to, Co, Ni, Cu, Fe, Ru, Rh, Pd, Ag, Os, Ir, Sn, Pb, Pt, and/or Au. Further, a co-deposit metal (e.g., ≦approximately 5% of the composition) can be chosen from a list of candidates including, but not limited to, V, Cr, Mn, Mo, Tc, W, Rc, In, Ti, Zn, Si, Ge, and/or B. Alternatively, in the case of metal deposition, candidate metals for deposition can be chosen from a set of candidates including, but not limited to, W, Cu, Ti, TiN, Ru, Ta, TaN, Co, Ni, and/or Si, as well as carbon or alloys combined with any of these material(s). According to an embodiment, Ti, TiN, Ta or TaN can be deposited in advance as a first layer. In another alternative, in the case of organic film deposition, amorphous carbon and/or any other suitable material(s) can be utilized as the organic material for film deposition.
According to an additional embodiment, various layers as utilized in the processes illustrated by
What has been described above includes examples of the disclosed innovation. It is, of course, not possible to describe every conceivable combination of components or methodologies for purposes of describing the disclosed innovation, but one of ordinary skill in the art can recognize that many further combinations and permutations of the disclosed innovation are possible. Accordingly, the disclosed innovation is intended to embrace all such alterations, modifications and variations that fall within the spirit and scope of the appended claims. Furthermore, to the extent that the term “contain,” “includes,” “has,” “involve,” or variants thereof is used in either the detailed description or the claims, such term can be inclusive in a manner similar to the term “comprising” as “comprising” is interpreted when employed as a transitional word in a claim.
With respect to any figure or numerical range for a given characteristic, a figure or a parameter from one range may be combined with another figure or a parameter from a different range for the same characteristic to generate a numerical range.
Other than in the operating examples, or where otherwise indicated, all numbers, values and/or expressions referring to quantities of ingredients, reaction conditions, etc., used in the specification and claims are to be understood as modified in all instances by the term “about.”
Further, while certain embodiments have been described above, it is to be appreciated that these embodiments have been presented by way of example only, and are not intended to limit the scope of the claimed subject matter. Indeed, the novel methods and devices described herein may be made without departing from the spirit of the above description. The accompanying claims and their equivalents are intended to cover such forms or modifications as would fall within the scope and spirit of the subject innovation.
In addition, it should be appreciated that while the respective methodologies provided above are shown and described as a series of acts for purposes of simplicity, such methodologies are not limited by the order of acts, as some acts can, in accordance with one or more aspects, occur in different orders and/or concurrently with other acts from that shown and described herein. For example, those skilled in the art will understand and appreciate that a methodology could alternatively be represented as a series of interrelated states or events, such as in a state diagram. Moreover, not all illustrated acts may be required to implement a methodology in accordance with one or more aspects.
Claims
1. A method for fabricating a device, comprising:
- forming a structure on a substrate, the structure having a lower dielectric layer on the substrate, a metal layer on the lower dielectric layer, an upper dielectric layer on the metal layer, a planarizing layer on the upper dielectric layer, and a layer of photoresist material on the planarizing layer;
- developing the photoresist material according to a mask pattern;
- etching the planarizing layer and the upper dielectric layer according to the mask pattern;
- removing the photoresist material and the planarizing layer upon etching of the planarizing layer and the upper dielectric layer;
- applying a selective metal growth to respective exposed portions of the metal layer following etching of the upper dielectric layer, thereby obtaining an inverted mask pattern composed of the selective metal growth; and
- etching at least the metal layer and the lower dielectric layer according to the inverted mask pattern.
2. The method of claim 1, further comprising removing the upper dielectric layer prior to etching the metal layer and the lower dielectric layer.
3. The method of claim 1, wherein the applying comprises applying the selective metal growth via at least one of electroless plating, epitaxial growth, chemical vapor deposition (CVD), physical vapor deposition (PVD), or atomic layer deposition (ALD).
4. The method of claim 1, wherein:
- the upper dielectric layer has a thickness between approximately 10 nm and approximately 100 nm; and
- the metal layer has a thickness between approximately 5 nm and approximately 20 nm.
5. The method of claim 1, wherein the applying comprises applying selective metal growth composed of at least one element selected from the group consisting of Co, Ni, Cu, Fe, Ru, Rh, Pd, Ag, Os, Ir, Sn, Pb, Pt, and Au.
6. The method of claim 1, wherein the applying comprises applying selective metal growth comprising at least one primary metal and at least one co-deposit metal.
7. The method of claim 6, wherein:
- the at least one primary metal is composed of at least one element selected from the group consisting of Co, Ni, Cu, Fe, Ru, Rh, Pd, Ag, Os, Ir, Sn, Pb, Pt, and Au; and
- the at least one co-deposit metal comprises is composed of at least one element selected from the group consisting of V, Cr, Mn, Mo, Tc, W, Rc, In, Ti, Zn, Si, Ge, and B.
8. The method of claim 1, further comprising:
- removing the selective metal growth and the metal layer following etching of the metal layer and the lower dielectric layer;
- metalizing one or more portions of the lower dielectric layer that are removed as a result of the etching of the lower dielectric layer; and
- forming a cap layer on the lower dielectric layer upon completion of the metalizing.
9. A method for fabricating a device, comprising:
- forming a structure on a substrate, the structure having a lower dielectric layer on the substrate, a metal layer on the lower dielectric layer, an upper dielectric layer on the metal layer, a planarizing layer on the upper dielectric layer, and a layer of photoresist material on the planarizing layer;
- developing the photoresist material according to a mask pattern;
- etching the planarizing layer and the upper dielectric layer according to the mask pattern;
- removing the photoresist material and the planarizing layer upon etching of the planarizing layer and the upper dielectric layer;
- depositing a metal or organic film on the upper dielectric layer and respective exposed portions of the metal layer following etching of the upper dielectric layer;
- removing respective portions of the metal or organic film that are located on one or more portions of the upper dielectric layer, thereby obtaining an inverted mask pattern composed of the metal or organic film; and
- etching at least the metal layer and the lower dielectric layer according to the inverted mask pattern.
10. The method of claim 9, further comprising removing the upper dielectric layer prior to etching the metal layer and the lower dielectric layer.
11. The method of claim 9, wherein the depositing comprises depositing the metal or organic film via at least one of electroless plating, epitaxial growth, chemical vapor deposition (CVD), physical vapor deposition (PVD), or atomic layer deposition (ALD).
12. The method of claim 9, wherein:
- the upper dielectric layer has a thickness between approximately 10 nm and approximately 100 nm; and
- the metal layer has a thickness between approximately 5 nm and approximately 20 nm.
13. The method of claim 9, wherein the metal or organic film is a metal film composed of at least one of a material selected from the group consisting of W, Cu, Ti, TiN, Ru, Ta, TaN, Co, Ni, and Si; carbon combined with a material selected from the group consisting of W, Cu, Ti, TiN, Ru, Ta, TaN, Co, Ni, and Si; or an alloy combined with a material selected from the group consisting of W, Cu, Ti, TiN, Ru, Ta, TaN, Co, Ni, and Si.
14. The method of claim 9, wherein the metal or organic film is an organic film composed of amorphous carbon.
15. The method of claim 9, wherein the metal or organic film has a thickness between approximately 10 nm and approximately 300 nm.
16. The method of claim 9, wherein the depositing comprises:
- depositing an initial layer of metal or organic film on the upper dielectric layer and respective exposed portions of the metal layer following etching of the upper dielectric layer; and
- depositing a primary layer of metal or organic film on the initial layer of metal or organic film.
17. The method of claim 16, wherein the initial layer of metal or organic film is composed of at least one of Ti, TiN, Ta, or TaN.
18. The method of claim 16, wherein the initial layer of metal or organic film has a thickness between approximately 1 nm and approximately 10 nm.
19. The method of claim 9, further comprising:
- removing the metal or organic film and the metal layer following etching of the metal layer and the lower dielectric layer;
- metalizing one or more portions of the lower dielectric layer that are removed as a result of the etching of the lower dielectric layer; and
- forming a cap layer on the lower dielectric layer upon completion of the metalizing.
5343107 | August 30, 1994 | Shikata et al. |
5580668 | December 3, 1996 | Kellam |
6221562 | April 24, 2001 | Boyd et al. |
6794288 | September 21, 2004 | Kolics et al. |
6902605 | June 7, 2005 | Kolics et al. |
20090209105 | August 20, 2009 | Yaegashi et al. |
08055920 | February 1996 | JP |
2002110510 | April 2002 | JP |
2006019351 | January 2006 | JP |
2006093670 | April 2006 | JP |
2006286932 | October 2006 | JP |
2008091925 | April 2008 | JP |
2008300833 | December 2008 | JP |
2009218574 | September 2009 | JP |
2009301007 | December 2009 | JP |
2007040057 | April 2007 | WO |
- Inoue, et al; Fluorine Incorporation into HfSiON Dielectric for Vth Control and Its Impact on Reliability for Poly-Si Gate pFET, IEDM 2005 Dig.
- Sen, et al; Effects of aluminum incorporation on hafnium oxide filmm using plasma immersion ion implantation, Microelectronics Reliability 48 (2008), pp. 1765-1768.
- Xiong, et al.; Impact of incorporated Al on the TiN/HfO2 interface effective work function, Journal of Applied Physics 104, 074501 (2008), pp. 074501-1-074501-6.
Type: Grant
Filed: Sep 20, 2010
Date of Patent: Mar 20, 2012
Assignee: Kabushiki Kaisha Toshiba (Tokyo)
Inventors: Atsunobu Isobayashi (Clifton Park, NY), Masao Ishikawa (Malta, NY)
Primary Examiner: Alexander G. Ghyka
Assistant Examiner: Seavosh Nikmanesh
Attorney: Turocy & Watson, LLP
Application Number: 12/886,106
International Classification: H01L 21/302 (20060101); H01L 21/461 (20060101);