Finding the length of a set of character data having a termination character
The length of character data having a termination character is determined. The character data for which the length is to be determined is loaded, in parallel, within one or more vector registers. An instruction is used that loads data in a vector register to a specified boundary, and provides a way to determine the number of characters loaded, using, for instance, another instruction. Further, an instruction is used to find the index of the first termination character, e.g., the first zero or null character. This instruction searches the data in parallel for the termination character. By using these instructions, the length of the character data is determined using only one branch instruction.
Latest IBM Patents:
An aspect of the invention relates, in general, to text processing, and in particular, to processing associated with character data.
Text processing often requires various types of character data processing, including the processing of character data strings. Some types of processing include finding the termination point (e.g., end of a string), determining the length of the character data, finding a particular character, etc. Current instructions and/or techniques to perform these types of processing tend to be inefficient.
BRIEF SUMMARYThe shortcomings of the prior art are overcome and advantages are provided through the provision of a computer program product for determining a length of a set of data. The computer program product includes a computer readable storage medium readable by a processing circuit and storing instructions for execution by the processing circuit for performing a method. The method includes, for instance, loading from memory to a register data that is within a specified block of memory, the data being at least a portion of the set of data for which the length is to be determined; obtaining a count of an amount of data loaded in the register; determining, by a processor, a termination value for the data loaded in the register, the determining comprising checking the data to determine whether the register includes a termination character, and based on the register including a termination character, setting the termination value to a location of the termination character, and based on the register not including the termination character, setting the termination value to a pre-specified value; checking whether there is additional data to be counted based on at least one of the count and the termination value; based on the checking indicating additional data is to be counted, incrementing the count based on the additional data, the count providing the length of the set of data; and based on the checking indicating additional data is not to be counted, using the count as a length of the set of data.
Methods and systems relating to one or more aspects of the present invention are also described and claimed herein. Further, services relating to one or more aspects of the present invention are also described and may be claimed herein.
Additional features and advantages are realized through the techniques of the present invention. Other embodiments and aspects of the invention are described in detail herein and are considered a part of the claimed invention.
One or more aspects of the present invention are particularly pointed out and distinctly claimed as examples in the claims at the conclusion of the specification. The foregoing and other objects, features, and advantages of the invention are apparent from the following detailed description taken in conjunction with the accompanying drawings in which:
In accordance with an aspect of the present invention, a capability is provided for facilitating processing of character data, including, but not limited to, alphabetic characters, in any language; numeric digits; punctuation; and/or other symbols. The character data may or may not be strings of data. Associated with character data are standards, examples of which include, but are not limited to, ASCII (American Standard Code for Information Interchange); Unicode, including, but not limited to, UTF (Unicode Transformation Format) 8; UTF16; etc.
In one aspect, a technique is provided for finding the length of a set of character data that has a termination character (e.g., a null terminated string of characters) using parallel processing and without causing unwarranted exceptions. The set of character data (also referred to herein as character data or terminated character data) for which the length is to be determined is loaded, in one example, within one or more vector registers. In particular, in one embodiment, an instruction (e.g., a Vector Load to Block Boundary instruction) is used that loads data in parallel in a vector register to a selected boundary (such as a cache or page boundary), and provides a way to determine the number of characters loaded (a count). For instance, to determine the number of characters loaded, another instruction (e.g., a Load Count to Block Boundary instruction) is used. Further, an instruction (e.g., a Vector Find Element Not Equal instruction) is used to search the loaded data for the first delimiter character within the set of character data, i.e., the first termination character, such as a zero or null character within the character data. This instruction checks a plurality of bytes of data in parallel.
If the delimiter character is not located by the Vector Find Element Not Equal instruction, then additional data of the set of character data is loaded, and the count and search for the delimiter character are repeated. The count is an aggregated value keeping track of the number of loaded bytes (or other data unit) of the set of character data. The loading, counting and searching for the delimiter character occurs until the delimiter character is located. By using these instructions, the length of the character data is determined using only one branch instruction. Further, fast parallel checking of the character data is provided, while preventing spurious exceptions.
As described herein, an element of a vector register (a.k.a., a vector) is one, two or four bytes in length, as examples; and a vector operand is, for instance, a SIMD (Single Instruction, Multiple Data) operand having a plurality of elements. In other embodiments, elements can be of other sizes; and a vector operand need not be SIMD, and/or may include one element.
One embodiment of a computing environment to incorporate and use one or more aspects of the present invention is described with reference to
In one example, processor 102 is based on the z/Architecture offered by International Business Machines Corporation, and is part of a server, such as the System z server, which is also offered by International Business Machines Corporation, and implements the z/Architecture. One embodiment of the z/Architecture is described in an IBM® publication entitled, “z/Architecture Principles of Operation,” IBM® Publication No. SA22-7832-08, Ninth Edition, August, 2010, which is hereby incorporated herein by reference in its entirety. In one example, the processor executes an operating system, such as z/OS, also offered by International Business Machines Corporation. IBM®, Z/ARCHITECTURE® and Z/OS® are registered trademarks of International Business Machines Corporation, Armonk, N.Y., USA. Other names used herein may be registered trademarks, trademarks, or product names of International Business Machines Corporation or other companies.
In a further embodiment, processor 102 is based on the Power Architecture offered by International Business Machines Corporation. One embodiment of the Power Architecture is described in “Power ISA™ Version 2.06 Revision B,” International Business Machines Corporation, Jul. 23, 2010, which is hereby incorporated herein by reference in its entirety. POWER ARCHITECTURE® is a registered trademark of International Business Machines Corporation.
In yet a further embodiment, processor 102 is based on an Intel architecture offered by Intel Corporation. One embodiment of the Intel architecture is described in “Intel® 64 and IA-32 Architectures Developer's Manual: Vol. 2B, Instructions Set Reference, A-L,” Order Number 253666-041US, December 2011, and “Intel® 64 and IA-32 Architectures Developer's Manual: Vol. 2B, Instructions Set Reference, M-Z,” Order Number 253667-041 US, December 2011, each of which is hereby incorporated herein by reference in its entirety. Intel® is a registered trademark of Intel Corporation, Santa Clara, Calif.
Another embodiment of a computing environment to incorporate and use one or more aspects of the present invention is described with reference to
Native central processing unit 202 includes one or more native registers 210, such as one or more general purpose registers and/or one or more special purpose registers used during processing within the environment. These registers include information that represents the state of the environment at any particular point in time.
Moreover, native central processing unit 202 executes instructions and code that are stored in memory 204. In one particular example, the central processing unit executes emulator code 212 stored in memory 204. This code enables the processing environment configured in one architecture to emulate another architecture. For instance, emulator code 212 allows machines based on architectures other than the z/Architecture, such as PowerPC processors, pSeries servers, xSeries servers, HP Superdome servers or others, to emulate the z/Architecture and to execute software and instructions developed based on the z/Architecture.
Further details relating to emulator code 212 are described with reference to
Further, emulator 212 includes an emulation control routine 260 to cause the native instructions to be executed. Emulation control routine 260 may cause native CPU 202 to execute a routine of native instructions that emulate one or more previously obtained guest instructions and, at the conclusion of such execution, return control to the instruction fetch routine to emulate the obtaining of the next guest instruction or a group of guest instructions. Execution of the native instructions 256 may include loading data into a register from memory 204; storing data back to memory from a register; or performing some type of arithmetic or logic operation, as determined by the translation routine.
Each routine is, for instance, implemented in software, which is stored in memory and executed by native central processing unit 202. In other examples, one or more of the routines or operations are implemented in firmware, hardware, software or some combination thereof. The registers of the emulated processor may be emulated using registers 210 of the native CPU or by using locations in memory 204. In embodiments, guest instructions 250, native instructions 256 and emulator code 212 may reside in the same memory or may be disbursed among different memory devices.
As used herein, firmware includes, e.g., the microcode, millicode and/or macrocode of the processor. It includes, for instance, the hardware-level instructions and/or data structures used in implementation of higher level machine code. In one embodiment, it includes, for instance, proprietary code that is typically delivered as microcode that includes trusted software or microcode specific to the underlying hardware and controls operating system access to the system hardware.
In one example, a guest instruction 250 that is obtained, translated and executed is one or more of the instructions described herein. The instruction, which is of one architecture (e.g., the z/Architecture), is fetched from memory, translated and represented as a sequence of native instructions 256 of another architecture (e.g., PowerPC, pSeries, xSeries, Intel, etc.). These native instructions are then executed.
In one embodiment, various instructions described herein are vector instructions, which are part of a vector facility, provided in accordance with an aspect of the present invention. The vector facility provides, for instance, fixed sized vectors ranging from one to sixteen elements. Each vector includes data which is operated on by vector instructions defined in the facility. In one embodiment, if a vector is made up of multiple elements, then each element is processed in parallel with the other elements. Instruction completion does not occur until processing of all the elements is complete.
As described herein, vector instructions can be implemented as part of various architectures, including, but not limited to, the z/Architecture, Power, Intel, etc. Although an embodiment described herein is for the z/Architecture, the vector instructions and one or more aspects of the present invention may be based on many other architectures. The z/Architecture is only one example.
In one embodiment in which the vector facility is implemented as part of the z/Architecture, to use the vector registers and instructions, a vector enablement control and a register control in a specified control register (e.g., control register 0) are set to, for instance, one. If the vector facility is installed and a vector instruction is executed without the enablement controls set, a data exception is recognized. If the vector facility is not installed and a vector instruction is executed, an operation exception is recognized.
Vector data appears in storage, for instance, in the same left-to-right sequence as other data formats. Bits of a data format that are numbered 0-7 constitute the byte in the leftmost (lowest-numbered) byte location in storage, bits 8-15 form the byte in the next sequential location, and so on. In a further example, the vector data may appear in storage in another sequence, such as right-to-left.
Many of the vector instructions provided with the vector facility have a field of specified bits. This field, referred to as the register extension bit or RXB, includes the most significant bit for each of the vector register designated operands. Bits for register designations not specified by the instruction are to be reserved and set to zero.
In one example, the RXB field includes four bits (e.g., bits 0-3), and the bits are defined, as follows:
-
- 0—Most significant bit for the first vector register designation of the instruction.
- 1—Most significant bit for the second vector register designation of the instruction, if any.
- 2—Most significant bit for the third vector register designation of the instruction, if any.
- 3—Most significant bit for the fourth vector register designation of the instruction, if any.
Each bit is set to zero or one by, for instance, the assembler depending on the register number. For instance, for registers 0-15, the bit is set to 0; for registers 16-31, the bit is set to 1, etc.
In one embodiment, each RXB bit is an extension bit for a particular location in an instruction that includes one or more vector registers. For instance, in one or more vector instructions, bit 0 of RXB is an extension bit for location 8-11, which is assigned to e.g., V1; bit 1 of RXB is an extension bit for location 12-15, which is assigned to, e.g., V2; and so forth.
In a further embodiment, the RXB field includes additional bits, and more than one bit is used as an extension for each vector or location.
As described herein, various instructions are used, in accordance with an aspect of the present invention, in order to determine the length of a set of character data having a termination character, such as a null terminated character string. Processing associated with determining the length and the various instructions used are described in further detail below.
Referring initially to
Thereafter, the number of loaded bytes of data is determined using, for instance, a Load Count to Block Boundary instruction, described below, STEP 302.
Next, a search in the loaded register for the end of the character data (e.g., for null, zero or another termination character) is performed, STEP 304. In one example, a Vector Find Element Not Equal instruction, described below, is used to search for the termination character (e.g., for null, zero, or another character that specifies termination). In one example, this instruction searches the loaded vector register for null elements, also referred to as zero elements (e.g., entire element is zero). A null or zero element indicates termination of the character data; e.g., an end of a particular string of data. A result of the search is an index (e.g., a byte index) of the first null element, referred to herein as the termination character, or a pre-specified value, such as the size of the vector being searched, if no termination character is found.
Thereafter, a determination is made as to whether the number of characters loaded (e.g., determined from the Load Count to Block Boundary instruction) is less than or equal to the index of the termination character (e.g., determined from the Vector Find Element Not Equal instruction), INQUIRY 306. If it is less than or equal, then a variable, Length, is set equal to Length plus the number of characters loaded, STEP 308, and processing continues with STEP 300. Otherwise, Length is set equal to Length plus the termination character index, STEP 310, and processing associated with determining the length is complete.
Example pseudo-code used to determine the length of a terminated character string, such as a null terminated character string, is provided below:
As shown above, initially a register, RX, which is to store the length, is initialized to zero, by performing, for instance, an XOR between RX and RX and placing the result in RX. Then, a loop begins in which up to 16 bytes of data are loaded in a vector, VSTR. A count of the number of bytes of data loaded in VSTR is determined and placed in a general purpose register, GLEN. Thereafter, the length in RX is incremented by the number of bytes loaded.
Next, a null terminator is searched and the result is placed in a vector, VPOS. This result is either the index of the null terminator or the size of the vector, e.g., 16, if there is no null terminator. The result in VPOS is then extracted and placed in a general purpose register, GPOS. GPOS is compared to GLEN, and if GLEN is less than or equal to GPOS, the logic loops back to VLBB and more data is loaded. Otherwise, some cleanup is performed, as indicated above at SGR and AGR.
One example of main memory 400 from which a vector register is loaded and the length of character data is determined is depicted in
One example of pseudo-code to load data from the memory depicted in
Another example of main memory 450 from which a vector register is loaded and the length of character data is determined is depicted in
One example of pseudo-code to load data from the main memory of
As indicated above, in one embodiment, in order to determine the length of terminated character data, such as a null terminated character string, various instructions are used. Examples of these instructions are described in detail below.
One instruction used to load the vector register is a Vector Load to Block Boundary (VLBB) instruction, an example of which is described with reference to
In one example, selected bits (e.g., the first two bits) of the opcode designated by opcode field 502a specify the length and format of the instruction. In this particular example, the length is three halfwords, and the format is a vector register-and-index-storage operation with an extended opcode field. The vector (V) field, along with its corresponding extension bit specified by RXB, designates a vector register. In particular, for vector registers, the register containing the operand is specified using, for instance, a four-bit field of the register field with the addition of the register extension bit (RXB) as the most significant bit. For instance, if the four bit field is 0110 and the extension bit is 0, then the five bit field 00110 indicates register number 6.
The subscript number associated with a field of the instruction denotes the operand to which the field applies. For instance, the subscript number 1 associated with V1 denotes the first operand, and so forth. The register operand is one register in length, which is, for instance, 128 bits.
In one example, in a vector register-and-index storage operation instruction, the contents of general registers designated by the X2 and B2 fields are added to the contents of the D2 field to form the second operand address. The displacement, D2, for the Vector Load To Block Boundary instruction is treated as a 12 bit unsigned integer, in one example.
The M3 field, in one embodiment, specifies a code that is used to signal the CPU as to the block boundary to load to. If a reserved value is specified, a specification exception is recognized. Example codes and corresponding values are as follows:
In execution of one embodiment of the Vector Load To Block Boundary instruction, preceding in one embodiment from left to right, the first operand (specified in the register designated by the V1 field plus the extension bit) is loaded starting at the zero indexed byte element with bytes from the second operand. The second operand is a memory location designated by the second operand address (also referred to as a starting address). The loading starts from that memory location and continues to an ending address computed by the instruction (or processor), as described below. If a boundary condition is encountered, it is model-dependent on how the rest of the first operand is treated. Access exceptions are not recognized on bytes not loaded. In one example, bytes that are not loaded are unpredictable.
In the example instruction above, the starting address is determined by the index register value (X2)+a base register value (B2)+a displacement (D2); however, in other embodiments, it is provided by a register value; an instruction address+instruction text specified offset; a register value+displacement; or a register value+index register value; as just some examples. Further, in one embodiment, the instruction does not include the RXB field. Instead, no extension is used or the extension is provided in another manner, such as from a control outside of the instruction, or provided as part of another field of the instruction.
Further details of one embodiment of processing associated with the Vector Load to Block Boundary instruction are described with reference to
In one embodiment, initially a boundary mask (BdyMask) is created, which is used to determine closeness to the specified boundary, STEP 600. To create the mask, in one example, a 2's complement negation of a boundary size (BdySize) 602 is taken creating boundary mask 604 (e.g., BdyMask=0−BdySize). The boundary size is provided, in one example, by the instruction (e.g., the M3 field); or in another example, it is determined by the machine, as described herein.
Thereafter, a start address is computed, which indicates a location in memory from which loading is to begin, STEP 610. As examples, the start address 612 can be provided by a register value; an instruction address plus instruction text specified offset; a register value plus displacement; a register value plus index register value; or a register value plus index register value plus displacement. In the instruction provided herein, the start address is provided by the X2 field, B2 field and D2 field. That is, contents of the registers designated by X2 and B2 are added to the displacement indicated by D2 to provide the starting address. The above-indicated ways to compute a starting address are just examples; other examples are also possible.
Next, an end address is computed indicating where to stop loading from, STEP 620. Input to this computation is, for instance, boundary size 602, start address 612, vector size 614 (e.g., in bytes; e.g., 16), and boundary mask 604. In one example, end address 622 is computed as follows:
EndAddress=min(StartAddress+(BdySize−(StartAddress & BdyMask)), StartAddress+vec_size).
Thereafter, the first operand (i.e., the designated vector register) is loaded, starting at indexed byte 0, from memory commencing at the starting address and terminating at the ending address, STEP 630. This enables a variable number of bytes to be loaded from memory into a vector without crossing a designated memory boundary. For instance, if the memory boundary is at 64 bytes, and the starting address is at 58 bytes, then bytes 58-64 are loaded in the vector register. In one embodiment, the bytes are loaded in parallel.
Another embodiment of processing associated with the Vector Load to Block Boundary instruction is described with reference to
In one embodiment, initially, a start address is computed, which indicates a location in memory from which loading is to begin, STEP 650. As examples, the start address 652 can be provided by a register value; an instruction address plus instruction text specified offset; a register value plus displacement; a register value plus index register value; or a register value plus index register value plus displacement. In the instruction provided herein, the start address is provided by the X2 field, B2 field and D2 field. That is, contents of the registers designated by X2 and B2 are added to the displacement indicated by D2 to provide the starting address. The above-indicated ways to compute a starting address are just examples; other examples are also possible.
Thereafter, a determination is made as to whether the boundary is to be dynamically determined, INQUIRY 654. If not, then the value specified in the M3 field is used as the boundary size (BdySize). Otherwise, the processor dynamically determines the boundary size, STEP 656. For instance, the M3 field specifies the type of boundary (e.g., cache line, page, etc.), and based on the type and one or more characteristics of the processor (e.g., cache line size for the processor; page size for the processor; etc.), the processor determines the boundary. As examples, based on the type, the processor uses a fixed size for the boundary (e.g., pre-defined fixed cache line or page size for the processor), or based on the type, the processor determines the boundary. For instance, if the type is a page boundary, the processor looks up the start address in a Translation Look-aside Buffer (TLB) and determines the page boundary therefrom. Other examples also exist.
Subsequent to determining the boundary size, either dynamically or by instruction specified, a boundary mask (BdyMask) is created, which is used to determine closeness to the specified boundary, STEP 660. To create the mask, in one example, a 2's complement negation of a boundary size (BdySize) 658 is taken creating boundary mask 662 (e.g., BdyMask=0−BdySize).
Next, an end address is computed indicating where to stop loading from, STEP 670. Input to this computation is, for instance, boundary size 658, start address 652, vector size 664 (e.g., in bytes; e.g., 16), and boundary mask 662. In one example, end address 672 is computed as follows:
EndAddress=min(StartAddress+(BdySize−(StartAddress & BdyMask)),StartAddress+vec_size).
Thereafter, the first operand (i.e., the designated vector register) is loaded, starting at indexed byte 0, from memory commencing at the starting address and terminating at the ending address, STEP 680. This enables a variable number of bytes to be loaded from memory into a vector without crossing a designated memory boundary. As indicated above, for instance, if the memory boundary is at 64 bytes, and the starting address is at 58 bytes, then bytes 58-64 are loaded in the vector register. In one embodiment, the bytes are loaded in parallel.
One example of a vector register loaded, in accordance with either embodiment of the Vector Load to Block Boundary instruction, is depicted in
The Vector Load to Block Boundary instruction, in one example, only loads bytes of the vector register (the first operand) with corresponding bytes of a second operand that are within a block of main memory (also referred to herein as main storage). The block of main memory is either specified in the instruction (e.g., the size is specified in the instruction, as well as an address within the block from which loading is to start) or dynamically determined by a type of block boundary (e.g., cache line or page) and one or more characteristics of the processor executing the instruction, such as cache line or page size. As used herein a block of main memory is any block of memory of a specified size. The specified size is also referred to as the boundary of the block, the boundary being the end of the block.
One instruction used to find a termination character, such as a null terminator, is a Vector Find Element Not Equal instruction, an example of which is depicted in
In one example, the Vector Find Element Not Equal (VFBNEZ) instruction 700 includes opcode fields 702a (e.g., bits 0-7), 702b (e.g., bits 40-47) indicating a Vector Find Element Not Equal operation; a first vector register field 704 (e.g., bits 8-11) used to designate a first vector register (V1); a second vector register field 706 (e.g., bits 12-15) used to designate a second vector register (V2); a third vector register field 708 (e.g., bits 16-19) used to designate a third vector register (V3); a first mask field (M5) 710 (e.g., bits 24-27); a second mask field (M4) 712 (e.g., bits 32-35); and an RXB field 714 (e.g., bits 36-39). Each of the fields 704-714, in one example, is separate and independent from the opcode field(s). Further, in one embodiment, they are separate and independent from one another; however, in other embodiments, more than one field may be combined. Further information on the use of these fields is described below.
In one example, selected bits (e.g., the first two bits) of the opcode designated by opcode field 702a specify the length and format of the instruction. In this particular example, the selected bits indicate that the length is three halfwords, and the format is a vector register-and-register operation with an extended opcode field. Each of the vector (V) fields, along with its corresponding extension bit specified by RXB, designates a vector register. In particular, for vector registers, the register containing the operand is specified using, for instance, a four-bit field of the register field with the addition of the register extension bit (RXB) as the most significant bit. For instance, if the four bit field is 0110 and the extension bit is 0, then the five bit field 00110 indicates register number 6.
The subscript number associated with a field of the instruction denotes the operand to which the field applies. For instance, the subscript number 1 associated with vector register V1 denotes the first operand, and so forth. A register operand is one register in length, which is, for instance, 128 bits.
The M4 field having, for instance, four bits, 0-3, specifies an element size control in, for instance, bits 1-3. The element size control specifies the size of the elements in the vector register operands. In one example, the element size control can specify a byte, halfword (e.g., 2 bytes) or word (e.g., 4 bytes). For instance, a 0 indicates a byte; a 1 indicates a halfword; and a 2 indicates a word, a.k.a., fullword. If a reserved value is specified, a specification exception is recognized.
The M5 field is, for instance, a four bit field, bits 0-3, including, for instance:
-
- A zero search field (ZS, bit 2), which if one, each element of the second operand, is also compared to zero. (In a further example, it is each element of the third operand or another operand that is compared to zero); and
- A condition code set field (CC, bit 3), which if zero, the condition code is not set and remains unchanged. If one, the condition code is set as specified below, as an example:
- 0—If the zero search bit is set, comparison detected a zero element in both operands in a lower index element than unequal compares;
- 1—An element mismatch was detected and the element in V2 is less than the element in V3;
- 2—An element mismatch was detected and the element in V2 is greater than the element in V3; and
- 3—All elements compared equal, and if the zero search bit is set, no zero elements were found in the second operand (or, in another embodiment, other operands).
In execution of one embodiment of the Vector Find Element Not Equal instruction, proceeding in one embodiment from left to right, the unsigned binary integer elements of the second operand (included in the vector register specified by V2 and its extension bit) are compared with the corresponding unsigned binary integer elements of the third operand (included in the vector register specified by the V3 field plus its extension bit). If two elements are not equal, a byte index of the leftmost non-equal element is placed in a specified byte (e.g., byte 7) of the first operand (designated in the register specified by V1 and its extension bit), and zeros are stored to all other bytes of the first operand.
In one example, the byte index of the element that is returned (e.g., stored in the specified byte) is the index of the first byte of the leftmost element that is unequal. For instance, if the element size is byte, then the index of the leftmost unequal element is returned (e.g., if there are 16 elements, 0-15, and element 6 is unequal, then byte index 6 is returned). Similarly, if the element size is halfword, and there are 8 elements, 0-7, and either byte 6 or 7 of element three is unequal, then byte index 6 is returned. Likewise, if the element size is fullword and there are four elements, 0-3, and one of bytes 4-7 of element one is unequal, byte index 4 is returned.
If the condition code set bit in the M5 field is set to, for instance, one, the condition code is set to indicate which operand was greater, if any. That is, the binary integer equivalent of, for instance, a character in the second operand is compared to a binary integer equivalent of the unequal character in the third operand, and the condition code is set based on this comparison. If elements were equal, then a byte index equal to the vector size (in number of bytes, e.g., 16) is placed in the specified byte (e.g., byte 7) of the first operand and zeros are placed in all other byte locations. If the condition code set bit is one, a selected condition code (e.g., condition code 3) is set.
In this embodiment in which the Vector Find Element Not Equal instruction is being used only to find the termination character, both the second and third operands include the same data, and therefore, the comparison yields no unequal character.
If the zero search bit is set in the M5 field, each element in the second operand (or in other embodiments, the third operand or another operand) is also compared for equality with zero (a.k.a., null, terminator, end of string, etc.). If a zero element is found in the second operand before any other element of the second operand is found to be unequal, the byte index of the first byte of the element found to be zero is stored in the specified byte (e.g., byte 7) of the first operand. Zeros are stored in all other bytes and a selected condition code (e.g., condition code zero) is set.
In one embodiment, the comparison of the elements is performed in parallel. For instance, if the vector registers being compared are 16 bytes in length, then 16 bytes are compared in parallel. In other embodiments, the units of data may be other than bytes, and the number of compares in parallel corresponds to the unit size. Further, in another embodiment, the direction of the vectors, left-to-right or right-to-left, is provided at runtime. For instance, the instruction accesses a register, status control or other entity that indicates the direction of processing as either left-to-right or right-to-left, as examples. In one embodiment, this direction control is not encoded as part of the instruction, but provided to the instruction at runtime.
In a further embodiment, the instruction does not include the RXB field. Instead, no extension is used or the extension is provided in another manner, such as from a control outside of the instruction, or provided as part of another field of the instruction.
Further details regarding one embodiment of processing the Vector Find Element Not Equal instruction are described with reference to
Initially, a determination is made as to whether a search for null (a.k.a., zero element, end of string, terminator, etc.) is to be performed, INQUIRY 800. If a search for null is to be performed, a comparison is made against null characters, i.e., for zero elements, STEP 802, and the result is output to nullidx 803. For instance, the index of the left-most byte of the zero element is placed in nullidx. For example, if the element size is bytes and a zero element is found in byte 5, the index of the byte in which the zero element is found (e.g., 5) is placed in nullidx. Similarly, if the element size is halfword, and there are 8 elements, 0-7, and element three (i.e., bytes 6-7) is zero, then 6 (for byte index 6) is placed in nullidx. Likewise, if the element size is fullword and there are four elements, 0-3, and element one (i.e., bytes 4-7) is zero, then 4 (for byte index 4) is placed in nullidx. If no null element is found, then, in one example, the size of the vector (e.g., in bytes; e.g., 16) is placed in nullidx.
Additionally, or if no null search is to be performed, a plurality of comparisons (e.g., 16) are performed in parallel comparing A to B based on a compare operation, STEP 804. In one example, A is the contents of the second operand and B is the contents of the third operand, and the compare operation is not equal.
A result of the compare is stored in a variable 806, referred to either as a left index, cmpidxl, or a right index, cmpidxr, depending on whether the search is from the left or the right. For instance, if the comparison is a not equal comparison, the search is left-to-right, and the comparison results in one or more inequalities, the index associated with the first byte of the lowest unequal element is placed in cmpidxl. As one example, if the element size is bytes and there are 16 elements in the vector (0-15) and an inequality is found in element 6, then 6 is stored in cmpidxl. Similarly, if the element size is halfwords, and there are 8 elements in the vector (0-7), and an inequality is found in element 3 (e.g., at byte 6 or 7), the index of the first byte of the element (byte 6) is returned. Likewise, if the element size is fullword and there are four elements (0-3), and an inequality is found in element 1 (e.g., at byte 4-7), the index of the first byte of the element (byte 4) is returned. If there are no unequal comparisons, then, in one embodiment, cmpidxl or cmpidxr, depending on the direction of the compare, is set equal to the size of the vector (e.g., in bytes; e.g., 16).
Thereafter, a determination is made as to whether the search is from the left or right, INQUIRY 808. If the search is from the left, a variable cmpidx is set equal to cmpidxl, STEP 810; otherwise, cmpidx is set equal to cmpidxr, STEP 812.
Subsequent to setting cmpidx, a determination is made as to whether a search was performed for null characters, INQUIRY 814. If there was no search for null characters, then a variable, idx, is set to, for instance, the compare index, cmpidx, STEP 816. If null was searched, then idx is set to the minimum of the compare index or the null index, nullidx, STEP 818. This concludes processing.
An example of block logic for the processing of
The output of the comparison logic, idxL or idxR 908, is input to result determination logic 912, as well as the output of the zero detection logic, nullidx 910. The result determination logic also takes as input the following controls: right/left 914 indicating the direction of the search; zero detect 916 indicating whether null processing is to be performed; and element size 918 providing the size of each element (e.g., byte, halfword, word); and produces a resulting index 920, resultidx, which is stored in an output vector 922 (e.g., in byte 7).
Further, the result determination logic includes condition code processing 923, which optionally outputs a condition code 924.
Example pseudo-code for comparison logic 904 is as follows:
As shown, variable idxL or idxR, depending on direction, is initialized to the size of the vector (e.g., in number of bytes; e.g., 16). Then, each element of Vector A is compared to a corresponding element of Vector B. In one example, the comparisons are byte comparisons, so a comparison is made for each of the 16 bytes (i). In this example, the comparison operation is not equal, and if an inequality is found, the index of the unequal byte is stored in idxL if searching from left, or idxR if searching from right.
Example pseudo-code for zero detection logic 906 is as follows:
As shown, each element (j) of the vector is tested to see if it is equal to zero. If an element is equal to zero, nullidx is set equal to the index of that element times the element size. For instance, if the element size if halfwords (2 bytes), and a null character is detected in element 3, 3 is multiplied by 2, and nullidx is set to 6, which represents byte 6. Similarly, if the element size is fullword (4 bytes), and a null character is detected in element 3, 3 is multiplied by 4, and nullidx is set to 12.
Likewise, example pseudo-code for result determination logic 912 as follows:
As shown, if the left/right control indicates left, then cmpidx is set equal to idxL; otherwise, cmpidx is set equal to idxR. Further, if the zero detect indicator is on, then resultidx is set equal to the minimum of cmpidx or nullidx; and if the condition code set control is on and cmpidx is greater than nullidx, the condition code is set to zero. Otherwise, if zero detect is not on, resultidx is set equal to cmpidx.
Further, if element size is equal to byte, then an element size mask is set to 11111; if element size is equal to 2 bytes, the mask is set to 11110, and if element size is equal to 4 bytes, the mask is set to 11100.
Thereafter, resultidx is set equal to resultidx ANDed with element size mask. For instance, if element size is halfword and byte 7 is resultidx, then resultidx=00111 AND 11110, providing 00110; so resultidx is set equal to 6 (i.e., 00110 in binary), which is the first byte of the element.
Additionally, a condition code is optionally set. If the set condition code control of the instruction is set on, then a condition code is provided; otherwise, no condition code is set. As examples, if the control is set on, then if resultidx=16, the condition code is set to 3. Otherwise, if resultidx of A is less than resultidx of B, then the condition code is set to 1; else, the condition code is set to 2.
For a 128 bit vector, the comparison logic only performs, for instance, 16 byte compares, rather than, for instance, 256 compares. This provides for scaling for larger vectors. Further, a left/right control may be provided as a runtime value and not encoded within the instruction. Yet further, the value returned as the result is a byte position, rather than an element index. Further, 4 byte compares along with 1 byte and 2 byte compares are supported.
In a further embodiment, the zero search is not a condition, but instead, is performed when the Vector Find Element Not Equal instruction is executed. Based on or responsive to executing the instruction, the zero search is performed and the position (e.g., byte index) of the zero element is returned and/or the position (e.g., byte index) of the first mismatched element. In one embodiment, the number of compares that are performed, regardless of embodiment, for the Vector Find Element Not Equal instruction corresponds to the number of bytes of the vector. For instance, if the vector being searched or compared is 16 bytes, then at most 16 compares are performed, e.g., in parallel. In a further embodiment, once a mismatch or zero element is found, the comparing ceases.
One embodiment of a Load Count to Block Boundary (LCBB) instruction is described with reference to
In one example, the Load Count to Block Boundary instruction 1000 includes opcode fields 1002a (e.g., bits 0-7), 1002b (e.g., bits 40-47) indicating a Load Count to Block Boundary operation; a register field 1004 (e.g., bits 8-11) used to designate a general purpose register (R1); an index field (X2) 1006 (e.g., bits 12-15); a base field (B2) 1008 (e.g., bits 16-19); a displacement field (D2) 1010 (e.g., bits 20-31); and a mask field (M3) 1012 (e.g., bits 32-35). Each of the fields 1004-1012, in one example, is separate and independent from the opcode field(s). Further, in one embodiment, they are separate and independent from one another; however, in other embodiments, more than one field may be combined. Further information on the use of these fields is described below.
In one example, selected bits (e.g., the first two bits) of the opcode designated by opcode field 1002a specify the length and format of the instruction. In this particular example, the length is three halfwords, and the format is a register-and-index-storage operation with an extended opcode field.
The subscript number associated with a field of the instruction denotes the operand to which the field applies. For instance, the subscript number 1 associated with R1 denotes the first operand, and so forth. The register operand is one register in length, which is, for instance, 128 bits.
In one example, in a register-and-index storage operation instruction, the contents of general registers designated by the X2 and B2 fields are added to the contents of the D2 field to form the second operand address. The displacement, D2, for the Load Count to Block Boundary instruction is treated as a 12 bit unsigned integer, in one example. The second operand address is used to indicate a location in main memory; however, it is not used to address data, in this embodiment.
The M3 field, in one embodiment, specifies a code that is used to signal the CPU as to the block boundary size to compute the number of possible bytes to load without crossing a memory boundary. If a reserved value is specified, a specification exception is recognized. Example codes and corresponding values areas follows:
In a further example, the boundary size is not included in the instruction, but instead, is dynamically determined by the processor executing the instruction. For instance, the M3 field specifies the type of boundary (e.g., cache line, page, etc.), and based on the type and one or more characteristics of the processor (e.g., cache line size for the processor; page size for the processor; etc.), the processor determines the boundary. As examples, based on the type, the processor uses a fixed size for the boundary (e.g., pre-defined fixed cache line or page size for the processor), or based on the type, the processor determines the boundary. For instance, if the type is a page boundary, the processor looks up the start address in a Translation Look-aside Buffer (TLB) and determines the page boundary therefrom. Other examples also exist. For example, the type may be provided by another field of the instruction or from a control outside of the instruction.
In execution of one embodiment of the Load Count to Block Boundary instruction, an unsigned binary integer (e.g., 64-bits) containing the number of bytes possible to load from the second operand location without crossing a specified block boundary, capped at, for instance, the size of a vector register to be loaded (e.g., 16), is placed in the general purpose register specified in the first operand.
Resulting from execution of the instruction, an optional condition code is set, such as, for example:
0—Operand one is sixteen
1—
2—
3—Operand one is less than sixteen
In the example instruction above, the starting address from which the count is to begin is determined by the index register value (X2)+a base register value (B2)+a displacement (D2); however, in other embodiments, it is provided by a register value; an instruction address+instruction text specified offset; a register value+displacement; or a register value+index register value; as just some examples.
Further details of one embodiment of processing the Load Count to Block Boundary instruction are described with reference to
In one embodiment, initially a boundary mask (BdyMask) is created, which is used to determine closeness to the specified boundary, STEP 1100. To create the mask, in one example, a 2's complement negation of a boundary size (BdySize) 1102 is taken creating boundary mask 1104 (e.g., BdyMask=0−BdySize). The boundary size is provided, in one example, by the instruction (e.g., the M3 field); or in another example, it is determined by the machine, as described herein.
Thereafter, a start address is computed, which indicates a location in memory from which count is to begin, STEP 1110. As examples, the start address 1112 can be provided by a register value; an instruction address plus instruction text specified offset; a register value plus displacement; a register value plus index register value; or a register value plus index register value plus displacement. In the instruction provided herein, the start address is provided by the X2 field, B2 field and D2 field. That is, contents of the registers designated by X2 and B2 are added to the displacement indicated by D2 to provide the starting address. The above-indicated ways to compute a starting address are just examples; other examples are also possible.
Next, an end address is computed indicating a location at which counting is to stop, STEP 1120. Input to this computation is, for instance, boundary size 1102, start address 1112, vector size (vec_size) 1114 (e.g., in bytes; e.g., 16), and boundary mask 1104. The vector size is the size of a selected vector register or other register (e.g., in bytes, e.g., 16). The register is, for instance, a register in which data may be loaded. In one example, end address 1122 is computed as follows:
EndAddress=min(StartAddress+(BdySize−(StartAddress & BdyMask)),StartAddress+vec_size).
Thereafter, the count is computed, STEP 1130. For instance, count=EndAddress 1122−StartAddress 1112. In a further example, count can be computed from the start address and without using the end address. In this example, count=min(16, BdySize−(StartAddress AND BdyMask), where 16 is the size of the vector register (or other register). In other examples, other vector sizes may be used.
In one embodiment, the Load to Count Block Boundary instruction is used to determine how many bytes of data were loaded into a register, such as a vector register. This count is then used to determine the length of a set of character data, such as a terminated character string.
As indicated, in one embodiment, the register that is loaded and for which a count is obtained is a vector register. There are, in one example of a vector facility, 32 vector registers and other types of registers can map to a quadrant of the vector registers. For instance, as shown in
Described in detail above is a technique for finding the length of character data that has a termination character by looking at characters in parallel and without causing unwarranted exceptions. Typically, searching for the end of a string, such as a C style string, which is null terminated, is difficult to do in parallel because of not knowing where the end of the string is. It is easy to read past the end and take a page fault exception for a page that should not have been touched in the first place. Previous techniques load only one character at a time, or have a preamble to align the data accesses to the string to prevent a page crossing. Working on one character at a time is inherently slow. Adding the preamble for alignment can hurt performance for short strings and add branches that are difficult to predict in the code, thereby adding latency.
By using an instruction that loads data, in parallel, to a specified boundary and provides a way to determine the number of characters loaded, and an instruction (which checks the data in parallel) to find the index of the first delimiter, a technique is provided for finding the length of terminated character data (e.g., null terminated) with only one branch instruction. Further, fast parallel checking of string characters is provided, as well as the prevention of spurious exceptions.
Using one or more aspects of the above technique provides performance improvements, including reduced execution time.
Herein, memory, main memory, storage and main storage are used interchangeably, unless otherwise noted explicitly or by context.
Additional details relating to the vector facility, including examples of other instructions, are provided as part of this Detailed Description further below.
As will be appreciated by one skilled in the art, one or more aspects of the present invention may be embodied as a system, method or computer program product. Accordingly, one or more aspects of the present invention may take the form of an entirely hardware embodiment, an entirely software embodiment (including firmware, resident software, micro-code, etc.) or an embodiment combining software and hardware aspects that may all generally be referred to herein as a “circuit,” “module” or “system”. Furthermore, one or more aspects of the present invention may take the form of a computer program product embodied in one or more computer readable medium(s) having computer readable program code embodied thereon.
Any combination of one or more computer readable medium(s) may be utilized. The computer readable medium may be a computer readable storage medium. A computer readable storage medium may be, for example, but not limited to, an electronic, magnetic, optical, electromagnetic, infrared or semiconductor system, apparatus, or device, or any suitable combination of the foregoing. More specific examples (a non-exhaustive list) of the computer readable storage medium include the following: an electrical connection having one or more wires, a portable computer diskette, a hard disk, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, a portable compact disc read-only memory (CD-ROM), an optical storage device, a magnetic storage device, or any suitable combination of the foregoing. In the context of this document, a computer readable storage medium may be any tangible medium that can contain or store a program for use by or in connection with an instruction execution system, apparatus, or device.
Referring now to
Program code embodied on a computer readable medium may be transmitted using an appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
Computer program code for carrying out operations for one or more aspects of the present invention may be written in any combination of one or more programming languages, including an object oriented programming language, such as Java, Smalltalk, C++ or the like, and conventional procedural programming languages, such as the “C” programming language, assembler or similar programming languages. The program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server. In the latter scenario, the remote computer may be connected to the user's computer through any type of network, including a local area network (LAN) or a wide area network (WAN), or the connection may be made to an external computer (for example, through the Internet using an Internet Service Provider).
One or more aspects of the present invention are described herein with reference to flowchart illustrations and/or block diagrams of methods, apparatus (systems) and computer program products according to embodiments of the invention. It will be understood that each block of the flowchart illustrations and/or block diagrams, and combinations of blocks in the flowchart illustrations and/or block diagrams, can be implemented by computer program instructions. These computer program instructions may be provided to a processor of a general purpose computer, special purpose computer, or other programmable data processing apparatus to produce a machine, such that the instructions, which execute via the processor of the computer or other programmable data processing apparatus, create means for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
These computer program instructions may also be stored in a computer readable medium that can direct a computer, other programmable data processing apparatus, or other devices to function in a particular manner, such that the instructions stored in the computer readable medium produce an article of manufacture including instructions which implement the function/act specified in the flowchart and/or block diagram block or blocks.
The computer program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other devices to cause a series of operational steps to be performed on the computer, other programmable apparatus or other devices to produce a computer implemented process such that the instructions which execute on the computer or other programmable apparatus provide processes for implementing the functions/acts specified in the flowchart and/or block diagram block or blocks.
The flowchart and block diagrams in the figures illustrate the architecture, functionality, and operation of possible implementations of systems, methods and computer program products according to various embodiments of one or more aspects of the present invention. In this regard, each block in the flowchart or block diagrams may represent a module, segment, or portion of code, which comprises one or more executable instructions for implementing the specified logical function(s). It should also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown in succession may, in fact, be executed substantially concurrently, or the blocks may sometimes be executed in the reverse order, depending upon the functionality involved. It will also be noted that each block of the block diagrams and/or flowchart illustration, and combinations of blocks in the block diagrams and/or flowchart illustration, can be implemented by special purpose hardware-based systems that perform the specified functions or acts, or combinations of special purpose hardware and computer instructions.
In addition to the above, one or more aspects of the present invention may be provided, offered, deployed, managed, serviced, etc. by a service provider who offers management of customer environments. For instance, the service provider can create, maintain, support, etc. computer code and/or a computer infrastructure that performs one or more aspects of the present invention for one or more customers. In return, the service provider may receive payment from the customer under a subscription and/or fee agreement, as examples. Additionally or alternatively, the service provider may receive payment from the sale of advertising content to one or more third parties.
In one aspect of the present invention, an application may be deployed for performing one or more aspects of the present invention. As one example, the deploying of an application comprises providing computer infrastructure operable to perform one or more aspects of the present invention.
As a further aspect of the present invention, a computing infrastructure may be deployed comprising integrating computer readable code into a computing system, in which the code in combination with the computing system is capable of performing one or more aspects of the present invention.
As yet a further aspect of the present invention, a process for integrating computing infrastructure comprising integrating computer readable code into a computer system may be provided. The computer system comprises a computer readable medium, in which the computer medium comprises one or more aspects of the present invention. The code in combination with the computer system is capable of performing one or more aspects of the present invention.
Although various embodiments are described above, these are only examples. For example, computing environments of other architectures can incorporate and use one or more aspects of the present invention. Further, vectors of other sizes or other registers may be used, and changes to the instruction may be made without departing from the spirit of the present invention. Additionally, other instructions may be used, such as, but not limited to, a Vector Find Element Equal instruction to determine the length of null terminated character data. Yet further, the length of data other than null terminated character data may also be determined using one or more aspects of the present invention.
Further, other types of computing environments can benefit from one or more aspects of the present invention. As an example, a data processing system suitable for storing and/or executing program code is usable that includes at least two processors coupled directly or indirectly to memory elements through a system bus. The memory elements include, for instance, local memory employed during actual execution of the program code, bulk storage, and cache memory which provide temporary storage of at least some program code in order to reduce the number of times code must be retrieved from bulk storage during execution.
Input/Output or I/O devices (including, but not limited to, keyboards, displays, pointing devices, DASD, tape, CDs, DVDs, thumb drives and other memory media, etc.) can be coupled to the system either directly or through intervening I/O controllers. Network adapters may also be coupled to the system to enable the data processing system to become coupled to other data processing systems or remote printers or storage devices through intervening private or public networks. Modems, cable modems, and Ethernet cards are just a few of the available types of network adapters.
Referring to
As noted, a computer system includes information in local (or main) storage, as well as addressing, protection, and reference and change recording. Some aspects of addressing include the format of addresses, the concept of address spaces, the various types of addresses, and the manner in which one type of address is translated to another type of address. Some of main storage includes permanently assigned storage locations. Main storage provides the system with directly addressable fast-access storage of data. Both data and programs are to be loaded into main storage (from input devices) before they can be processed.
Main storage may include one or more smaller, faster-access buffer storages, sometimes called caches. A cache is typically physically associated with a CPU or an I/O processor. The effects, except on performance, of the physical construction and use of distinct storage media are generally not observable by the program.
Separate caches may be maintained for instructions and for data operands. Information within a cache is maintained in contiguous bytes on an integral boundary called a cache block or cache line (or line, for short). A model may provide an EXTRACT CACHE ATTRIBUTE instruction which returns the size of a cache line in bytes. A model may also provide PREFETCH DATA and PREFETCH DATA RELATIVE LONG instructions which effects the prefetching of storage into the data or instruction cache or the releasing of data from the cache.
Storage is viewed as a long horizontal string of bits. For most operations, accesses to storage proceed in a left-to-right sequence. The string of bits is subdivided into units of eight bits. An eight-bit unit is called a byte, which is the basic building block of all information formats. Each byte location in storage is identified by a unique nonnegative integer, which is the address of that byte location or, simply, the byte address. Adjacent byte locations have consecutive addresses, starting with 0 on the left and proceeding in a left-to-right sequence. Addresses are unsigned binary integers and are 24, 31, or 64 bits.
Information is transmitted between storage and a CPU or a channel subsystem one byte, or a group of bytes, at a time. Unless otherwise specified, in, for instance, the z/Architecture, a group of bytes in storage is addressed by the leftmost byte of the group. The number of bytes in the group is either implied or explicitly specified by the operation to be performed. When used in a CPU operation, a group of bytes is called a field. Within each group of bytes, in, for instance, the z/Architecture, bits are numbered in a left-to-right sequence. In the z/Architecture, the leftmost bits are sometimes referred to as the “high-order” bits and the rightmost bits as the “low-order” bits. Bit numbers are not storage addresses, however. Only bytes can be addressed. To operate on individual bits of a byte in storage, the entire byte is accessed. The bits in a byte are numbered 0 through 7, from left to right (in, e.g., the z/Architecture). The bits in an address may be numbered 8-31 or 40-63 for 24-bit addresses, or 1-31 or 33-63 for 31-bit addresses; they are numbered 0-63 for 64-bit addresses. Within any other fixed-length format of multiple bytes, the bits making up the format are consecutively numbered starting from 0. For purposes of error detection, and in preferably for correction, one or more check bits may be transmitted with each byte or with a group of bytes. Such check bits are generated automatically by the machine and cannot be directly controlled by the program. Storage capacities are expressed in number of bytes. When the length of a storage-operand field is implied by the operation code of an instruction, the field is said to have a fixed length, which can be one, two, four, eight, or sixteen bytes. Larger fields may be implied for some instructions. When the length of a storage-operand field is not implied but is stated explicitly, the field is said to have a variable length. Variable-length operands can vary in length by increments of one byte (or with some instructions, in multiples of two bytes or other multiples). When information is placed in storage, the contents of only those byte locations are replaced that are included in the designated field, even though the width of the physical path to storage may be greater than the length of the field being stored.
Certain units of information are to be on an integral boundary in storage. A boundary is called integral for a unit of information when its storage address is a multiple of the length of the unit in bytes. Special names are given to fields of 2, 4, 8, and 16 bytes on an integral boundary. A halfword is a group of two consecutive bytes on a two-byte boundary and is the basic building block of instructions. A word is a group of four consecutive bytes on a four-byte boundary. A doubleword is a group of eight consecutive bytes on an eight-byte boundary. A quadword is a group of 16 consecutive bytes on a 16-byte boundary. When storage addresses designate halfwords, words, doublewords, and quadwords, the binary representation of the address contains one, two, three, or four rightmost zero bits, respectively. Instructions are to be on two-byte integral boundaries. The storage operands of most instructions do not have boundary-alignment requirements.
On devices that implement separate caches for instructions and data operands, a significant delay may be experienced if the program stores into a cache line from which instructions are subsequently fetched, regardless of whether the store alters the instructions that are subsequently fetched.
In one embodiment, the invention may be practiced by software (sometimes referred to licensed internal code, firmware, micro-code, milli-code, pico-code and the like, any of which would be consistent with one or more aspects the present invention). Referring to
The software program code includes an operating system which controls the function and interaction of the various computer components and one or more application programs. Program code is normally paged from storage media device 5011 to the relatively higher-speed computer storage 5002 where it is available for processing by processor 5001. The techniques and methods for embodying software program code in memory, on physical media, and/or distributing software code via networks are well known and will not be further discussed herein. Program code, when created and stored on a tangible medium (including but not limited to electronic memory modules (RAM), flash memory, Compact Discs (CDs), DVDs, Magnetic Tape and the like is often referred to as a “computer program product”. The computer program product medium is typically readable by a processing circuit preferably in a computer system for execution by the processing circuit.
The system 5021 may communicate with other computers or networks of computers by way of a network adapter capable of communicating 5028 with a network 5029. Example network adapters are communications channels, token ring, Ethernet or modems. Alternatively, the system 5021 may communicate using a wireless interface, such as a CDPD (cellular digital packet data) card. The system 5021 may be associated with such other computers in a Local Area Network (LAN) or a Wide Area Network (WAN), or the system 5021 can be a client in a client/server arrangement with another computer, etc. All of these configurations, as well as the appropriate communications hardware and software, are known in the art.
Still referring to
Referring concurrently to
Alternatively, the programming code may be embodied in the memory 5025, and accessed by the processor 5026 using the processor bus. Such programming code includes an operating system which controls the function and interaction of the various computer components and one or more application programs 5032. Program code is normally paged from storage media 5027 to high-speed memory 5025 where it is available for processing by the processor 5026. The techniques and methods for embodying software programming code in memory, on physical media, and/or distributing software code via networks are well known and will not be further discussed herein. Program code, when created and stored on a tangible medium (including but not limited to electronic memory modules (RAM), flash memory, Compact Discs (CDs), DVDs, Magnetic Tape and the like is often referred to as a “computer program product”. The computer program product medium is typically readable by a processing circuit preferably in a computer system for execution by the processing circuit.
The cache that is most readily available to the processor (normally faster and smaller than other caches of the processor) is the lowest (L1 or level one) cache and main store (main memory) is the highest level cache (L3 if there are 3 levels). The lowest level cache is often divided into an instruction cache (I-Cache) holding machine instructions to be executed and a data cache (D-Cache) holding data operands.
Referring to
A program counter (instruction counter) 5061 keeps track of the address of the current instruction to be executed. A program counter in a z/Architecture processor is 64 bits and can be truncated to 31 or 24 bits to support prior addressing limits. A program counter is typically embodied in a PSW (program status word) of a computer such that it persists during context switching. Thus, a program in progress, having a program counter value, may be interrupted by, for example, the operating system (context switch from the program environment to the operating system environment). The PSW of the program maintains the program counter value while the program is not active, and the program counter (in the PSW) of the operating system is used while the operating system is executing. Typically, the program counter is incremented by an amount equal to the number of bytes of the current instruction. RISC (Reduced Instruction Set Computing) instructions are typically fixed length while CISC (Complex Instruction Set Computing) instructions are typically variable length. Instructions of the IBM z/Architecture are CISC instructions having a length of 2, 4 or 6 bytes. The Program counter 5061 is modified by either a context switch operation or a branch taken operation of a branch instruction for example. In a context switch operation, the current program counter value is saved in the program status word along with other state information about the program being executed (such as condition codes), and a new program counter value is loaded pointing to an instruction of a new program module to be executed. A branch taken operation is performed in order to permit the program to make decisions or loop within the program by loading the result of the branch instruction into the program counter 5061.
Typically an instruction fetch unit 5055 is employed to fetch instructions on behalf of the processor 5026. The fetch unit either fetches “next sequential instructions”, target instructions of branch taken instructions, or first instructions of a program following a context switch. Modern Instruction fetch units often employ prefetch techniques to speculatively prefetch instructions based on the likelihood that the prefetched instructions might be used. For example, a fetch unit may fetch 16 bytes of instruction that includes the next sequential instruction and additional bytes of further sequential instructions.
The fetched instructions are then executed by the processor 5026. In an embodiment, the fetched instruction(s) are passed to a dispatch unit 5056 of the fetch unit. The dispatch unit decodes the instruction(s) and forwards information about the decoded instruction(s) to appropriate units 5057, 5058, 5060. An execution unit 5057 will typically receive information about decoded arithmetic instructions from the instruction fetch unit 5055 and will perform arithmetic operations on operands according to the opcode of the instruction. Operands are provided to the execution unit 5057 preferably either from memory 5025, architected registers 5059 or from an immediate field of the instruction being executed. Results of the execution, when stored, are stored either in memory 5025, registers 5059 or in other machine hardware (such as control registers, PSW registers and the like).
A processor 5026 typically has one or more units 5057, 5058, 5060 for executing the function of the instruction. Referring to
An ADD instruction for example would be executed in an execution unit 5057 having arithmetic and logical functionality while a floating point instruction for example would be executed in a floating point execution having specialized floating point capability. Preferably, an execution unit operates on operands identified by an instruction by performing an opcode defined function on the operands. For example, an ADD instruction may be executed by an execution unit 5057 on operands found in two registers 5059 identified by register fields of the instruction.
The execution unit 5057 performs the arithmetic addition on two operands and stores the result in a third operand where the third operand may be a third register or one of the two source registers. The execution unit preferably utilizes an Arithmetic Logic Unit (ALU) 5066 that is capable of performing a variety of logical functions such as Shift, Rotate, And, Or and XOR as well as a variety of algebraic functions including any of add, subtract, multiply, divide. Some ALUs 5066 are designed for scalar operations and some for floating point. Data may be Big Endian (where the least significant byte is at the highest byte address) or Little Endian (where the least significant byte is at the lowest byte address) depending on architecture. The IBM z/Architecture is Big Endian. Signed fields may be sign and magnitude, 1's complement or 2's complement depending on architecture. A 2's complement number is advantageous in that the ALU does not need to design a subtract capability since either a negative value or a positive value in 2's complement requires only an addition within the ALU. Numbers are commonly described in shorthand, where a 12 bit field defines an address of a 4,096 byte block and is commonly described as a 4 Kbyte (Kilo-byte) block, for example.
Referring to
The execution of a group of instructions can be interrupted for a variety of reasons including a context switch initiated by an operating system, a program exception or error causing a context switch, an I/O interruption signal causing a context switch or multi-threading activity of a plurality of programs (in a multi-threaded environment), for example. Preferably a context switch action saves state information about a currently executing program and then loads state information about another program being invoked. State information may be saved in hardware registers or in memory for example. State information preferably comprises a program counter value pointing to a next instruction to be executed, condition codes, memory translation information and architected register content. A context switch activity can be exercised by hardware circuits, application programs, operating system programs or firmware code (microcode, pico-code or licensed internal code (LIC)) alone or in combination.
A processor accesses operands according to instruction defined methods. The instruction may provide an immediate operand using the value of a portion of the instruction, may provide one or more register fields explicitly pointing to either general purpose registers or special purpose registers (floating point registers for example). The instruction may utilize implied registers identified by an opcode field as operands. The instruction may utilize memory locations for operands. A memory location of an operand may be provided by a register, an immediate field, or a combination of registers and immediate field as exemplified by the z/Architecture long displacement facility wherein the instruction defines a base register, an index register and an immediate field (displacement field) that are added together to provide the address of the operand in memory for example. Location herein typically implies a location in main memory (main storage) unless otherwise indicated.
Referring to
Preferably addresses that an application program “sees” are often referred to as virtual addresses. Virtual addresses are sometimes referred to as “logical addresses” and “effective addresses”. These virtual addresses are virtual in that they are redirected to physical memory location by one of a variety of dynamic address translation (DAT) technologies including, but not limited to, simply prefixing a virtual address with an offset value, translating the virtual address via one or more translation tables, the translation tables preferably comprising at least a segment table and a page table alone or in combination, preferably, the segment table having an entry pointing to the page table. In the z/Architecture, a hierarchy of translation is provided including a region first table, a region second table, a region third table, a segment table and an optional page table. The performance of the address translation is often improved by utilizing a translation lookaside buffer (TLB) which comprises entries mapping a virtual address to an associated physical memory location. The entries are created when the DAT translates a virtual address using the translation tables. Subsequent use of the virtual address can then utilize the entry of the fast TLB rather than the slow sequential translation table accesses. TLB content may be managed by a variety of replacement algorithms including LRU (Least Recently used).
In the case where the processor is a processor of a multi-processor system, each processor has responsibility to keep shared resources, such as I/O, caches, TLBs and memory, interlocked for coherency. Typically, “snoop” technologies will be utilized in maintaining cache coherency. In a snoop environment, each cache line may be marked as being in any one of a shared state, an exclusive state, a changed state, an invalid state and the like in order to facilitate sharing.
I/O units 5054 (
Further, other types of computing environments can benefit from one or more aspects of the present invention. As an example, an environment may include an emulator (e.g., software or other emulation mechanisms), in which a particular architecture (including, for instance, instruction execution, architected functions, such as address translation, and architected registers) or a subset thereof is emulated (e.g., on a native computer system having a processor and memory). In such an environment, one or more emulation functions of the emulator can implement one or more aspects of the present invention, even though a computer executing the emulator may have a different architecture than the capabilities being emulated. As one example, in emulation mode, the specific instruction or operation being emulated is decoded, and an appropriate emulation function is built to implement the individual instruction or operation.
In an emulation environment, a host computer includes, for instance, a memory to store instructions and data; an instruction fetch unit to fetch instructions from memory and to optionally, provide local buffering for the fetched instruction; an instruction decode unit to receive the fetched instructions and to determine the type of instructions that have been fetched; and an instruction execution unit to execute the instructions. Execution may include loading data into a register from memory; storing data back to memory from a register; or performing some type of arithmetic or logical operation, as determined by the decode unit. In one example, each unit is implemented in software. For instance, the operations being performed by the units are implemented as one or more subroutines within emulator software.
More particularly, in a mainframe, architected machine instructions are used by programmers, usually today “C” programmers, often by way of a compiler application. These instructions stored in the storage medium may be executed natively in a z/Architecture IBM® Server, or alternatively in machines executing other architectures. They can be emulated in the existing and in future IBM® mainframe servers and on other machines of IBM® (e.g., Power Systems servers and System x® Servers). They can be executed in machines running Linux on a wide variety of machines using hardware manufactured by IBM®, Intel®, AMD™, and others. Besides execution on that hardware under a z/Architecture, Linux can be used as well as machines which use emulation by Hercules, UMX, or FSI (Fundamental Software, Inc), where generally execution is in an emulation mode. In emulation mode, emulation software is executed by a native processor to emulate the architecture of an emulated processor.
The native processor typically executes emulation software comprising either firmware or a native operating system to perform emulation of the emulated processor. The emulation software is responsible for fetching and executing instructions of the emulated processor architecture. The emulation software maintains an emulated program counter to keep track of instruction boundaries. The emulation software may fetch one or more emulated machine instructions at a time and convert the one or more emulated machine instructions to a corresponding group of native machine instructions for execution by the native processor. These converted instructions may be cached such that a faster conversion can be accomplished. Notwithstanding, the emulation software is to maintain the architecture rules of the emulated processor architecture so as to assure operating systems and applications written for the emulated processor operate correctly. Furthermore, the emulation software is to provide resources identified by the emulated processor architecture including, but not limited to, control registers, general purpose registers, floating point registers, dynamic address translation function including segment tables and page tables for example, interrupt mechanisms, context switch mechanisms, Time of Day (TOD) clocks and architected interfaces to I/O subsystems such that an operating system or an application program designed to run on the emulated processor, can be run on the native processor having the emulation software.
A specific instruction being emulated is decoded, and a subroutine is called to perform the function of the individual instruction. An emulation software function emulating a function of an emulated processor is implemented, for example, in a “C” subroutine or driver, or some other method of providing a driver for the specific hardware as will be within the skill of those in the art after understanding the description of the preferred embodiment. Various software and hardware emulation patents including, but not limited to U.S. Pat. No. 5,551,013, entitled “Multiprocessor for Hardware Emulation”, by Beausoleil et al.; and U.S. Pat. No. 6,009,261, entitled “Preprocessing of Stored Target Routines for Emulating Incompatible Instructions on a Target Processor”, by Scalzi et al; and U.S. Pat. No. 5,574,873, entitled “Decoding Guest Instruction to Directly Access Emulation Routines that Emulate the Guest Instructions”, by Davidian et al; and U.S. Pat. No. 6,308,255, entitled “Symmetrical Multiprocessing Bus and Chipset Used for Coprocessor Support Allowing Non-Native Code to Run in a System”, by Gorishek et al; and U.S. Pat. No. 6,463,582, entitled “Dynamic Optimizing Object Code Translator for Architecture Emulation and Dynamic Optimizing Object Code Translation Method”, by Lethin et al; and U.S. Pat. No. 5,790,825, entitled “Method for Emulating Guest Instructions on a Host Computer Through Dynamic Recompilation of Host Instructions”, by Eric Traut, each of which is hereby incorporated herein by reference in its entirety; and many others, illustrate a variety of known ways to achieve emulation of an instruction format architected for a different machine for a target machine available to those skilled in the art.
In
The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. As used herein, the singular forms “a”, “an” and “the” are intended to include the plural forms as well, unless the context clearly indicates otherwise. It will be further understood that the terms “comprises” and/or “comprising”, when used in this specification, specify the presence of stated features, integers, steps, operations, elements, and/or components, but do not preclude the presence or addition of one or more other features, integers, steps, operations, elements, components and/or groups thereof.
The corresponding structures, materials, acts, and equivalents of all means or step plus function elements in the claims below, if any, are intended to include any structure, material, or act for performing the function in combination with other claimed elements as specifically claimed. The description of one or more aspects of the present invention has been presented for purposes of illustration and description, but is not intended to be exhaustive or limited to the invention in the form disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the invention. The embodiment was chosen and described in order to best explain the principles of the invention and the practical application, and to enable others of ordinary skill in the art to understand the invention for various embodiments with various modifications as are suited to the particular use contemplated.
Chapter 23. Vector String Instructions
Vector String Facility
.
.
.
Instructions
Unless otherwise specified all operands are vector-register operands. A “V” in the assembler syntax designates a vector operand.
Vector Find any Equal
Proceeding from left to right, every unsigned binary integer element of the second operand is compared for equality with each unsigned binary integer element of the third operand and optionally zero if the Zero Search flag is set in the M5 field.
If the Result Type (RT) flag in the M5 field is zero, then for each element in the second operand that matches any element in the third operand, or optionally zero, the bit positions of the corresponding element in the first operand are set to ones, otherwise they are set to zero.
If the Result Type (RT) flag in the M5 field is one, then the byte index of the leftmost element in the second operand that matches an element in the third operand or zero is stored in byte seven of the first operand.
Each instruction has an Extended Mnemonic section which describe recommended extended mnemonics and their corresponding machine assembler syntax.
Programming Note:
For all instructions that optionally set the condition code, performance may be degraded if the condition code is set.
If the result Type (RT) flag in the M5 field is one and no bytes are found to be equal, or zero if the zero search flag is set, an index equal to the number of bytes in the vector is stored in byte seven of the first operand.
The M4 field specifies the element size control (ES). The ES control specifies the size of the elements in the vector register operands. If a reserved value is specified, a specification exception is recognized.
0—Byte
1—Halfword
2—Word
3-15—Reserved
The M5 field has the following format:
The bits of the M5 field are defined as follows:
-
- Result Type (RT): If zero, each resulting element is a mask of all range comparisons on that element. If one, a byte index is stored into byte seven of the first operand and zeros are stored in all other elements.
- Zero Search (ZS): If one, each element of the second operand is also compared to zero.
- Condition Code Set (CC): If zero, the condition code is not set and remains unchanged. If one, the condition code is set as specified in the following section.
Special Conditions
A specification exception is recognized and no other action is taken if any of the following occurs:
1. The M4 field contains a value from 3-15.
2. Bit 0 of the M5 field are not zero.
Resulting Condition Code:
If the CC flag is zero, the code remains unchanged.
If the CC flag is one, the code is set as follows:
- 0 If the ZS-bit is set, there were no matches in a lower indexed element than zero in the second operand.
- 1 Some elements of the second operand match at least one element in the third operand
- 2 All elements of the second operand matched at least one element in the third operand
- 3 No elements in the second operand match any elements in the third operand
Program Exceptions:
1 Data with DXC FE, Vector Register- Operation if the vector-extension facility is not installed
- Specification (Reserved ES value)
- Transaction Constraint
Extended Mnemonics:
Vector Find Element Equal
Proceeding from left to right, the unsigned binary integer elements of the second operand are compared with the corresponding unsigned binary integer elements of the third operand. If two elements are equal, the byte index of the first byte of the leftmost equal element is placed in byte seven of the first operand. Zeros are stored in the remaining bytes of the first operand. If no bytes are found to be equal, or zero if the zero compare is set, then an index equal to the number of bytes in the vector is stored in byte seven of the first operand. Zeros are stored in the remaining bytes.
If the Zero Search (ZS) bit is set in the M5 field, then each element in the second operand is also compared for equality with zero. If a zero element is found in the second operand before any other elements of the second and third operands are found to be equal, the byte index of the first byte of the element found to be zero is stored in byte seven the first operand and zeros are stored in all other byte locations. If the Condition Code Set (CC) flag is one, then the condition code is set to zero.
The M4 field specifies the element size control (ES). The ES control specifies the size of the elements in the vector register operands. If a reserved value is specified, a specification exception is recognized.
0—Byte
1—Halfword
2—Word
3-15—Reserved
The M5 field has the following format:
The bits of the M5 field are defined as follows:
-
- Reserved: Bits 0-1 are reserved and must be zero. Otherwise, a specification exception is recognized.
- Zero Search (ZS): If one, each element of the second operand is also compared to zero.
- Condition Code Set (CC): If zero, the condition code remains unchanged. If one, the condition code is set as specified in the following section.
Special Conditions
A specification exception is recognized and no other action is taken if any of the following occurs:
1. The M4 field contains a value from 3-15.
2. Bits 0-1 of the M5 field are not zero.
Resulting Condition Code:
If bit 3 of the M5 field is set to one, the code is set as follows:
- 0 If the zero compare bit is set, comparison detected a zero element in the second operand in an element with a smaller index than any equal comparisons.
- 1 Comparison detected a match between the second and third operands in some element. If the zero compare bit is set, this match occurred in an element with an index less than or equal to the zero comparing element.
- 2 - -
- 3 No elements compared equal.
If bit 3 of the M5 field is zero, the code remains unchanged.
Program Exceptions:- Data with DXC FE, Vector Register
- Operation if the vector-extension facility is not installed
- Specification (Reserved ES value)
- Transaction Constraint
Extended Mnemonics:
Programming Notes:
1. A byte index is always stored into the first operand for any element size. For example, if the element size was set to halfword and the 2nd indexed halfword compared equal, then a byte index of 4 would be stored.
2. The third operand should not contain elements with a value of zero. If the third operand does contain a zero and it matches with a zero element in the second operand before any other equal comparisons, condition code one is set regardless of the zero compare bit setting.
Vector Find Element not Equal
Proceeding from left to right, the unsigned binary integer elements of the second operand are compared with the corresponding unsigned binary integer elements of the third operand. If two elements are not equal, the byte index of the left-most non-equal element is placed in byte seven of the first operand and zeros are stored to all other bytes. If the Condition Code Set (CC) bit in the M5 field is set to one, the condition code is set to indicate which operand was greater. If all elements were equal, then abyte index equal to the vector size is placed in byte seven of the first operand and zeros are placed in all other byte locations. If the CC bit is one, condition code three is set.
If the zero search (ZS) bit is set in the M5 field, each element in the second operand is also compared for equality with zero. If a zero element is found in the second operand before any other element of the second operand are found to be unequal, the byte index of the first byte of the element fount to be zero is stored in byte seven of the first operand. Zeros are stored in all other bytes and condition code 0 is set.
The M4 field specifies the element size control (ES). The ES control specifies the size of the elements in the vector register operands. If a reserved value is specified, a specification exception is recognized.
0—Byte
1—Halfword
2—Word
3-15—Reserved
The M5 field has the following format:
The bits of the M5 field are defined as follows:
-
- Zero Search (ZS): If one, each element of the second operand is also compared to zero.
- Condition Code Set (CC): If zero, the condition code is not set and remains unchanged. If one, the condition code is set as specified in the following section.
Special Conditions
A specification exception is recognized and no other action is taken if any of the following occurs:
1. The M4 field contains a value from 3-15.
2. Bits 0-1 of the M5 field are not zero.
Resulting Condition Code:
If bit 3 of the M5 field is set to one, the code is set as follows:
- 0 If the zero, compare bit is set, comparison detected a zero element in both operands in a lower indexed element than any unequal compares
- 1 An element mismatch was detected and the element in VR2 is less than the element in VR3
- 2 An element mismatch was detected and the element in VR2 is greater than the element in VR3
- 3 All elements compared equal, and if the zero compare bit is set, no zero elements were found in the second operand.
If bit 3 of the M5 field is zero, the code remains unchanged.
Program Exceptions:- Data with DXC FE, Vector Register
- Operation if the vector-extension facility is not installed
- Specification (Reserved ES value)
- Transaction Constraint
Extended Mnemonics:
Vector String Range Compare
Proceeding from left to right, the unsigned binary integer elements in the second operand are compared to ranges of values defined by even-odd pairs of elements in the third and fourth operands. The combined with control values from the fourth operand define the range of comparisons to be performed. If an element matches any of the ranges specified by the third and fourth operands, it is considered to be a match.
If the Result Type (RT) flag in the M6 field is zero, the bit positions of the element in the first operand corresponding to the element being compared in the second operand are set to one if the element matches any of the ranges, otherwise they are set to zero:
If the Result Type (RT) flag in the M6 field is set to one, the byte index of the first element in the second operand that matches any of the ranges specified by the third and fourth operands or a zero comparison, if the ZS flag is set to one, is placed in byte seven of the first operand and zeros are stored in the remaining bytes. If no elements match, then an index equal to the number of bytes in a vector is placed in byte seven of the first operand and zeros are stored in the remaining bytes.
The Zero Search (ZS) flag in the M6 field, if set to one, will add a comparison to zero of the second operand elements to the ranges provided by the third and fourth operands. If a zero comparison in a lower indexed element than any other true comparison, then the condition code is set to zero.
The operands contain elements of the size specified by the Element Size control in the M5 field.
The fourth operand elements have the following format:
If ES equals 0:
If ES equals 1:
If ES equals 2:
The bits in the fourth operand elements are defined as follows:
-
- Equal (EQ): When one a comparison for equality is made.
- Greater Than (GT): When one a greater than comparison is performed.
- Less Than (LT): When one a less than comparison is performed.
- All other bits are reserved and should be zero to ensure future compatibility.
The control bits may be used in any combination. If none of the bits are set, the comparison will always produce a false result. If all of the bits are set, the comparison will always produce a true result.
The M5 field specifies the element size control (ES). The ES control specifies the size of the elements in the vector register operands. If a reserved value is specified, a specification exception is recognized.
0—Byte
1—Halfword
2—Word
3-15—Reserved
The M6 field has the following format:
The bits of the M6 field are defined as follows:
-
- Invert Result (IN): If zero, the comparison proceeds with the pair of values in the control vector. If one, the result of the pairs of the comparisons in the ranges are inverted.
- Result Type (RT): If zero, each resulting element is a mask of all range comparisons on that element. If one, an index is stored into byte seven of the first operand. Zeroes are stored in the remaining bytes.
- Zero Search (ZS): If one, each element of the second operand is also compared to zero.
- Condition Code Set (CC): If zero, the condition code is not set and remains unchanged. If one, the condition code is set as specified in the following section.
Special Conditions
A specification exception is recognized and no other action is taken if any of the following occurs:
1. The M4 field contains a value from 3-15.
Resulting Condition Code:
- 0 If ZS=1 and a zero is found in a lower indexed element than any compare
1 Comparison found
2 - -
3 No comparison found
Program Exceptions:- Data with DXC FE, Vector Register
- Operation if the vector-extension facility is not installed
- Specification (Reserved ES value)
- Transaction Constraint
Extended Mnemonics:
Load Count to Block Boundary
A 32-bit unsigned binary integer containing the number of bytes possible to load from the second operand location without crossing a specified block boundary, capped at sixteen is placed in the first operand.
The displacement is treated as a 12-bit unsigned integer.
The second operand address is not used to address data.
The M3 field specifies a code that is used to signal the CPU as to the block boundary size to compute the number of possible bytes loaded. If a reserved value is specified then a specification exception is recognized.
Code Boundary
0 64-Byte
1 128-Byte
2 256-Byte
3 512-Byte
4 1K-Byte
2K-Byte
6 4K-Byte
7-15 Reserved
Resulting Condition Code:
0 Operand one is sixteen
1 - -
2 - -
3 Operand one less than sixteen
Resulting Condition Code:
Program Exceptions:
-
- Operation if the vector-extension facility is not installed
- Specification
Programming Note:
It is expected that LOAD COUNT TO BLOCK BOUNDARY will be used in conjunction with VECTOR LOAD TO BLOCK BOUNDARY to determine the number of bytes that were loaded.
Vector Load GR from VR Element
The element of the third operand of size specified by the ES value in the M4 field and indexed by the second operand address is placed in the first operand location. The third operand is a vector register. The first operand is a general register. If the index specified by the second operand address is greater than the highest numbered element in the third operand, of the specified element size, the data in the first operand is unpredictable.
If the vector register element is smaller than a doubleword, the element is right aligned in the 64-bit general register and zeros fill the remaining bits.
The second operand address is not used to address data; instead the rightmost 12 bits of the address are used to specify the index of an element within the second operand.
The M4 field specifies the element size control (ES). The ES control specifies the size of the elements in the vector register operands. If a reserved value is specified, a specification exception is recognized.
0—Byte
1—Halfword
2—Word
3—Doubleword
4-15—Reserved unchanged.
Resulting Condition Code:
The code is unchanged.
Program Exceptions:
-
- Data with DXC FE, Vector Register
- Operation if the vector-extension facility is not installed
- Specification (Reserved ES value)
- Transaction Constraint
Extended Mnemonics:
VLGVB R1,V3,D2(B2) VLGV R1,V3,D2(B2),0
Vector Load to Block Boundary
The first operand is loaded starting at the zero indexed byte element with bytes from the second operand. If a boundary condition is encountered, the rest of the first operand is unpredictable. Access exceptions are not recognized on bytes not loaded.
The displacement for VLBB is treated as a 12-bit unsigned integer.
The M3 field specifies a code that is used to signal the CPU as to the block boundary size to load to. If a reserved value is specified, a specification exception is recognized.
Code Boundary
0 64-Byte
1 128-Byte
2 256-Byte
3 512-Byte
4 1K-Byte
5 2K-Byte
6 4K-Byte
7-15 Reserved
Resulting Condition Code:
The code remains unchanged.
Program Exceptions:
-
- Access (fetch, operand 2)
- Data with DXC FE, Vector Register
- Operation if the vector-extension facility is not installed
- Specification (Reserved Block Boundary Code)
- Transaction Constraint
Programming Notes:
1. In certain circumstances data may be loaded past the block boundary. However, this will only occur if there are no access exceptions on that data.
Vector Store
The 128-bit value in the first operand is stored to the storage location specified by the second operand. The displacement for VST is treated as a 12-bit unsigned integer.
Resulting Condition Code:
The code remains unchanged.
Program Exceptions:
-
- Access (store, operand 2)
- Data with DXC FE, Vector Register
- Operation if the vector-extension facility is not installed
- Transaction Constraint
Vector Store with Length
Proceeding from left to right, bytes from the first operand are stored at the second operand location. The general register specified third operand contains a 32-bit unsigned integer containing a value that represents the highest indexed byte to store. If the third operand contains a value greater than or equal to the highest byte index of the vector, all bytes of the first operand are stored.
Access exceptions are only recognized on bytes stored.
The displacement for VECTOR STORE WITH LENGTH is treated as a 12-bit unsigned integer.
Resulting Condition Code:
The condition code remains unchanged.
Program Exceptions:
-
- Access (store, operand 2)
- Data with DXC FE, Vector Register
- Operation if the vector-extension facility is not installed
- Transaction Constraint
RXB Description
All vector instructions have a field in bits 36-40 of the instruction labeled as RXB. This field contains the most significant bits for all of the vector register designated operands. Bits for register designations not specified by the instruction are reserved and should be set to zero; otherwise, the program may not operate compatibly in the future. The most significant bit is concatenated to the left of the four-bit register designation to create the five-bit vector register designation.
The bits are defined as follows:
0. Most significant bit for the vector register designation in bits 8-11 of the instruction.
1. Most significant bit for the vector register designation in bits 12-15 of the instruction.
2. Most significant bit for the vector register designation in bits 16-19 of the instruction.
3. Most significant bit for the vector register designation in bits 32-35 of the instruction.
Vector Enablement Control
The vector registers and instructions may only be used if both the vector enablement control (bit 46) and the AFP-register-control (bit 45) in control register zero are set to one. If the vector facility is installed and a vector instruction is executed without the enablement bits set, a data exception with DXC FE hex is recognized. If the vector facility is not installed, an operation exception is recognized.
Claims
1. A computer program product for determining a length of a set of data, the computer program product comprising:
- a non-transitory computer readable storage medium readable by a processing circuit and storing instructions for execution by the processing circuit for performing a method comprising: loading from memory to a register data that is within a specified block of memory, the data being at least a portion of the set of data for which the length is to be determined, the set of data for which the length is to be determined having a termination character, the termination character indicating an end of the set of data for which the length is to be determined and being a known fixed value pre-selected as the value to specify termination of sets of data, wherein the loading comprises loading from a starting address in memory to an ending address in memory, wherein the ending address is computed using a boundary size of the specified block of memory and a boundary mask, the boundary mask determined based on the boundary size and used to determine closeness to a specified boundary, and wherein a variable number of bytes of data are loaded from memory absent crossing the specified boundary of the block of memory from which the data is being loaded in the register, the variable number based on the starting address and the ending address; obtaining a count of an amount of data loaded in the register; determining, by a processor, a termination value for the data loaded in the register, the termination value to be used in determining the length of the set of data, the determining comprising checking the data loaded in the register to determine whether the data loaded in the register includes the termination character at a location within the register, and based on the data loaded in the register including the termination character, setting the termination value to a value indicating the location within the register of the termination character, and based on the data loaded in the register not including the termination character, setting the termination value to a pre-specified value to be used in determining the length of the set of data; checking whether there is additional data to be counted based on at least one of the count and the termination value; based on the checking indicating additional data is to be counted, incrementing the count based on the additional data, the incrementing including counting the additional data up to but excluding the termination character, the incremented count providing the length of the set of data; and based on the checking indicating additional data is not to be counted, using the termination value as the length of the set of data.
2. The computer program product of claim 1, wherein the checking comprises comparing the count with the termination value to determine whether additional data is to be counted.
3. The computer program product of claim 1, wherein the obtaining the count comprises using a start address within the block of memory and a boundary of the block of memory to compute the count.
4. The computer program product of claim 1, wherein the data comprises a plurality of units of data, and wherein the loading comprises loading the plurality of units of data in the register in parallel, and wherein the checking the data loaded in the register is performed in parallel.
5. The computer program product of claim 1, wherein the loading is performed by an instruction that loads the data from the block of memory up to the boundary of the block of memory, and the block of memory is one of: specified by the instruction, or dynamically determined by a processor executing the instruction.
6. The computer program product of claim 1, wherein the obtaining the count comprises using a Load Count to Block Boundary instruction.
7. The computer program product of claim 1, wherein the determining a termination value comprises using a Vector Find Element Not Equal instruction, and the location comprises a byte index within the register.
8. The computer program product of claim 1, wherein the termination character comprises a zero or null character.
9. The computer program product of claim 1, wherein the length of the set of data is determined using no more than one branch instruction, and wherein the loading is performed absent crossing the boundary of the block of memory from which the data is being loaded into the register.
10. The computer program product of claim 1, wherein the method further comprises obtaining computer code to determine the length, the computer code including an instruction to perform the loading, an instruction to obtain the count, and an instruction to determine the termination value.
11. The computer program product of claim 1, wherein the obtaining the count comprises obtaining a count of a number of characters loaded in the register, and wherein the pre-specified value comprises a size of the register.
12. A computer system for determining a length of a set of data, the computer system comprising:
- a memory; and
- a processor in communications with the memory, wherein the computer system is configured to perform a method, the method comprising: loading from memory to a register data that is within a specified block of memory, the data being at least a portion of the set of data for which the length is to be determined, the set of data for which the length is to be determined having a termination character, the termination character indicating an end of the set of data for which the length is to be determined and being a known fixed value pre-selected as the value to specify termination of sets of data, wherein the loading comprises loading from a starting address in memory to an ending address in memory, wherein the ending address is computed using a boundary size of the specified block of memory and a boundary mask, the boundary mask determined based on the boundary size and used to determine closeness to a specified boundary, and wherein a variable number of bytes of data are loaded from memory absent crossing the specified boundary of the block of memory from which the data is being loaded in the register, the variable number based on the starting address and the ending address; obtaining a count of an amount of data loaded in the register; determining, by a processor, a termination value for the data loaded in the register, the termination value to be used in determining the length of the set of data, the determining comprising checking the data loaded in the register to determine whether the data loaded in the register includes the termination character at a location within the register, and based on the data loaded in the register including the termination character, setting the termination value to a value indicating the location within the register of the termination character, and based on the data loaded in the register not including the termination character, setting the termination value to a pre-specified value to be used in determining the length of the set of data; checking whether there is additional data to be counted based on at least one of the count and the termination value; based on the checking indicating additional data is to be counted, incrementing the count based on the additional data, the incrementing including counting the additional data up to but excluding the termination character, the incremented count providing the length of the set of data; and based on the checking indicating additional data is not to be counted, using the termination value as the length of the set of data.
13. The computer system of claim 12, wherein the obtaining the count comprises using a start address within the block of memory and a boundary of the block of memory to compute the count.
14. The computer system of claim 12, wherein the data comprises a plurality of units of data, and wherein the loading comprises loading the plurality of units of data in the register in parallel, and wherein the checking the data loaded in the register is performed in parallel.
15. The computer system of claim 12, wherein the loading is performed by an instruction that loads the data from the block of memory up to the boundary of the block of memory, and the block of memory is one of: specified by the instruction, or dynamically determined by a processor executing the instruction.
16. The computer system of claim 12, wherein the determining a termination value comprises using a Vector Find Element Not Equal instruction, and the location comprises a byte index within the register.
17. The computer system of claim 12, wherein the method further comprises obtaining computer code to determine the length, the computer code including an instruction to perform the loading, an instruction to obtain the count, and an instruction to determine the termination value.
18. A method of determining a length of a set of data, the method comprising:
- loading from memory to a register data that is within a specified block of memory, the data being at least a portion of the set of data for which the length is to be determined, the set of data for which the length is to be determined having a termination character, the termination character indicating an end of the set of data for which the length is to be determined and being a known fixed value pre-selected as the value to specify termination of a set of data, wherein the loading comprises loading from a starting address in memory to an ending address in memory, wherein the ending address is computed using a boundary size of the specified block of memory and a boundary mask, the boundary mask determined based on the boundary size and used to determine closeness to a specified boundary, and wherein a variable number of bytes of data are loaded from memory absent crossing the specified boundary of the block of memory from which the data is being loaded in the register, the variable number based on the starting address and the ending address;
- obtaining a count of an amount of data loaded in the register;
- determining, by a processor, a termination value for the data loaded in the register, the termination value to be used in determining the length of the set of data, the determining comprising checking the data loaded in the register to determine whether the data loaded in the register includes the termination character at a location within the register, and based on the data loaded in the register including the termination character, setting the termination value to a value indicating the location within the register of the termination character, and based on the data loaded in the register not including the termination character, setting the termination value to a pre-specified value to be used in determining the length of the set of data;
- checking whether there is additional data to be counted based on at least one of the count and the termination value;
- based on the checking indicating additional data is to be counted, incrementing the count based on the additional data, the incrementing including counting the additional data up to but excluding the termination character, the incremented count providing the length of the set of data; and
- based on the checking indicating additional data is not to be counted, using the termination value as the length of the set of data.
19. The method of claim 18, wherein the data comprises a plurality of units of data, and wherein the loading comprises loading the plurality of units of data in the register in parallel, and wherein the checking the data loaded in the register is performed in parallel.
20. The method of claim 18, further comprising obtaining computer code to determine the length, the computer code including an instruction to perform the loading, an instruction to obtain the count, and an instruction to determine the termination value.
4852049 | July 25, 1989 | Sakai |
5073864 | December 17, 1991 | Methvin et al. |
5222225 | June 22, 1993 | Groves |
5410661 | April 25, 1995 | Tamura |
5495592 | February 27, 1996 | James et al. |
5497468 | March 5, 1996 | Tani et al. |
5551013 | August 27, 1996 | Beausoleil et al. |
5574873 | November 12, 1996 | Davidian |
5608887 | March 4, 1997 | Dinkjian et al. |
5790825 | August 4, 1998 | Traut |
5812147 | September 22, 1998 | Van Hook et al. |
5931940 | August 3, 1999 | Shelton et al. |
6009261 | December 28, 1999 | Scalzi et al. |
6094695 | July 25, 2000 | Kornher |
6185629 | February 6, 2001 | Simpson et al. |
6189088 | February 13, 2001 | Gschwind |
6192466 | February 20, 2001 | Gschwind |
6308255 | October 23, 2001 | Gorishek, IV et al. |
6334176 | December 25, 2001 | Scales, III et al. |
6338057 | January 8, 2002 | Weeks |
6349361 | February 19, 2002 | Altman et al. |
6381691 | April 30, 2002 | Altman et al. |
6408383 | June 18, 2002 | Tremblay et al. |
6449706 | September 10, 2002 | Chen et al. |
6463582 | October 8, 2002 | Lethin et al. |
6499116 | December 24, 2002 | Roth et al. |
6513109 | January 28, 2003 | Gschwind et al. |
6570511 | May 27, 2003 | Cooper |
6625724 | September 23, 2003 | Kahn et al. |
6646947 | November 11, 2003 | Fukui et al. |
6662288 | December 9, 2003 | Hamada et al. |
6802056 | October 5, 2004 | Chaiken et al. |
6839828 | January 4, 2005 | Gschwind et al. |
6918010 | July 12, 2005 | Yeager |
7219212 | May 15, 2007 | Sanghavi et al. |
7689811 | March 30, 2010 | Dijkstra et al. |
7793081 | September 7, 2010 | Gschwind et al. |
7895419 | February 22, 2011 | Greiner et al. |
7904905 | March 8, 2011 | Cervini |
7991987 | August 2, 2011 | Cabot |
8108846 | January 31, 2012 | Gschwind |
8127121 | February 28, 2012 | Yates, Jr. et al. |
8131934 | March 6, 2012 | Greiner et al. |
20010018731 | August 30, 2001 | Fujii et al. |
20020026569 | February 28, 2002 | Liao et al. |
20030188130 | October 2, 2003 | Henry et al. |
20030188137 | October 2, 2003 | Morris et al. |
20040044880 | March 4, 2004 | Altman et al. |
20040158682 | August 12, 2004 | Hooker |
20040215924 | October 28, 2004 | Collard et al. |
20050055543 | March 10, 2005 | Moyer |
20060095713 | May 4, 2006 | Boggs et al. |
20060195680 | August 31, 2006 | Check et al. |
20070255933 | November 1, 2007 | Moyer |
20080077771 | March 27, 2008 | Guttag et al. |
20080229066 | September 18, 2008 | Gschwind |
20090063410 | March 5, 2009 | Haustein et al. |
20090198966 | August 6, 2009 | Gschwind et al. |
20090222644 | September 3, 2009 | Inoue et al. |
20090300331 | December 3, 2009 | Gschwind et al. |
20100031007 | February 4, 2010 | Moudgill |
20100115014 | May 6, 2010 | Hargil et al. |
20100274988 | October 28, 2010 | Mimar |
20100332803 | December 30, 2010 | Yoshida et al. |
20110185155 | July 28, 2011 | Henry et al. |
20110245651 | October 6, 2011 | Nakamura |
20110246751 | October 6, 2011 | Julier et al. |
20110314263 | December 22, 2011 | Greiner et al. |
20120023308 | January 26, 2012 | Kumura et al. |
20120166761 | June 28, 2012 | Hughes et al. |
20130024653 | January 24, 2013 | Gove |
20130243325 | September 19, 2013 | Bradbury et al. |
20130246738 | September 19, 2013 | Bradbury et al. |
20130246739 | September 19, 2013 | Bradbury et al. |
20130246740 | September 19, 2013 | Bradbury et al. |
20130246751 | September 19, 2013 | Bradbury et al. |
20130246752 | September 19, 2013 | Bradbury et al. |
20130246753 | September 19, 2013 | Bradbury et al. |
20130246757 | September 19, 2013 | Bradbury et al. |
20130246758 | September 19, 2013 | Bradbury et al. |
20130246759 | September 19, 2013 | Bradbury et al. |
20130246762 | September 19, 2013 | Bradbury et al. |
20130246763 | September 19, 2013 | Bradbury et al. |
20130246764 | September 19, 2013 | Bradbury et al. |
20130246766 | September 19, 2013 | Bradbury et al. |
20130246767 | September 19, 2013 | Bradbury et al. |
20130246768 | September 19, 2013 | Bradbury et al. |
1573714 | February 2005 | CN |
101097488 | January 2008 | CN |
101755265 | June 2010 | CN |
1296222 | March 2003 | EP |
WO9429790 | December 1994 | WO |
- Gorton, Rick, “Faster String Operations”, Apr. 2, 2009, pp. 1-8.
- International Search Report and Written Opinion for PCT/IB2013/51647 dated Jul. 11, 2013, pp. 1-9.
- International Search Report and Written Opinion for PCT/IB2013/51810 dated Jul. 25, 2013, pp. 1-6.
- International Search Report and Written Opinion for PCT/IB2013/51811 dated Jul. 25, 2013, pp. 1-6.
- International Search Report and Written Opinion for PCT/IB2013/051648 dated Aug. 1, 2013, pp. 1-7.
- International Search Report and Written Opinion for PCT/IB2013/051649 dated Aug. 1, 2013, pp. 1-8.
- “z/Architecture Principles of Operation,” IBM® Publication No. SA22-7832-08, Ninth Edition, Aug. 2010.
- “Power ISA™ Version 2.06 Revision B,” International Business Machines Corporation, Jul. 23, 2010.
- “Intel® 64 and IA-32 Architectures Developer's Manual: vol. 2B, Instructions Set Reference, A-L,” Order No. 253666-041US, Dec. 2011.
- “Intel® 64 and IA-32 Architectures Developer's Manual: vol. 2B, Instructions Set Reference, M-Z,” Order No. 253667-041US, Dec. 2011.
- “Intel® Advanced Vector Extensions Programming Reference,” Intel Corporation, Publication No. 319433-011, Jun. 2011.
- Gschwind, Michael et al., “Dynamic and Transparent Binary Translation”, Computer, Mar. 2000, pp. 54-59.
- K. Ebcioglu, E.R. Altman, “DAISY: Dynamic Compilation for 100% Architectural Compatibility”, IBM Research Report RC20538, Yorktown Heights, NY, Aug. 1996.
- K. Ebcioglu, E.R. Altman, E. Hokenek, “A Java ILP Machine Based on Fast Dynamic Compilation”, IEEE Mascots International Workshop on Security and Efficiency Aspects of Java, Eilat, Israel, Jan. 1997.
- K. Ebcioglu, E.R. Altman, “DAISY: Dynamic Compilation for 100% Architectural Compatibility”, 24th Annual International Symposium on Computer Architecture Denver, Colorado, Jun. 1997, pp. 26-37.
- M. Gschwind, “Method and Apparatus for Determining Branch Addresses in Programs Generated by Binary Translation”, IBM Invention Disclosure YOR8-1998-0334, Yorktown Heights, NY, Jul. 1998. (Research Disclosures, No. 416, Dec. 1998.).
- M. Gschwind, “Method and Apparatus for Rapid Return Address Determination in Binary Translation”, IBM Invention Disclosure YOR8-1998-0410, Yorktown Heights, NY, Sep. 1998.
- K. Ebcioglu, J. Fritts, S. Kosonocky, M. Gschwind, E. Altman, K. Kailas, A. Bright, “An Eight-Issue Tree VLIW Processor for Dynamic Binary Translation”, International Conference on Computer Design (ICCD '98), Dallas, TX, Oct. 1998.
- M. Gschwind, “Method for the Deferred Materialization of Condition Code Information”, IBM Invention Disclosure YOR8-1999-0001, Yorktown Heights, NY, Jan. 1999. (Research Disclosures, No. 431, Mar. 2000.).
- M. Gschwind, “Method for Achieving High Hit Rate for an Address Translation Cache in Binary Translation”, IBM Invention Disclosure YOR8-1999-0194, Yorktown Heights, NY, Mar. 1999. (Research Disclosures, No. 431, Mar. 2000.).
- M. Gschwind, “Method for Implementing Precise Exceptions”, IBM Invention Disclosure YOR8-1999-0197, Yorktown Heights, NY, Mar. 1999. (Research Disclosures, No. 431, Mar. 2000.).
- A. Bright, J. Fritts, M. Gschwind, “A Decoupled Fetch-Execute Engine with Static Branch Prediction Support”, IBM Research Report RC23261, Yorktown Heights, NY, Mar. 1999.
- M. Gschwind, K. Ebcioglu, E. Altman, S. Sathaye, “DAISY/390: Full System Binary Translation of IBM System/390”, IBM Research Report RC 22027, Yorktown Heights, NY, Jun. 1999.
- K. Ebcioglu, E. Altman, S. Sathaye, M. Gschwind, “Execution-Based Scheduling for VLIW Architectures”, Europar '99 (P. Amestoy, P. Berger, M. Dayde, I. Duff, V. Fraysse, L. Giraud, D. Ruiz, eds.), pp. 1269-1280, Lecture Notes in Computer Science 1685, Springer-Verlag 1999.
- B.S. Yang, S.M. Moon, S. Park, J. Lee, S. Lee, J. Park, Y. C. Chung, S. Kim, K. Ebcioglu, E. Altman, “LaTTe: A Java VM Just-in-Time Compiler with Fast and Efficient Register Allocation”, International Conference on Parallel Architectures and Compilation Techniques (Pact '99), pp. 128-138, IEEE Computer Society Press, Oct. 1999.
- K. Ebcioglu, E.R. Altman, S. Sathaye, and M. Gschwind, “Optimizations and Oracle Parallelism with Dynamic Translation”, 32nd Annual International Symposium on Microarchitecture, Haifa, Israel, Nov. 1999.
- E. Altman, M. Gschwind, S. Sathaye, S. Kosonocky, A. Bright, J. Fritts, P. Ledak, D. Appenzeller, C. Agricola, Z. Filan, “BOA: The Architecture of a Binary Translation Processor”, IBM Research Report RC 21665, Yorktown Heights, NY, Dec. 1999.
- E. Altman, K. Ebcioglu, M. Gschwind, S. Sathaye, “Efficient Instruction Scheduling With Precise Exceptions”, IBM Research Report RC22957, Yorktown Heights, NY, Dec. 1999.
- M. Gschwind, “Method and Apparatus for the Selective Scoreboarding of Computation Results”, IBM Invention Disclosure YOR8-2000-0004, Yorktown Heights, NY, Jan. 2000. (IBM Technical Disclosure Bulletin Jan. 2001.).
- E.R. Altman, D. Kaeli, Y. Sheffer, “Welcome to the Opportunities of Binary Translation”, IEEE Computer, vol. 33, Issue 3, pp. 40-45, Mar. 2000.
- E.R. Altman, K. Ebcioglu, “Full System Binary Translation: RISC to VLIW, IBM Research Report”, RC23262, Yorktown Heights, NY, Mar. 2000.
- E.R. Altman, K. Ebcioglu, “Simulation and Debugging of Full System Binary Translation”, IBM Research Report RC23283, Yorktown Heights, NY, Mar. 2000.
- M. Gschwind, K. Ebcioglu, E. Altman, and S. Sathaye, “Binary Translation and Architecture Convergence Issues for IBM S/390”, International Conference on Supercomputing 2000, May 2000, Santa Fe, New Mexico, pp. 336-347, ACM Press.
- S.I. Lee, B.S. Yang, S. Kim, S. Park, S.M. Moon, K. Ebcioglu, and E. Altman, “Efficient Java Exception Handling in Just-in-Time Compilation”, ACM 2000 Java Grande Conference, San Francisco, California, Jun. 2000.
- K. Ebcioglu, E.R. Altman, M. Gschwind, S. Sathaye, “Dynamic Binary Translation and Optimization”, IBM Research Report RC22025, Yorktown Heights, NY, Jul. 2000.
- E.R. Altman, K. Ebcioglu, “Simulation and Debugging of Full System Binary Translation”, Proceedings of the International Society for Computers and Their Applications 13th International Conference (G. Chaudhry and E. Sha, eds.), Las Vegas, Nevada, USA, Aug. 2000, pp. 446-453. (ISBN 1-880843-34-X.).
- M. Gschwind, E. Altman, “On Achieving Precise Exceptions Semantics in Dynamic Optimization”, IBM Research Report RC21900, Yorktown Heights, NY, Dec. 2000.
- Michael Gschwind, Stephen Kosonocky, Erik Altman, “High Frequency Pipeline Architecture Using the Recirculation Buffer”, IBM Research Report RC23113, Yorktown Heights, NY, Mar. 2001.
- K. Ebcioglu, E.R. Altman, M. Gschwind, S. Sathaye, “Dynamic Binary Translation and Optimization”, IEEE Transactions on Computers, vol. 50, Issue 6, pp. 529-548, Jun. 2001.
- E.R. Altman, K. Ebcioglu, M. Gschwind, S. Sathaye, “Advances and Future Challenges in Binary Translation and Optimization”, Proceedings of the IEEE, Special Issue on Microprocessor Architecture and Compiler Technology, pp. 1710-1722, Nov. 2001.
- M. Gschwind, E.R. Altman, “Precise Exception Semantics in Dynamic Compilation,” 2002 Symposium on Compiler Construction (CC 2002), Grenoble, France, Apr. 2002.
- M. Gschwind, E.R. Altman, “Inherently Lower Complexity Architectures using Dynamic Optimization”, IBM Research Report RC22442, Yorktown Heights, NY, May 2002.
- M. Gschwind, E.R. Altman, “Inherently Lower Complexity Architectures using Dynamic Optimization”, Workshop on Complexity-Effective Design in conjunction with the 29th Annual International Symposium on Computer Architecture (ISCA 2002), Anchorage, AK, May 2002.
- E.R. Altman, M. Gschwind, “BOA: A Second Generation DAISY Architecture”, Tutorial, 31st Annual International Symposium on Computer Architecture (ISCA 2004), Munich, Germany, Jun. 2004.
- M. Gschwind, E.R. Altman, “Dynamic Compilation at the System Level”, Tutorial, 4th Annual International Symposium on Code Generation and Optimization (CGO 2006), New York City, NY, Mar. 2006.
- S. Sathaye et al., “BOA: Targeting Multi-Gigahertz with Binary Translation,” Proc. of the 1999 Workshop on Binary Translation, IEEE Computer Society Technical Committee on Computer Architecture Newsletter, 1999, pp. 1-12.
- G. Silberman et al., “An Architectural Framework for Migration from CISC to Higher Performance Platforms,” ICS '92 Proceedings of the 6th International Conference on Supercomputing, 1992, pp. 198-215.
- G. Silberman et al., “An Architectural Framework for Supporting Heterogeneous Instruction-Set Architectures,” Computer, vol. 26, Issue 6, Jun. 1993, pp. 39-56.
- Leiner, K., “Move Character Instruction and Procedure to Avoid Crossing Page Boundary and Fast Circuit for Checking Address Range,” IBM Technical Disclosure Bulletin, IPCOM000049778D, Jul. 1982, p. 744.
- Anonymous, “Method for Handling Page Boundary Crossings Encountered by a Hardware Accelerator,” IBM Technical Disclosure Bulletin, IPCOM000200051D, Sep. 2010.
- Office Action for U.S. Appl. No. 13/421,498 dated Sep. 10, 2012 , 32 pages.
- Extended European Search Report for PCT/IB2013051810 dated Aug. 1, 2014, 10 pages.
- Extended European Search Report for PCT/IB2013051811 dated Sep. 8, 2014, 9 pages.
- Extended European Search Report for PCT/IB2012056438 dated Nov. 10, 2014, 6 pages.
- International Search Report and Written Opinion for PCT/IB2012/056438 dated Mar. 22, 2013, pp. 1-11.
- International Search Report and Written Opinion for PCT/IB2012/56434 dated Mar. 26, 2013, pp. 1-9.
- International Search Report and Written Opinion for PCT/IB2012/056436 dated Apr. 16, 2013, pp. 1-12.
- International Search Report and Written Opinion for PCT/EP2013/054614 dated Jul. 2, 2013, pp. 1-9.
- International Search Report and Written Opinion for PCT/EP2013/054608 dated Jul. 15, 2013, pp. 1-8.
- M. Gschwind, E.R. Altman, S. Sathaye, P. Ledak, D. Appenzeller, Dynamic and Transparent Binary Translation, IEEE Computer, vol. 33, Issue 3, pp. 54-59, Mar. 2000.
- E. Altman, Kemal Ebcioglu, “Simulation and Debugging of Full System Binary Translation,” IBM T.J. Watson Research Center, 2000 (no further date information available), pp. 1-15.
- Extended European Search Report for PCT/IB2012056434 dated Dec. 16, 2014, pp. 1-6.
- Kankowski, Peter, “Implementing strcmp, strlen, and strstr Using SSE 4.2 Instructions,” Nov. 2014, pp. 1-21.
- Mc Guire, Tim, “The String Instructions,” Nov. 2014, pp. 1-6.
- Extended European Search Report for PCT/IB2012056436 dated Oct. 16, 2014, pp. 1-9.
- Oehler, R.R. et al., “IBM Risc System/6000 Processor Architecture,” IBM J. Res. Develop., vol. 34, No. 1, Jan. 1990, pp. 23-36.
- “Strcpy.s”, Apple Computer, Inc., pp. 1-4, Nov. 2014.
- “C Programming/Strings,” (http://en.wildbooks.org/wild/C—Programming/Strings), Nov. 2014, pp. 1-12.
- “C string handling,” (http://en.wikibooks.org/wiki/C—string—handling), Mar. 2015, pp. 1-6.
- Office Action for U.S. Appl. No. 13/421,614 dated Feb. 19, 2015, pp. 1-17.
- Office Action for U.S. Appl. No. 13/421,498 dated Mar. 12, 2015, pp. 1-31.
- Office Action for U.S. Appl. No. 13/421,657 dated Mar. 25, 2015, pp. 1-21.
- Office Action for U.S. Appl. No. 13/421,442 dated Apr. 2, 2015, pp. 1-23.
- Office Action for U.S. Appl. No. 13/783,789 dated Apr. 2, 2015, pp. 1-21.
- Office Action for U.S. Appl. No. 13/421,448 dated Apr. 2, 2015, pp. 1-22.
- Office Action for U.S. Appl. No. 13/783,339 dated Apr. 1, 2015, pp. 1-20.
- Office Action for U.S. Appl. No. 13/421,451 dated Apr. 7, 2015, pp. 1-21.
- Office Action for U.S. Appl. No. 13/421,560 dated Apr. 7, 2015, pp. 1-22.
- “Emulator” Wikipedia, http://en.wikipedia.org/w/index.php?title—Emulator&oldid-475864955, downloaded Apr. 14, 2015, pp. 1-10.
- Office Action for U.S. Appl. No. 13/783,348 dated May 6, 2015, pp. 1-21.
- Office Action for U.S. Appl. No. 13/783,335 dated May 26, 2014, pp. 1-18.
- Notice of Allowance for U.S. Appl. No. 13/421,614 dated Jun. 3, 2015, pp. 1-9.
- Office Action for U.S. Appl. No. 13/421,599, dated Jun. 25, 2015, pp. 1-12.
- Office Action for U.S. Appl. No. 13/783,332, dated Jun. 25, 2015, pp. 1-11.
- Examination Report in Application No. 12871580.2, dated Jul. 6, 2015, pp. 1-7.
- Office Action in U.S. Appl. No. 13/783,321, dated Jul. 7, 2015, pp. 1-19.
- Office Action in U.S. Appl. No. 13/421,456, dated Aug. 6, 2015, pp. 1-21.
- Office Action in U.S. Appl. No. 13/783,337, dated Aug. 7, 2015, pp. 1-19.
- Final Office Action in U.S. Appl. No. 13/783,789, dated Aug. 20, 2015, pp. 1-20.
- Final Office Action in U.S. Appl. No. 13/421,448, dated Aug. 20, 2015, pp. 1-20.
- Final Office Action in U.S. Appl. No. 13/783,339, dated Aug. 20, 2015, pp. 1-21.
- Final Office Action in U.S. Appl. No. 13/783,348, dated Aug. 21, 2015, pp. 1-20.
- Final Office Action in U.S. Appl. No. 13/421,560, dated Aug. 25, 2015, pp. 1-20.
- Final Office Action in U.S. Appl. No. 13/421,442, dated Aug. 28, 2015, pp. 1-21.
- Final Office Action in U.S. Appl. No. 13/783,335, dated Oct. 5, 2015, pp. 1-21.
- Notice of Allowance in U.S. Appl. No. 13/421,498, dated Oct. 2, 2015, pp. 1-17.
- Notice of Allowance in U.S. Appl. No. 13/421,657, dated Oct. 9, 2015, pp. 1-16.
- Final Office Action in U.S. Appl. No. 13/783,332, dated Dec. 1, 2015, pp. 1-15.
- Final Office Action in U.S. Appl. No. 13/421,599, dated Dec. 4, 2015, pp. 1-18.
- Office Action in U.S. Appl. No. 13/421,560, dated Dec. 22, 2015, pp. 1-19.
- Office Action in U.S. Appl. No. 13/783,348, dated Dec. 22, 2015, pp. 1-19.
- Notice of Allowance in U.S. Appl. No. 13/783,337, dated Jan. 5, 2016, pp. 1-11.
- Office Action in U.S. Appl. No. 13/421,448, dated Jan. 7, 2016, pp. 1-19.
- Office Action in U.S. Appl. No. 13/783,339, dated Jan. 8, 2016, pp. 1-20.
- Office Action in U.S. Appl. No. 13/421,442, dated Jan. 7, 2016, pp. 1-20.
- Office Action in U.S. Appl. No. 13/783,789, dated Jan. 8, 2016, pp. 1-19.
Type: Grant
Filed: Mar 15, 2012
Date of Patent: Mar 15, 2016
Patent Publication Number: 20130246699
Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION (Armonk, NY)
Inventors: Jonathan D. Bradbury (Poughkeepsie, NY), Michael K. Gschwind (Chappaqua, NY), Timothy J. Slegel (Staatsburg, NY)
Primary Examiner: Kevin Verbrugge
Assistant Examiner: Alan Otto
Application Number: 13/421,640
International Classification: G06F 12/00 (20060101); G06F 9/30 (20060101);