Nitride-based light-emitting device

- Epistar Corporation

A nitride-based light-emitting device includes a substrate and a plurality of layers formed over the substrate in the following sequence: a nitride-based buffer layer formed by nitrogen, a first group III element, and optionally, a second group III element, a first nitride-based semiconductor layer, a light-emitting layer, and a second nitride-based semiconductor layer.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation-in-part application of U.S. patent application Ser. No. 13/046,490, filed on Mar. 11, 2011, now pending, which is a divisional of a U.S. Pat. No. 7,928,424, issued Apr. 19, 2011, which is a continuation-in-part of a U.S. Pat. No. 7,497,905, issued Mar. 3, 2009, and which claims the right of priority based on Taiwan Application Serial Number 093106415, filed Mar. 11, 2004, the disclosure of which is incorporated herein by reference in their entireties.

BACKGROUND OF THE DISCLOSURE

1. Technical Field

The present disclosure provides a nitride-based light-emitting device, especially a nitride-based light-emitting device including a nitride-based buffer layer.

2. Description of the Related Art

The applications of light-emitting diodes are extensive, such as optical display devices, traffic signals, data storing devices, communication devices, illumination devices, and medical apparatuses. It is important to increase the brightness of light-emitting diodes, and to simplify manufacturing processes in order to decrease the cost of the light-emitting diode.

In general, a conventional nitride-based light-emitting device includes a nitride-based buffer layer composed of group AlGaInN and formed over a sapphire substrate, and a nitride-based epitaxy process is undergone on the nitride-based buffer layer to form a nitride-based light-emitting device. Due to the mismatching of the crystal lattice constants, the dislocation density (which affects the quality of the conventional nitride-based light-emitting device) cannot be decreased efficiently. Therefore, in order to improve the quality of the conventional nitride-based light-emitting device, the conventional nitride-based epitaxy process is mended as a two-step growth method. The two-step growth includes utilizing low-temperature (500 to 600° C.) GaN for forming a buffer layer, and a heating process (reaching a temperature of 1000 to 1200° C.) for crystallization. After the two-step growth, an epitaxy process for each epitaxy stack layer is proceeded. The thickness and temperature of the buffer layer, the recovery of the heating and re-crystallization processes, plus the ratio and flow rate of gas for each reaction must be controlled precisely, thus the manufacturing process becomes complicated and difficult, and the manufacturing efficiency cannot be increased.

SUMMARY OF THE DISCLOSURE

A detailed description is given in the following embodiments with reference to the accompanying drawings. An embodiment of a nitride-based light-emitting device is provided. The nitride-based light-emitting device comprises a substrate, a nitride-based buffer layer, a first nitride-based semiconductor layer, a light-emitting layer, and a second nitride-based semiconductor layer. The nitride-based buffer layer is formed over the substrate by nitrogen and at least a first group III element while a second group III element is optionally included. When the second group III element is presented, the concentrations of the first group III element, the second group III element, and nitrogen add up to one. The portion of the nitride-based buffer layer close to the substrate has higher concentration of the first group III element than that of the second group III element, and the combined concentration of the first group III element and the second group III element is greater than that of nitrogen. The portion of the nitride-based buffer layer away from the substrate has a lower concentration of the first group III element than that of the second group III element. In addition, the nitride-based buffer layer has lower nitrogen concentration close to the substrate and higher nitrogen concentration away from the substrate. The first nitride-based semiconductor layer is formed over the nitride-based buffer layer. The light-emitting layer is formed over the first nitride-based semiconductor layer, and the second nitride-based semiconductor layer is formed over the light-emitting layer.

In another embodiment, a nitride-based light-emitting device comprising a substrate, a nitride-based buffer layer, a first nitride-based semiconductor layer, a light-emitting layer, and a second nitride-based semiconductor layer is proposed. The nitride-based buffer layer is formed over the substrate by nitrogen and at least a first group III element while a second group III element is optionally included. The nitride-based buffer layer is of a single crystal structure. The first nitride-based semiconductor layer is formed over the nitride-based buffer layer. The light-emitting layer is formed over the first nitride-based semiconductor layer. The second nitride-based semiconductor layer is formed over the light-emitting layer.

In another embodiment the first group III element comprises a material selected from the group consisting of Al, Ga, and In, and the second group III element comprises a material selected from the group consisting of Al, Ga, and In, wherein the material of the first group III element is different from that of the second group III element.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 illustrates a schematic diagram of a nitride-based light-emitting device with a nitride-based buffer layer according to an embodiment of the present disclosure.

FIG. 2 illustrates a schematic diagram of a nitride-based light-emitting device with a nitride-based buffer layer according to an embodiment of the present disclosure.

FIG. 3, FIG. 4, and FIG. 5 are photographs illustrating surface morphologies of epi-wafers by an interference optical microscope.

FIG. 6 illustrates a cross-sectional picture taken by a transmission electron microscope.

FIG. 7 shows a reflectance spectrum of an embodiment of the present disclosure measured by in-situ monitoring when growing a slightly Si-doped GaN layer.

FIG. 8 illustrates a comparison table of blue light-emitting diodes between one made by an embodiment of the present disclosure and one fabricated by the conventional two-step growth method.

FIG. 9 illustrates a flowchart of summarizing the method of growing an AlGaN buffer layer of the nitride-based light-emitting device according to an embodiment of the present disclosure.

FIG. 10 illustrates a schematic diagram of a nitride-based light-emitting device with an AlN buffer layer according to an embodiment of the present disclosure.

FIG. 11 illustrates a schematic diagram of a nitride-based light-emitting device with an AlN buffer layer according to a fourth embodiment of the present disclosure.

DETAILED DESCRIPTION

Please refer to FIG. 1, which illustrates a schematic diagram of a nitride-based light-emitting device 1 with an AlGaN buffer layer according to the first embodiment of the present disclosure. The nitride-based light-emitting device 1 includes a sapphire substrate 10, an AlGaN buffer layer 11 formed over the sapphire substrate 10, a nitride-based stack layer 12 made of n-type semiconductor and formed over the AlGaN buffer layer 11 with an epitaxy area 121 and an n-type electrode contact area 122, a multi-quantum well light-emitting layer 13 made of nitride materials like GaN/InGaN formed over the epitaxy area 121, a nitride-based stack layer 14 made of p-type semiconductor and formed over the multi-quantum well light-emitting layer 13, a metal transparent conductive layer 15 formed over the nitride-based stack layer 14, an n-type electrode 16 formed over the n-type electrode contact area 122, and a p-type electrode 17 formed over the metal transparent conductive layer 15.

A method for forming the above-mentioned AlGaN buffer layer of the nitride-based light-emitting device 1 is performed in the following steps:

(a) introducing an Al-contained organometallic reaction source like TMAI at 800° C. for forming an aluminum-rich transient layer;

(b) introducing a Ga-contained organometallic reaction source like TMGa and a nitrogen reaction source NH3 under a lower mole flow ratio (V/III<1000);

(c) raising the growth temperature to 1050° C. and growing a high-temperature GaN layer with a higher mole flow ratio (V/III>2000).

During the growth of GaN layer, the Al atoms of the aluminum-rich transient layer, the Ga atoms, and the N atoms in the region close to the transient layer are re-arranged. The Al atoms are diffused upward and the Ga atoms and N atoms are diffused downward. Hence, the composition of the AlGaN buffer layer changes gradually, and the AlGaN buffer layer is grown as a single crystal structure. The concentrations of the Al, Ga, and N atom add up to one. The portion of the AlGaN buffer layer close to the substrate has higher concentration of the Al atom than that of the Ga atom, and the combined concentration of the Al and Ga atom is greater than that of the N atom. The portion of the AlGaN buffer layer away from the substrate has a lower concentration of the Al atom than that of the Ga atom. In addition, the AlGaN buffer layer has higher concentration of the N atom away from the substrate and lower concentration of the N atom close to the substrate. Then, the Al, Ga, and N atoms are bonded together to form an AlGaN buffer layer.

Another method for forming the above-mentioned AlGaN buffer layer of the nitride-based light-emitting device 1 is performed in the following steps:

(a) introducing an Al-contained organometallic reaction source TMAI at 1020° C. for forming an aluminum-rich transient layer;

(b) introducing a Ga-contained organometallic reaction source TMGa and an nitrogen reaction source NH3 at the same temperature as in step (a) to grow the high-temperature GaN layer.

The method for forming the nitride-based light-emitting device 1 further comprises a step of introducing a carrier gas into a reaction chamber before forming the above-mentioned AlGaN buffer layer. The carrier gas can be used to clean the surface contaminates of the substrate. In an example of the embodiment, the carrier gas also can be used to nitridate the surface of the substrate, and the epitaxial quality of the following semiconductor layer is improved by the nitridation.

Before introducing the carrier gas, the reaction chamber temperature is raised and the substrate in the reaction chamber is heated to reach a pre-determined temperature at first. In one embodiment, the pre-determined temperature is above 900° C. In an example of the embodiment, the pre-determined temperature can be above 1000° C. or 1100° C. The substrate is baked under the pre-determined temperature in a period of a first baking time, such as 10 minutes. Then the carrier gas is introduced to the reaction chamber continuously and the substrate is baked at the same temperature in a period of a second baking time with the carrier gas atmosphere. In an example of the embodiment, the second baking time is carried out for at least 10 seconds and less than 2 minutes. The second baking time is related to the growth rate of the semiconductor layer formed on the substrate, such as the above-mentioned AlGaN buffer layer. The second baking can be carried out at a reduced pressure environment, such as at a pressure lower than 350 mbar. In an example of the embodiment, the pressure is lower than 250 mbar or 150 mbar. The carrier gas comprises hydrogen gas, hydrogen-containing compound gas, nitrogen gas, or a mixed gas of hydrogen gas and nitrogen gas (H2+N2). An example of the hydrogen-containing compound gas comprises ammonia (NH3).

During the growth of GaN layer, the Al atoms of the aluminum-rich transient layer, the Ga atoms, and the N atoms in the region close to the transient layer are re-arranged. The Al atoms are diffused upwards, and the Ga atoms and N atoms are diffused downwards. Hence, the composition of the AlGaN buffer layer changes gradually, and the AlGaN buffer layer is grown as a single crystal structure. The concentrations of the Al, Ga, and N atom add up to one. The portion of the nitride-based buffer layer close to the substrate has higher concentration of the Al atom than that of the Ga atom, and the combined concentration of the Al and Ga atom is greater than that of the N atom. The portion of the nitride-based buffer layer away from the substrate has a lower concentration of the Al atom than that of the Ga atom. In addition, the nitride-based buffer layer has higher concentration of the N atom away from the substrate and lower concentration of the N atom close to the substrate. Then, the Al, Ga and N atoms are bonded together to form the AlGaN buffer layer.

Please refer to FIG. 2, which illustrates a schematic diagram of a nitride-based light-emitting device 3 with an AlGaN buffer layer according to another embodiment of the present disclosure. Differences between the nitride-based light-emitting device 1 and the nitride-based light-emitting device 3 include a transparent oxide contact layer 28 of the nitride-based light-emitting device 3 formed over the nitride-based stack layer instead of the metal transparent conductive layer 15 of the nitride-based light-emitting device 1, and a highly-doped n-type reverse tunneling contact layer 29 of the nitride-based light-emitting device 3 with a thickness of less than 10 nm and doping concentration greater than 1×1019 cm−3 formed between the nitride-based stack layer 14 and the transparent oxide contact layer 28 so that an ohmic contact is formed between the transparent oxide contact layer 28 and the highly-concentrated n-type reverse tunneling contact layer 29. When the nitride-based light-emitting device 3 is operated in forward bias, the interface between the highly-concentrated n-type reverse tunneling contact layer 29 and the nitride-based stack layer 14 is in the reverse bias mode and forms a depletion region. In addition, carriers of the transparent oxide contact layer 28 can punch through the nitride-based stack layer 14 because of the tunneling effect, which makes the operating bias of the nitride-based light-emitting device 3 reaching the same level as the conventional LED with a metal transparent conductive layer.

The AlGaN buffer layers of the nitride-based light-emitting devices 1 and 3 can be replaced with other nitride-based buffer layers, such as InGaN or InAlN buffer layer.

Please refer to FIG. 3, FIG. 4, and FIG. 5, which are photographs illustrating surface morphologies of epi-wafers examined under an interference optical microscope. FIG. 3 shows a surface without any buffer layer; FIG. 4 shows a surface with a conventional GaN buffer layer fabricated by a conventional two-step growth method; FIG. 5 shows a surface of the AlGaN buffer layer on which the GaN layer is grown according to the embodiment of the present disclosure. The surface without any buffer layer forms a hazy surface indicating that it is a non-single crystalline structure, while the surface of the AlGaN buffer layer forms a mirror-like surface.

Furthermore, comparing to other conventional buffer layers which also have mirror-like surfaces, the thickness of the nitride-based buffer layer in the embodiments of the present disclosure is thinner. Please refer to FIG. 6, which is a cross-sectional picture taken by a transmission electron microscope. It is obviously shown that the thickness of the buffer layer is only around 7 nm, in contrast to a thickness of 20 to 40 nm of a buffer layer derived from the conventional two-step growth method.

Please refer to FIG. 7, which shows a reflectance spectrum of the present disclosure by in-situ monitor while growing a slightly Si-doping GaN layer. It illustrates signals from forming the transient layer for forming the buffer layer to the GaN layer formed on the buffer layer in a high temperature. The crystal quality has been characterized by XRC and Hall measurements. The GaN layer of one embodiment of the present disclosure has a full width at half maximum (FWHM) of XRC of 232 arcsec, and the mobility of Hall carriers can reach as high as 690 cm2/V·s while the concentration of Hall carriers being 1×1017 cm−3. Relatively, the GaN layer fabricate by the conventional two-step growth method has a wider XRC FWHM of 269 arcsec, and a lower mobility of 620 cm2/V·s of Hall carriers under the similar concentration of Hall carriers. It strongly indicates that the crystal quality of the GaN layer in the present disclosure is significantly improved when compared with the one fabricated by the conventional two-step growth method.

Furthermore, we have made a comparison between a blue light-emitting diode of the present disclosure and the one fabricated by the conventional two-step growth method. Please refer to FIG. 8, which illustrates a table of a comparison between a blue light-emitting diode fabricated by the method disclosed in the present disclosure and the one fabricated by the conventional two-step growth method. From the table 100, it can be seen that in terms of brightness, under a condition of a forward voltage at 20 mA, a leakage current at −5V, and a reverse voltage at −10 μA, a blue light-emitting diode of the present disclosure are comparable to the one fabricated by the conventional two-step growth method. In addition, the reliability of the blue light-emitting diode of the present disclosure is also comparable to that of the one fabricated by the conventional two-step growth method. Therefore, the manufacture process of the present disclosure provides devices with a simpler process.

FIG. 9 shows a flowchart of the method of growing an AlGaN buffer layer of the nitride-based light-emitting device 1 according to an embodiment of the present disclosure. A substrate is provided in step 100. Next, in step 102, a first reaction source containing a first group III element is introduced into a chamber at a first temperature. The melting point of the first group III element is lower than the first temperature, and the first group III element is deposited directly on the substrate. Then, in step 104, a second reaction source containing a second group III element and a third reaction source containing a nitrogen element are introduced into the chamber at a second temperature for forming a nitride-based buffer layer with the first group III element on the substrate. The second temperature is not lower than the melting point of the first group III element.

Please refer to FIG. 10, which illustrates a schematic diagram of a nitride-based light-emitting device 5 with an AlN buffer layer according to the third embodiment of the present disclosure. The structure of the nitride-based light-emitting device 5 is the same as the nitride-based light-emitting device 1. The difference between the nitride-based light-emitting device 1 and the nitride-based light-emitting device 5 include the material of the buffer layer 11 of the nitride-based light-emitting device 5 is AlN. Methods for forming the above-mentioned AlN buffer layer 110 of the nitride-based light-emitting device 5 are given as follows:

Method (A):

(a) introducing an Al-contained organometallic reaction source TMAI at about 800° C. for forming an aluminum-rich transient layer whose thickness is around 2 to 15 nm,

(b) during the period of raising the growth temperature to about 1050° C., introducing the Al-contained organometallic reaction source TMAI continuously and introducing additional nitrogen reaction source NH3 simultaneously under a lower mole flow ratio (V/III<1000) for forming an aluminum-rich AlN layer whose thickness is around 2 to 5 nm;

(c) at the growth temperature of about 1050° C., continuing introducing the Al-contained organometallic reaction source TMAI and the nitrogen reaction source NH3 simultaneously for growing the AlN buffer layer 110 whose thickness is around 3 to 10 nm. Afterwards, at the same or a higher temperature, other layers of the nitride-based light-emitting device 5 are formed.

Method (B):

(a) introducing an Al-contained organometallic reaction source TMAI at about 800° C. for forming an aluminum-rich transient layer whose thickness is around 2 to 15 nm;

(b) during the period of raising the growth temperature to about 1050° C., introducing additional nitrogen reaction source NH3 simultaneously under a lower mole flow ratio (V/III<1000) for forming an aluminum-rich AlN layer whose thickness is around 2 to 10 nm;

(c) at the growth temperature of about 1050° C., stopping introducing the Al-contained organometallic reaction source TMAI and keeping introducing the nitrogen reaction source NH3 for reacting with the aluminum-rich transient layer and the aluminum-rich AlN layer to form the AlN buffer layer 110. Afterwards, at the same or at a higher temperature, other layers of the device 5 are formed.

Method (C):

(a) introducing an Al-contained organometallic reaction source TMAI at about 800° C. for forming an aluminum-rich transient layer whose thickness is around 2 to 15 nm;

(b) raising the growth temperature to about 1050° C., and during the temperature-raising period, stopping introducing the Al-contained organometallic reaction source TMAI and introducing nitrogen reaction source NH3 for reacting with the aluminum-rich transient layer;

(c) at the growth temperature of about 1050° C., reintroducing the Al-contained organometallic reaction source TMAI and continuing introducing the nitrogen reaction source NH3 for growing the AlN buffer layer 110 whose thickness is around 5 to 15 nm. Afterwards, at the same or at a higher temperature, other layers of the device 5 are formed.

Method (D):

(a) introducing an Al-contained organometallic reaction source TMAI at about 1020° C. for forming an aluminum-rich transient layer whose thickness is around 2 to 15 nm;

(b) continuing introducing Al-contained organometallic reaction source TMAI and introducing additional nitrogen reaction source NH3 with a lower mole flow ratio (V/III<500) for forming an aluminum-rich AlN layer whose thickness is around 2 to 10 nm;

(c) at the growth temperature of about 1020° C., stopping introducing the Al-contained organometallic reaction source TMAI and continuing introducing the nitrogen reaction source NH3 for reacting with the aluminum-rich transient layer and the aluminum-rich AlN layer to form the AlN buffer layer 110. Afterwards, at the same or at a higher temperature, other layers of the device 5 are formed.

Method (E):

(a) introducing an Al-contained organometallic reaction source TMAI at about 1020° C. for forming an aluminum-rich transient layer whose thickness is around 2 to 15 nm;

(b) continuing introducing the Al-contained organometallic reaction source TMAI and introducing additional nitrogen reaction source NH3 simultaneously with a lower mole flow ratio (V/III<500) for forming an aluminum-rich AlN layer whose thickness is around 2 to 5 nm;

(c) at the growth temperature of about 1020° C., continuing introducing the Al-contained organometallic reaction source TMAI and the nitrogen reaction source NH3, and increasing the flow of NH3 to raise the mole flow ratio to more than 1000 (V/III>1000) for growing the AlN buffer layer 110 whose thickness is around 3 to 10 nm. Afterwards, at the same or a higher temperature, other layers of the device 5 are formed.

Method (F):

(a) introducing an Al-contained organometallic reaction source TMAI at about 1080° C. for forming an aluminum-rich transient layer whose thickness is around 2 to 15 nm;

(b) stopping introducing the AI-contained organometallic reaction source TMAI, and lowering the growth temperature to about 1040° C. During the lowering period, introducing additional nitrogen reaction source NH3 for reacting with the aluminum-rich transient layer to form an aluminum-rich AlN layer;

(c) at the growth temperature at about 1040° C., continuing introducing the Al-contained organometallic reaction source TMAI and the nitrogen reaction source NH3 simultaneously, and increasing the flow of NH3 to raise the mole flow ratio to more than 1000 (V/III>1000) for growing the AlN buffer layer 110 whose thickness is around 3 to 10 nm. Afterwards, at the same temperature of about 1040° C. or at a higher temperature between 1040° C. and 1080° C., other layers of the device 5 are formed.

The method for forming the nitride-based light-emitting device 5 further comprises a step of introducing a carrier gas into a reaction chamber before forming the above-mentioned AlN buffer layer. The carrier gas can be used to clean the surface contaminates of the substrate. In an example of the embodiment, the carrier gas also can be used to nitridate the surface of the substrate, and the epitaxial quality of the following semiconductor layer is improved by the nitridation.

Before introducing the carrier gas, the reaction chamber temperature is raised and the substrate in the reaction chamber is heated to reach a pre-determined temperature at first. In one embodiment, the pre-determined temperature is above 900° C. In an example of the embodiment, the pre-determined temperature can be above 1000° C. or 1100° C. The substrate is baked under the pre-determined temperature in a period of a first baking time, such as 10 minutes. Then, the carrier gas is introduced to the reaction chamber continuously and the substrate is baked at the same temperature in a period of a second baking time with the carrier gas atmosphere. In an example of the embodiment, the second baking time is carried out for at least 10 seconds and less than 2 minutes. The second baking time is related to the growth rate of the semiconductor layer formed on the substrate, such as the above-mentioned AlN buffer layer. The second baking can be carried out at a reduced pressure environment, such as at a pressure lower than 350 mbar. In an example of the embodiment, the pressure is lower than 250 mbar or 150 mbar. The carrier gas comprises hydrogen gas, hydrogen-containing compound gas, nitrogen gas, or a mixed gas of hydrogen gas and nitrogen gas (H2+N2). An example of the hydrogen-containing compound gas comprises ammonia (NH3).

During the growth of AlN layer, the Al atoms of the aluminum-rich transient layer and the N atoms in the region close to the transient layer are re-arranged. The Al atoms are diffused upwards and N atoms are diffused downwards. The Al atoms are introduced before the N atom, hence, the composition of the AlN buffer layer changes gradually, and the AlN buffer layer is grown as a single crystal structure. When forming the aluminum-rich transient layer, the temperature for forming the aluminum-rich transient layer is higher than the melting point of the Al atom to prevent a pure Al layer from being formed within the AlN buffer layer. So is the temperature for forming the AlN buffer layer. The pure Al layer is opaque and results in low efficiency in light-emitting, and concerns the epitaxy process of the following layers. The portion of the AlN buffer layer close to the substrate has higher concentration of the Al atom than that of the N atom; the AlN buffer layer has higher concentration of the N atom away from the substrate and lower concentration of the N atom close to the substrate.

Please refer to FIG. 11, which illustrates a schematic diagram of a nitride-based light-emitting device 7 with an AlN buffer layer according to a fourth embodiment of the present disclosure. The structure of the nitride-based light-emitting device 7 is the same as the nitride-based light-emitting device 3. The difference between the nitride-based light-emitting device 3 and the nitride-based light-emitting device 7 includes the material of the buffer layer 11 of the nitride-based light-emitting device 7 is AlN.

In addition, the AlN buffer layers of the nitride-based light-emitting devices 5 and 7 can be replaced with other binary nitride-based buffer layers, such as GaN or InN buffer layer.

In the nitride-based light-emitting devices 1 and 5, a transparent oxide contact layer can be formed over the nitride-based stack layer instead of the metal transparent conductive layer of the nitride-based light-emitting device 1 for increasing light-emitting efficiency owing to the higher light transmittance of the transparent oxide contact layer.

In the above-mentioned embodiments, the nitride-based stack layer made of p-type semiconductor further comprises a p-type nitride-based contact layer and a p-type nitride-based cladding layer, while the nitride-based stack layer made of n-type semiconductor further comprises an n-type nitride-based contact layer and an n-type nitride-based cladding layer. The p-type or n-type nitride-based contact layer and the p-type or n-type nitride-based cladding layer each includes a material selected from a material group consisting of AlN, GaN, InN, AlGaN, AlInN, InGaN, and AlInGaN, or other substitute materials. Besides sapphire, the substrate can be made of other material selected from a group consisting of SiC, GaAs, GaN, AlN, GaP, Si, ZnO, MgO, and MgAl2O4, or other substitute materials, such as glass. The nitride-based stack layer made of n-type or p-type semiconductor includes a material selected from a group consisting of AlN, GaN, InN, AlGaN, AlInN, InGaN, and AlInGaN, or other substitute materials. The nitride-based multi-quantum well light-emitting layer includes a material selected from a group consisting of AlN, GaN, InN, AlGaN, InGaN, AlInN, and AlInGaN or other substitute materials. The metal contact layer includes a material selected from a group consisting of Ni/Au, NiO/Au, Ta/Au, TiWN, and TiN, or other substitute materials. The transparent oxide contact layer includes a material selected from a group consisting of indium tin oxide, cadmium tin oxide, antimony tin oxide, zinc aluminum oxide, and zinc tin oxide, or other substitute materials.

Those skilled in the art will readily observe that numerous modifications and alterations of the device and method may be made while retaining the teachings of the invention. Accordingly, the above disclosure should be construed as limited only by the metes and bounds of the appended claims.

Claims

1. A manufacturing method of a light-emitting device, comprising:

providing a reaction chamber;
providing a substrate in the reaction chamber;
heating the reaction chamber to a pre-determined temperature;
nitridating the substrate by introducing a carrier gas into the reaction chamber at the pre-determined temperature;
forming a buffer layer over the substrate by introducing a first reaction source comprising a first group III element into the reaction chamber at a first temperature, and a second reaction source comprising nitrogen into the chamber at a second temperature, wherein the first temperature is lower than the pre-determined temperature; and
forming a first semiconductor layer over the buffer layer.

2. The manufacturing method of the light-emitting device according to claim 1, wherein the buffer layer comprises an atomic concentration of the first group III element larger than an atomic concentration of nitrogen, and a first portion of the buffer layer adjacent to the substrate comprises an atomic concentration of nitrogen lower than an atomic concentration of nitrogen of a second portion located on the first portion of the buffer layer.

3. The manufacturing method of the light-emitting device according to claim 1, wherein the substrate comprises a material selected from the group consisting of sapphire, GaN, AlN, SiC, GaAs, GaP, Si, ZnO, MgO, MgAl2O4, and glass.

4. The manufacturing method of the light-emitting device according to claim 1, wherein the first semiconductor layer is of a single crystal structure and comprises a material selected from the group consisting of AlN, GaN, InN, AlGaN, InGaN, AlInN, and AlInGaN.

5. The manufacturing method of the light-emitting device according to claim 1, wherein the carrier gas comprises hydrogen gas, hydrogen-containing compound gas, nitrogen gas, or a mixed gas of hydrogen gas and nitrogen gas.

6. The manufacturing method of the light-emitting device according to claim 1, wherein the first group III element comprises Al, Ga, or In.

7. The manufacturing method of the light-emitting device according to claim 1, further comprising introducing a third reaction source comprising a second group III element into the chamber at the second temperature when forming the buffer layer.

8. The manufacturing method of the light-emitting device according to claim 7, wherein the second group III element comprises Al, Ga, or In.

9. The manufacturing method of the light-emitting device according to claim 1, wherein the buffer layer comprises a material selected from the group consisting of AlN, GaN, InN, InGaN, AlGaN InAlN, and AlInGaN.

10. The manufacturing method of the light-emitting device according to claim 1, wherein the first temperature is different from the second temperature.

11. The manufacturing method of the light-emitting device according to claim 1, wherein the buffer layer is of a single crystal structure.

12. A manufacturing method of a light-emitting device, comprising:

providing a reaction chamber;
providing a substrate in the reaction chamber;
forming a buffer layer over the substrate by introducing a first reaction source comprising a first group III element into the reaction chamber, and a second reaction source comprising nitrogen into the reaction chamber subsequent to introducing the first reaction source;
nitridating the substrate before forming the buffer layer; and
forming a first semiconductor layer over the buffer layer.

13. The manufacturing method of the light-emitting device according to claim 12, wherein the substrate comprises a material selected from the group consisting of sapphire, GaN, AlN, SiC, GaAs, GaP, Si, ZnO, MgO, MgAl2O4, and glass.

14. The manufacturing method of the light-emitting device according to claim 12, wherein the first semiconductor layer is of a single crystal structure and comprises a material selected from the group consisting of AlN, GaN, InN, AlGaN, InGaN, AlInN, and AlInGaN.

15. The manufacturing method of the light-emitting device according to claim 12, wherein the first group III element comprises Al, Ga, or In.

16. The manufacturing method of the light-emitting device according to claim 12, wherein the nitridating step is performed by introducing a carrier gas comprising hydrogen gas, hydrogen-containing compound gas, nitrogen gas, or a mixed gas of hydrogen gas and nitrogen gas.

17. The manufacturing method of the light-emitting device according to claim 12, wherein a thickness of the buffer layer is between 1 nm and 500 nm.

18. The manufacturing method of the light-emitting device according to claim 12, wherein the buffer layer comprises a material selected from the group consisting of AlN, GaN, InN, InGaN, AlGaN InAlN, and AlInGaN.

19. The manufacturing method of the light-emitting device according to claim 12, further comprising introducing a third reaction source comprising a second group III element into the chamber at the second temperature when forming the buffer layer.

20. The manufacturing method of the light-emitting device according to claim 19, wherein a first portion of the buffer layer adjacent to the substrate comprises an atomic concentration of the first group III element greater than an atomic concentration of the second group III element, and a combined atomic concentration of the first group III element and the second group III element is greater than an atomic concentration of nitrogen; a second portion of the buffer layer located on an opposite side of the buffer layer from the substrate comprises an atomic concentration of the first group III element lower than an atomic concentration of the second group III element; and the second portion of the buffer layer located on an opposite side of the buffer layer from the substrate comprises an atomic concentration of nitrogen greater than an atomic concentration of nitrogen of the first portion of the buffer layer located adjacent to the substrate.

Referenced Cited
U.S. Patent Documents
1 July 1836 Ruggles
5122845 June 16, 1992 Manabe et al.
5132750 July 21, 1992 Kato et al.
5290393 March 1, 1994 Nakamura
5686738 November 11, 1997 Moustakas
5912476 June 15, 1999 Watanabe et al.
5923950 July 13, 1999 Ishibashi et al.
5990495 November 23, 1999 Ohba
6048397 April 11, 2000 Endo et al.
6115399 September 5, 2000 Shakuda
6147364 November 14, 2000 Itaya et al.
6447938 September 10, 2002 Bianchi
6589447 July 8, 2003 Ishizaki et al.
6844246 January 18, 2005 Nagai et al.
7390596 June 24, 2008 Ishibashi et al.
7497905 March 3, 2009 Ou et al.
20010002048 May 31, 2001 Koike et al.
20010032984 October 25, 2001 Uchida
20020158264 October 31, 2002 Nakamura et al.
20020179929 December 5, 2002 Takahashi et al.
20030013223 January 16, 2003 Ramdani et al.
20030057434 March 27, 2003 Hata et al.
20030062529 April 3, 2003 Kato et al.
20030070607 April 17, 2003 Koike et al.
20030092230 May 15, 2003 Koike et al.
20030092263 May 15, 2003 Koike et al.
20030119239 June 26, 2003 Koike et al.
20030122478 July 3, 2003 Suehiro et al.
20030134446 July 17, 2003 Koike et al.
20030155575 August 21, 2003 Shibata et al.
20030162340 August 28, 2003 Tezen
20030183837 October 2, 2003 Kushibe et al.
20040021401 February 5, 2004 Ando
20040048448 March 11, 2004 Koike et al.
20040087115 May 6, 2004 Nagai et al.
20040161006 August 19, 2004 Chang et al.
20040161009 August 19, 2004 Edamura et al.
20040206949 October 21, 2004 Bour et al.
20040261693 December 30, 2004 Lai et al.
20050089074 April 28, 2005 Koelle et al.
20050221520 October 6, 2005 Ou et al.
20090127581 May 21, 2009 Ou et al.
20110156001 June 30, 2011 Ou et al.
Foreign Patent Documents
1111663 June 2001 EP
53053991 May 1978 JP
61106497 May 1986 JP
2000312032 November 2000 JP
2000332229 November 2000 JP
2003077840 March 2003 JP
2003309291 October 2003 JP
2003338662 November 2003 JP
Patent History
Patent number: 8562738
Type: Grant
Filed: Feb 25, 2013
Date of Patent: Oct 22, 2013
Patent Publication Number: 20130164873
Assignee: Epistar Corporation (Hsinchu)
Inventors: Chen Ou (Hsinchu), Wen-Hsiang Lin (Hsinchu), Shih-Kuo Lai (Hsinchu)
Primary Examiner: David E Graybill
Application Number: 13/776,312
Classifications
Current U.S. Class: With Responsive Control (117/86)
International Classification: C30B 25/02 (20060101);