Semiconductor device with air gap and method for fabricating the same
A method for fabricating a semiconductor device includes forming a semiconductor structure having an open portion over a substrate, forming a sacrificial spacer on sidewalls of the open portion, forming a recessed first plug in the open portion, forming an air gap by removing the sacrificial spacer, forming a capping layer to expose the top surface of the recessed first plug and to cap the air gap, forming a protective layer over the capping layer and the recessed first plug, forming an ohmic contact layer over the protective layer, and forming a second plug over the ohmic contact layer.
Latest SK Hynix Inc. Patents:
The present application claims priority of Korean Patent Application No. 10-2012-0153830, filed on Dec. 26, 2012, which is incorporated herein by reference in its entirety.
BACKGROUND1. Field
Exemplary embodiments of the present invention relate to a semiconductor device, and more particularly, to a semiconductor device with an air gap and a method for fabricating the same.
2. Description of the Related Art
In general, a semiconductor device includes a second conductive structure formed with an insulation layer provided between a plurality of first conductive structures. For example, the first conductive structure may include a gate, a bit line, a metal interconnection and the like, and the second conductive structure may include a contact plug, a storage node contact plug, a bit line contact plug, a via and the like.
With high integration of the semiconductor device, a distance between the first and second conductive structures has gradually decreased. Accordingly, parasitic capacitance between the first and second conductive structures is increased. With the increase of parasitic capacitance, the operation speed of the semiconductor device is reduced, and the refresh characteristic of the semiconductor device is degraded.
In order to reduce parasitic capacitance, the dielectric constant of the insulation layer may be reduced. In general, an insulation layer used in a semiconductor device may include silicon oxide and silicon nitride. The silicon oxide has a dielectric constant of about 4, and the silicon nitride has a dielectric constant of about 7.
Since the silicon oxide and the silicon nitride have high dielectric constants, they have a limitation in reducing parasitic capacitance. Recently, materials having relatively low dielectric constants have been developed, but the dielectric constants thereof may be not so low.
SUMMARYVarious exemplary embodiments of the present invention are directed to a semiconductor device that may reduce parasitic capacitance between adjacent conductive structures, and a method for fabricating the same.
In an exemplary embodiment of the present invention, a method for fabricating a semiconductor device includes forming a semiconductor structure having an open portion over a substrate; forming a sacrificial spacer on sidewalls of the open portion; forming a recessed first plug in the open portion; forming an air gap by removing the sacrificial spacer; forming a capping layer to expose a top surface of the recessed first plug and to cap the air gap; forming a protective layer over the capping layer and the recessed first plug; forming an ohmic contact layer over the protective layer; and forming a second plug over the ohmic contact layer.
In another exemplary embodiment of the present invention, a method for fabricating a semiconductor device includes forming a plurality of bit line structures over a substrate; forming a storage node contact hole between the bit line structures; forming a sacrificial spacer on sidewalls of the storage node contact hole; forming a recessed first storage node contact plug in the storage node contact hole; forming an air gap by removing the sacrificial spacer; forming oxide by oxidizing the surface of the recessed first storage node contact plug; etching the oxide to expose a top surface of the recessed first storage node contact plug, and forming a capping layer to cap the air gap; forming a protective layer over the capping layer and the first storage node contact plug; forming an ohmic contact layer over the protective layer; and forming a second storage node contact plug over the ohmic contact layer.
In still another exemplary embodiment of the present invention, a method for fabricating a semiconductor device includes forming a semiconductor structure having an open portion exposing a portion of a substrate; forming a sacrificial spacer on sidewalls of the semiconductor structure; forming a recessed first plug in the open portion; forming an air gap by removing the sacrificial spacer; forming a capping layer to cap the air gap; forming a protective layer over the capping layer and the recessed first plug; and forming a second plug over the protective layer.
In still another exemplary embodiment of the present invention, a semiconductor device includes a plurality of bit line structures formed over a substrate; a storage node contact hole formed to expose sidewalls of the bit line structures; a recessed first storage contact plug formed in the storage node contact hole; an air gap formed between the sidewalls of the bit line structures and the recessed first storage node contact plug; a capping layer capping the air gap; a protective layer formed over the capping layer and the recessed first storage node contact plug; an ohmic contact layer formed over the protective layer; and a second storage node contact plug formed over the ohmic contact layer.
The capping layer may comprise oxide of the recessed first storage node contact plug. The ohmic contact layer may comprise metal silicide, and the protective layer comprises polysilicon. The recessed first storage node contact plug may comprise polysilicon, and the second storage node contact plug comprises tungsten.
In still another exemplary embodiment of the present invention, a semiconductor device includes a semiconductor structure formed over a substrate and having an open portion; a silicon plug formed in the open portion; an air gap formed between the silicon plug and sidewalls of the semiconductor structure; a capping layer exposing a top surface of the silicon plug and capping the air gap; a protective layer including a silicon layer, formed over the capping layer and the silicon plug; an ohmic contact layer including metal silicide, formed over the protective layer; and a metal plug formed over the ohmic contact layer.
The capping layer may comprise silicon oxide obtained by oxidizing the silicon plug. The ohmic contact layer comprises cobalt silicide.
Various exemplary embodiments of the present invention will be described below in more detail with reference to the accompanying drawings. The present invention may, however, be embodied in different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the present invention to those skilled in the art. Throughout the disclosure, like reference numerals refer to like parts throughout the various figures and embodiments of the present invention.
The drawings are not necessarily to scale and in some instances, proportions may have been exaggerated in order to clearly illustrate features of the embodiments. When a first layer is referred to as being “on” a second layer or “on” a substrate, it not only refers to a case where the first layer is formed directly on the second layer or the substrate but also a case where a third layer exists between the first layer and the second layer or the substrate.
Referring to
The first conductive structure 104 may include a first conductive layer 102. The first conductive structure 104 may have a stacked structure of the first conductive layer 102 and a hard mask layer 103. The first conductive layer 102 may include a silicon-containing layer or a metal-containing layer. The first conductive layer 102 may be formed by stacking a silicon-containing layer and a metal-containing layer. The first conductive layer 102 may include polysilicon, metal, metal nitride, metal silicide or the like. The first conductive layer 102 may be formed by stacking polysilicon and metal. The metal may include tungsten. The hard mask layer 103 may include an insulator. The hard mask layer 103 may include oxide or nitride.
Any one of the first and second conductive structures 104 and 110 may have a line shape extended in any one direction. The other of the first and second conductive structures 104 and 110 may have a plug shape. For example, the first conductive structure 104 may include a line-shaped structure, and the second conductive structure 110 may include a plug-shaped structure. The first conductive structures 104 may be regularly arranged at even intervals from each other over the substrate 101. The second conductive structure 110 may be formed in an open portion formed between the first conductive structures 104. The open portion may include a contact hole and the like.
The second conductive structure 110 may include a recessed second conductive layer 106 between the first conductive structures 104. The second conductive structure 110 may have a stacked structure including the second conductive layer 106, a protective layer 107, an ohmic contact layer 108, and a third conductive layer 109. The second conductive layer 106 and the protective layer 107 may include a silicon-containing layer. The second conductive layer 106 and the protective layer 107 may include polysilicon. The ohmic contact layer 108 and the third conductive layer 109 may include a metal-containing layer. The ohmic contact layer 108 may include metal silicide such as cobalt silicide. The third conductive layer 109 may include metal, metal silicide, metal nitride or the like. The third conductive layer 109 may have a stacked structure of a barrier layer and a metal layer. The third conductive layer 109 may be formed by stacking titanium nitride and tungsten.
The capping layer 112 may be formed in such a shape as to cap the air gap 111. The capping layer 112 may include oxide of the second conductive layer 106. In particular, the capping layer 112 may include plasma oxide of the second conductive layer 106. The capping layer 112 may include silicon oxide.
A spacer 105 may be formed over both sidewalls of the first conductive structure 104. The spacer 105 may include an insulator. The spacer 105 may include oxide or nitride. The spacer 105 and the air gap 111 may serve to insulate the first and second conductive structures 104 and 110 from each other.
Any one of the first and second conductive structures 104 and 110 may include a gate and a bit line. The other of the first and second conductive structures 104 and 110 may include a contact plug. The contact plug may include a storage node contact plug, a landing plug and the like. In
Referring to
The capping layer 112 to cap the air gap 111 is formed of oxide obtained by oxidizing the second conductive layer 106. The protective layer 107 is formed over the capping layer 112 and the second conductive layer 106. Accordingly, the protective layer 107 may protect the capping layer 112 to stably cap the air gap 111. The protective layer 107 is formed of a material that may be converted into silicide (hereinafter, referred to as ‘silicidable material’), and the ohmic contact layer 108 is formed over the protective layer 107, thereby increasing the formation area of the ohmic contact layer 108.
In the semiconductor device of
Referring to
The first conductive structures 24 formed over the substrate 21 may be arranged at even intervals from each other in a line shape. In order to form the first conductive structures 24, a hard mask pattern 23 is formed over a first conductive layer. Using the hard mask pattern 23 as an etch mask, the first conductive layer is etched to form a first conductive layer pattern 22. Accordingly, the first conductive structures 24 each having a stacked layer of the first conductive layer pattern 22 and the hard mask pattern 23 are formed. The first conductive layer pattern 22 may include a silicon-containing layer and a metal-containing layer. For example, the first conductive layer pattern 22 may include polysilicon or tungsten. Furthermore, the first conductive layer pattern 22 may be formed by stacking polysilicon and metal. At this time, a barrier layer may be further formed between the polysilicon and the metal. The first conductive layer pattern 22 may include a stacked structure of a polysilicon layer, a titanium-containing layer, and a tungsten layer. The titanium-containing layer may be a barrier layer having a stacked structure of titanium and titanium nitride.
Referring to
A sacrificial layer 26A is formed over the insulation layer 25A. The sacrificial layer 26A is removed to form an air gap during a subsequent process. The sacrificial layer 26A may include a material having an etch selectivity with respect to the insulation layer 25A. The sacrificial layer 26A may include oxide, nitride, or metal nitride. When the insulation layer 25A includes oxide, the sacrificial layer 26A may include metal nitride or nitride. When the insulation layer 25A includes nitride, the sacrificial layer 26A may include oxide or metal nitride. The sacrificial layer 26A may include silicon oxide, silicon nitride, or titanium nitride (TiN).
Referring to
As the spacer 25 and the sacrificial spacer 26 are formed, an open portion 27 may be formed to expose the substrate 21 between the first conductive structures 24. In another embodiment after the spacer 25 is formed, an interlayer dielectric layer (not illustrated) may be formed and then etched to form the open portion 27. After the open portion 27 is formed, the sacrificial spacer 26 may be formed over the sidewalls of the open portion 27.
The open portion 27 may be formed to expose the sidewalls of the sacrificial spacer 26. The open portion 27 may have a line shape or a contact hole shape. For example, when the first conductive structure 24 includes a bit line structure, the open portion 27 may include a storage node contact hole.
Referring to
Referring to
Referring to
In order to remove the sacrificial spacer 26, a wet etch or dry etch process may be applied. When the sacrificial spacer 26 is removed, the spacer 25, the second conductive layer pattern 28, and the hard mask pattern 23 are not damaged, because they have an etch selectivity with respect to the sacrificial spacer 26. When the sacrificial spacer 26 is titanium nitride, a wet cleaning process using a mixed solution of H2SO4 and H7O2 may be performed.
As the air gap 29 is formed parasitic capacitance between the first and second conductive patterns 22 and 28 decreases.
Referring to
As the capping layer 30A is formed, it may be possible to prevent the air gap 29 from being opened during a subsequent process.
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
After the ohmic contact layer 35 is formed, the protective layer may be left with a predetermined thickness, as represented by reference numeral ‘32’. Furthermore, the unreacted second silicidable material layer may be left as represented by reference numeral ‘33A’.
Referring to
When the unreacted second silicidable material layer 33A is stripped as described above, the capping layer pattern 30 and the air gap 29 may be protected by the protective layer 32.
Referring to
When the third conductive layer pattern 36 is formed in such a manner, a second conductive structure 37 including the second conductive layer pattern 28, the protective layer 32, the ohmic contact layer 35 and the third conductive layer pattern 36 is formed. Between the first and second conductive structures 24 and 37, the air gap 29 is formed. The second conductive structure 37 may become a storage node contact plug. The second conductive layer pattern 28 may become a bottom plug of the storage node contact plug, and the third conductive layer pattern 36 may become a top plug of the storage node contact plug. Since the second conductive layer pattern 28 includes a silicon-containing layer and the third conductive layer pattern 36 includes a metal-containing layer, a contact plug including the silicon-containing layer and the metal-containing layer, that is a semi-metal contact plug structure may be formed.
The air gap 29 may be formed between the first and second conductive layer patterns 22 and 28. When the first conductive layer pattern 22 includes a bit line and the second conductive layer pattern 28 includes a storage node contact plug, the air gap 29 may be formed between the bit line and the storage node contact plug. When the first conductive layer pattern 22 includes a gate electrode and the second conductive layer pattern 28 includes a contact plug, the air gap 29 may be formed between the gate electrode and the contact plug.
Referring to
In the first comparative embodiment, a single insulator may be used as a capping layer 18. The capping layer 18 may be formed of silicon nitride or silicon oxide. As the insulator is used as the capping layer 18, the capping layer 18 may be selectively removed from the surface of the second conductive layer 16, in order to perform a subsequent process.
However, when the capping layer 18 is attacked during the subsequent process, a self-aligned contact (SAC) fall may occur. When the capping layer 18 is formed with a large thickness so as to stably form the air gap 17, the formation area of metal silicide may be significantly reduced. In this case, contact resistance may considerably increase.
In particular, when the capping layer 18 is separately formed, a problem may occur. More specifically, when the capping layer 18 is etched to open the top of the second conductive layer 16 in order to form metal silicide, the capping layer 18 may be attacked to open the air gap 17 (as referred to as reference numeral ‘19’).
Referring to
Then, a cobalt layer 335 is deposited on the entire surface of the resulting structure, and an annealing process is performed to form cobalt silicide 35A. Through the annealing process, the second conductive layer pattern 28 and the cobalt layer 33B react with each other to form the cobalt silicide 35A.
Referring to
In the second comparative embodiment, however, when the unreacted cobalt layer is stripped, the capping layer pattern 30 may be attacked and lost. Accordingly, an air gap 29 may be opened (as referred to as reference numeral ‘29A’). In accordance with the second comparative embodiment, it may be difficult to stably cap the air gap 29. Furthermore, since the second conductive layer pattern 28 and the cobalt layer 33B are directly reacted with each other without a protective layer, the formation area of the cobalt silicide 35A may decrease.
In order to prevent the capping layer pattern 30 from being attacked, an insulating capping layer 38 may be further formed before the cobalt layer is deposited, as illustrated in
In the embodiment of the present invention, however, since the protective layer 32 is formed over the capping layer pattern 30, the air gap 29 may be stably capped during a subsequent process. Furthermore, since the ohmic contact layer 35 is formed through the reaction of the second silicidable material 33 with the protective layer 32, contact resistance may be improved.
Referring to
in accordance with the embodiment of the present invention, the storage node contact plug may correspond to the second conductive structure and the bit line may correspond to the first conductive layer pattern of the first conductive structure. Therefore, an air gap 58 may be formed between the first storage node contact plug 56 and the bit line 51. The protective layer 59 may include polysilicon, and the ohmic contact layer 60 may include metal silicide.
The air gap 58 is capped by a capping layer 57, and the protective layer 59 is formed over the capping layer 57 and the first storage node contact plug 56. The capping layer 57 may correspond to the capping layer in accordance with the embodiment of the present invention. Therefore, the capping layer 57 may include silicon oxide. The protective layer 59 may correspond to the protective layer in accordance with the embodiment of the present invention. Therefore, the protective layer 59 may include polysilicon. The ohmic contact layer 60 may include cobalt silicide.
Referring to
The substrate 41 may include a semiconductor material. The substrate 41 may include a semiconductor substrate. The substrate 41 may include a silicon substrate. For example, the substrate 41 may include a single crystal silicon substrate. The isolation region 42 may be formed through a shallow trench isolation (STI) process. The active region 43 may be defined by the isolation region 42. The isolation region 42 may include a wall oxide, a liner, and a gap-fill material, which are segue daily formed. The liner may include silicon nitride and silicon oxide. The silicon nitride may include Si3N4, and the silicon oxide may include SiO2. The gap-fill material may include silicon oxide such as spin-on dielectric (SOD). Furthermore, the gap-fill material may include silicon nitride. At this time, the silicon nitride used as the liner may be used to perform a gap-fill operation.
The trench 44 may be formed in both of the active region 43 and the isolation region 42. The trench 44 of the isolation region 42 may be formed to a larger depth than the trench 44 of the active region 43, due to a difference in etch rate between the active region 43 and the isolation region 42.
Before the buried gate electrode 46 is formed, a gate dielectric layer 45 may be formed over the surface of the trench 44. The buried gate electrode 46 may be formed by forming a metal-containing layer to gap-fill the trench 44 and then performing an etch-back process. The metal-containing layer may include a material with a metal such as titanium, tantalum, or tungsten. The metal-containing layer may include at least any one selected from the group consisting of tantalum nitride (TaN), titanium nitride (TiN), tungsten nitride (WN), and tungsten (W). For example, the buried gate electrode 46 may have a single layer structure of TiN, TaN, or W, or a two-layer structure of TiN/W or TaN/W formed by stacking W over TiN or TaN. Furthermore, the buried gate electrode 46 may have a two-layer structure of WN/W in which W is stacked over WN. In addition, the buried gate electrode 46 may include a low-resistance metal material.
A sealing layer 47 is formed over the buried gate electrode 46. The sealing layer 47 may gap-fill the trench 44 over the buried gate electrode 46. The sealing layer 47 may serve to protect the buried gate electrode 46 during a subsequent process. The sealing layer 47 may include an insulating material. The sealing layer 47 may include silicon nitride.
A first interlayer dielectric layer 48 is formed. The first interlayer dielectric layer 48 and the sealing layer 47 are then etched to form a bit line contact hole 49. A bit line contact plug 50 is formed by burying a conductive layer in the bit line contact hole 49. A bit line structure including a bit line 51 and a bit line hard mask layer 52 is formed over the bit line contact plug 50. The bit line contact plug 50 may include a polysilicon layer or a metal-containing layer. The bit line 51 may include tungsten or a barrier layer of Ti/TiN and tungsten over the barrier layer. The bit line hard mask layer 62 may include silicon nitride.
A spacer 53 is formed over both sidewalls of the bit line structure. Then, a second interlayer dielectric layer 54 is formed, and the second interlayer dielectric layer 54, the first interlayer dielectric layer 48, and the sealing layer 47 are then etched to form a storage node contact hole 55. A sacrificial spacer (not illustrated) is formed over the sidewalls of the storage node contact hole 55, and a first storage node contact plug 56 is formed and recessed in the storage node contact hole 55. Then, the sacrificial spacer is removed to form the air gap 58.
Then, the surface of the first storage node contact plug 56 is oxidized to form the capping layer 57, and the capping layer 57 is selectively removed to expose the surface of the first storage node contact plug 56. The air gap 58 is capped by the capping layer 57.
A protective layer 59 is formed over the first storage node contact plug 56 and the capping layer 57. The protective layer 59 may include polysilicon.
An ohmic contact layer 60 is formed over the protective layer 59. The ohmic contact layer 60 may be formed by forming a silicidable metal layer over the protective layer 59 and then performing an annealing process. The ohmic contact layer 60 may include metal silicide. The ohmic contact layer 60 may include cobalt silicide.
A second storage node contact plug 61 is formed over the ohmic contact layer 60. The second storage node contact plug 61 may include a metal-containing layer. The second storage node contact plug 61 may include tungsten.
A storage node 62 of a capacitor is formed over the second storage node contact plug 61. The storage node 62 may have a cylinder shape. In another embodiment, the storage node 62 may have a pillar shape. Although not illustrated, a dielectric layer and a plate node may be further formed over the storage node 62.
The semiconductor device in accordance with the above-described embodiments of the present invention may be applied to DRAM (Dynamic Random Access Memory). Without being limited thereto, however, the semiconductor device may be applied to SRAM (Static Random Access Memory), flash memory, FeRAM (Ferroelectric Random Access Memory), MRAM (Magnetic Random Access Memory), PRAM (Phase Change Random Access Memory) or the like.
In accordance with the embodiments of the present invention, as the air gap is formed between the conductive structures, parasitic capacitance may be reduced by a low dielectric constant of the air gap.
Furthermore, as the protective layer is formed over the capping layer, the air gap may be stably implemented without a loss of the capping layer.
Furthermore, as the ohmic contact layer is formed over the protective layer, the formation area of the ohmic contact layer may be increased to improve contact resistance.
Although various exemplary embodiments of the present invention have been described for illustrative purposes, it will be apparent to those skilled in the art that various changes and modifications may be made without departing from the spirit and scope of the invention as defined in the following claims.
Claims
1. A method for fabricating a semiconductor device, comprising:
- forming a semiconductor structure having an open portion over a substrate;
- forming a sacrificial spacer on a sidewall of the open portion;
- forming a first plug in the open portion;
- removing the sacrificial spacer to form an air gap;
- forming a capping layer to expose a top surface of the first plug and to cap the air gap;
- forming a protective layer over the capping layer and the first plug;
- forming an ohmic contact layer over the protective layer; and
- forming a second plug over the ohmic contact layer.
2. The method of claim 1, wherein the forming of a capping layer comprises:
- forming oxide by oxidizing the surface of the first plug; and
- selectively removing the oxide to expose the top surface of the first plug.
3. The method of claim 1, wherein the first plug is formed of a silicon containing material, and the capping layer is formed of oxide of the silicon containing material.
4. The method of claim 1, wherein the first plug is formed of polysilicon, and the capping layer is formed of silicon oxide obtained by oxidizing the polysilicon.
5. The method of claim 1, wherein the forming of a protective layer comprises:
- forming a polysilicon layer on an entire surface of the resulting structure including the capping layer and the first plug; and
- etching back the polysilicon layer.
6. The method of claim 1, wherein the forming of an ohmic contact layer comprises:
- forming a silicidable material layer over the protective layer;
- performing an annealing process to react the protective layer and the silicidable metal layer, and forming metal silicide; and
- removing the remaining unreacted silicidable metal layer.
7. The method of claim 6, wherein the silicidable metal layer comprises cobalt.
8. The method of claim 1, wherein the first plug comprises polysilicon, and the second plug comprises a metal-containing material.
9. A method for fabricating a semiconductor device, comprising:
- forming a plurality of bit line structures over a substrate;
- forming a storage node contact hole between the bit line structures;
- forming a sacrificial spacer on a sidewall of the storage node contact hole;
- forming a first storage node contact plug in the storage node contact hole;
- removing the sacrificial spacer to form an air gap;
- forming oxide by oxidizing the surface of the first storage node contact plug;
- etching the oxide to expose a top surface of the first storage node contact plug, and to form a capping layer to cap the air gap;
- forming a protective layer over the capping layer and the first storage node contact plug;
- forming an ohmic contact layer over the protective layer; and
- forming a second storage node contact plug over the ohmic contact layer.
10. The method of claim 9, wherein the forming of a protective layer comprises:
- forming a polysilicon layer on an entire surface of the resulting structure including the capping layer and the first storage node contact plug; and
- etching back the polysilicon layer.
11. The method of claim 9, wherein the forming of an ohmic contact layer comprises:
- forming a silicidable metal layer over the protective layer;
- performing an annealing process to react the protective layer and the silicidable metal layer, and forming metal silicide; and
- stripping the remaining unreacted silicidable metal layer.
12. The method of claim 11, wherein the silicidable metal layer comprises cobalt.
13. The method of claim 9, wherein the first storage node contact plug is formed of polysilicon, and the oxide is formed of silicon oxide obtained by oxidizing the polysilicon.
14. The method of claim 9, wherein the first storage node contact plug comprises polysilicon, and the second plug comprises a metal-containing material.
15. The method of claim 9, further comprising:
- ion-implanting a dopant into the top surface of the first storage node contact plug after the forming of a capping layer.
16. A method for fabricating a semiconductor device, comprising:
- forming a semiconductor structure having an open portion exposing a portion of a substrate;
- forming a sacrificial spacer on a sidewall of the semiconductor structure;
- forming a first plug in the open portion;
- removing the sacrificial spacer to form an air gap between the first plug and the sidewall of the open portion;
- forming a capping layer to expose a top surface of the first plug and to cap the air gap;
- forming a protective layer over the capping layer and the first plug; and
- forming a second plug over the protective layer.
17. The method of claim 16, wherein the forming of a capping layer comprises:
- forming oxide by oxidizing the surface of the first plug; and
- selectively removing the oxide to expose the top surface of the first plug.
18. The method of claim 16, wherein the forming of a second plug comprises:
- forming an ohmic contact layer over the protective layer; and
- forming the second plug over the ohmic contact layer.
5516720 | May 14, 1996 | Lur et al. |
5543362 | August 6, 1996 | Wu |
6020250 | February 1, 2000 | Kenney |
6124179 | September 26, 2000 | Adamic, Jr. |
6190996 | February 20, 2001 | Mouli et al. |
6238987 | May 29, 2001 | Lee |
7994046 | August 9, 2011 | Jeng |
8198189 | June 12, 2012 | Kim et al. |
8399335 | March 19, 2013 | Huisinga et al. |
8421166 | April 16, 2013 | Chi et al. |
20110309430 | December 22, 2011 | Purayath et al. |
20120156855 | June 21, 2012 | Sim |
20120193696 | August 2, 2012 | Fukushima |
20120241838 | September 27, 2012 | Nagashima et al. |
20130049209 | February 28, 2013 | Yeom et al. |
10-2002-0094977 | December 2002 | KR |
10-2011-0098519 | September 2011 | KR |
Type: Grant
Filed: Mar 15, 2013
Date of Patent: Sep 2, 2014
Patent Publication Number: 20140179101
Assignee: SK Hynix Inc. (Gyeonggi-do)
Inventors: Nam-Yeal Lee (Gyeonggi-do), Seung-Jin Yeom (Gyeonggi-do), Sung-Won Lim (Gyeonggi-do), Seung-Hee Hong (Gyeonggi-do), Hyo-Seok Lee (Gyeonggi-do)
Primary Examiner: Yuanda Zhang
Assistant Examiner: Sheikh Maruf
Application Number: 13/843,794
International Classification: H01L 21/44 (20060101);