DNA encoding interleukin-B30

- Schering Corporation

Purified genes encoding cytokines from a mammal, reagents related thereto including purified proteins, specific antibodies, and nucleic acids encoding this molecule are provided. Methods of using the reagents and diagnostic kits are also provided.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description

This application is a conversion of provisional U.S. patent application U.S. Ser. No. 60/053,765, filed Jul. 25, 1997, which is incorporated herein by reference.

FIELD OF THE INVENTION

The present invention pertains the compositions related to proteins which function in controlling biology and physiology of mammalian cells, e.g., cells of a mammalian immune system. In particular, it provides purified genes, proteins, antibodies, and related reagents useful, e.g., to regulate activation, development, differentiation, and function of various cell types, including hematopoietic cells.

BACKGROUND OF THE INVENTION

Recombinant DNA technology refers generally to the technique of integrating genetic information from a donor source into vectors for subsequent processing, such as through introduction into a host, whereby the transferred genetic information is copied and/or expressed in the new environment. Commonly, the genetic information exists in the form of complementary DNA (cDNA) derived from messenger RNA (mRNA) coding for a desired protein product. The carrier is frequently a plasmid having the capacity to incorporate cDNA for later replication in a host and, in some cases, actually to control expression of the cDNA and thereby direct synthesis of the encoded product in the host.

For some time, it has been known that the mammalian immune response is based on a series of complex cellular interactions, called the “immune network”. Recent research has provided new insights into the inner workings of this network. While it remains clear that much of the response does, in fact, revolve around the network-like interactions of lymphocytes, macrophages, granulocytes, and other cells, immunologists now generally hold the opinion that soluble proteins, known as lymphokines, cytokines, or monokines, play a critical role in controlling these cellular interactions. Thus, there is considerable interest in the isolation, characterization, and mechanisms of action of cell modulatory factors, an understanding of which will lead to significant advancements in the diagnosis and therapy of numerous medical abnormalities, e.g., immune system disorders. Some of these factors are hematopoietic growth factors, e.g., granulocyte colony stimulatory factor (G-CSF). See, e.g., Thomson (1994; ed.) The Cytokine Handbook (2d ed.) Academic Press, San Diego; Metcalf and Nicola (1995) The Hematopoietic Colony Stimulatory Factors Cambridge University Press; and Aggarwal and Gutterman (1991) Human Cytokines Blackwell Pub.

Lymphokines apparently mediate cellular activities in a variety of ways. They have been shown to support the proliferation, growth, and differentiation of pluripotential hematopoietic stem cells into vast numbers of progenitors comprising diverse cellular lineages making up a complex immune system. Proper and balanced interactions between the cellular components are necessary for a healthy immune response. The different cellular lineages often respond in a different manner when lymphokines are administered in conjunction with other agents.

Cell lineages especially important to the immune response include two classes of lymphocytes: B-cells, which can produce and secrete immunoglobulins (proteins with the capability of recognizing and binding to foreign matter to effect its removal), and T-cells of various subsets that secrete lymphokines and induce or suppress the B-cells and various other cells (including other T-cells) making up the immune network. These lymphocytes interact with many other cell types.

Another important cell lineage is the mast cell (which has not been positively identified in all mammalian species), which is a granule-containing connective tissue cell located proximal to capillaries throughout the body. These cells are found in especially high concentrations in the lungs, skin, and gastrointestinal and genitourinary tracts. Mast cells play a central role in allergy-related disorders, particularly anaphylaxis as follows: when selected antigens crosslink one class of immunoglobulins bound to receptors on the mast cell surface, the mast cell degranulates and releases mediators, e.g., histamine, serotonin, heparin, and prostaglandins, which cause allergic reactions, e.g., anaphylaxis.

Research to better understand and treat various immune disorders has been hampered by the general inability to maintain cells of the immune system in vitro. Immunologists have discovered that culturing these cells can be accomplished through the use of T-cell and other cell supernatants, which contain various growth factors, including many of the lymphokines.

From the foregoing, it is evident that the discovery and development of new lymphokines, e.g., related to G-CSF and/or IL-6, could contribute to new therapies for a wide range of degenerative or abnormal conditions which directly or indirectly involve the immune system and/or hematopoietic cells. In particular, the discovery and development of lymphokines which enhance or potentiate the beneficial activities of known lymphokines would be highly advantageous. The present invention provides new interleukin compositions and related compounds, and methods for their use.

SUMMARY OF THE INVENTION

The present invention is directed to mammalian, e.g., rodent, canine, feline, primate, interleukin-B30 (IL-B30) and its biological activities. It includes nucleic acids coding for polypeptides themselves and methods for their production and use. The nucleic acids of the invention are characterized, in part, by their homology to cloned complementary DNA (cDNA) sequences enclosed herein, and/or by functional assays for growth factor- or cytokine-like activities, e.g., G-CSF (see Nagata (1994) in Thomson The Cytokine Handbook 2d ed., Academic Press, San Diego) and/or IL-6 (see Hirano (1994) in Thomson The Cytokine Handbook 2d ed., Academic Press, San Diego), applied to the polypeptides, which are typically encoded by these nucleic acids. Methods for modulating or intervening in the control of a growth factor dependent physiology or an immune response are provided.

The present invention is based, in part, upon the discovery of a new cytokine sequence exhibiting significant sequence and structural similarity to G-CSF and IL-6. In particular, it provides primate, e.g., human, gene encoding a protein whose mature size is about 168 amino acids, and pig and murine, e.g., mouse, sequences. Functional equivalents exhibiting significant sequence homology will be available from other mammalian, e.g., cow, horse, and rat, and non-mammalian species.

In various protein embodiments, the invention provides: a substantially pure or recombinant IL-B30 protein or peptide exhibiting at least about 85% sequence identity over a length of at least about 12 amino acids to SEQ ID NO: 2; a natural sequence IL-B30 of SEQ ID NO: 2; and a fusion protein comprising IL-B30 sequence. In certain embodiments, the homology is at least about 90% identity and the portion is at least about 9 amino acids; the homology is at least about 80% identity and the portion is at least about 17 amino acids; or the homology is at least about 70% identity and the portion is at least about 25 amino acids. In other embodiments, the IL-B30: comprises a mature sequence of Table 1; or exhibits a post-translational modification pattern distinct from natural IL-B30; or the protein or peptide: is from a warm blooded animal selected from a mammal, including a primate; comprises at least one polypeptide segment of SEQ ID NO: 2; exhibits a plurality of portions exhibiting the identity; is a natural allelic variant of IL-B30; has a length at least about 30 amino acids; exhibits at least two non-overlapping epitopes which are specific for a mammalian IL-B30; exhibits a sequence identity at least about 90% over a length of at least about 20 amino acids to mammalian IL-B30; is glycosylated; has a molecular weight of at least 10 kD with natural glycosylation; is a synthetic polypeptide; is attached to a solid substrate; is conjugated to another chemical moiety; is a 5-fold or less substitution from natural sequence; or is a deletion or insertion variant from a natural sequence. Preferred embodiments include a composition comprising: a sterile IL-B30 protein or peptide; or the IL-B30 protein or peptide and a carrier, wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated for oral, rectal, nasal, topical, or parenteral administration. In fusion protein embodiments, the protein can have: mature protein sequence of Table 1; a detection or purification tag, including a FLAG, His6, or Ig sequence; and/or sequence of another cytokine or chemokine.

Kit embodiments include those with an IL-B30 protein or polypeptide, and: a compartment comprising the protein or polypeptide; and/or instructions for use or disposal of reagents in the kit.

In binding compound embodiments, the compound may have an antigen binding site from an antibody, which specifically binds to a natural IL-B30 protein, wherein: the IL-B30 is a mammalian protein; the binding compound is an Fv, Fab, or Fab2 fragment; the binding compound is conjugated to another chemical moiety; or the antibody: is raised against a peptide sequence of a mature polypeptide of Table 1; is raised against a mature IL-B30; is raised to a purified rodent IL-B30; is immunoselected; is a polyclonal antibody; binds to a denatured IL-B30; exhibits a Kd of at least 30 μM; is attached to a solid substrate, including a bead or plastic membrane; is in a sterile composition; or is detectably labeled, including a radioactive or fluorescent label. Kits containing binding compounds include those with: a compartment comprising the binding compound; and/or instructions for use or disposal of reagents in the kit. Often the kit is capable of making a qualitative or quantitative analysis. Preferred compositions will comprise: a sterile binding compound; or the binding compound and a carrier, wherein the carrier is: an aqueous compound, including water, saline, and/or buffer; and/or formulated for oral, rectal, nasal, topical, or parenteral administration.

Nucleic acid embodiments include an isolation or recombinant nucleic acid encoding an IL-B30 protein or peptide or fusion protein, wherein: the IL-B30 is from a mammal; and/or the nucleic acid: encodes an antigenic peptide sequence of Table 1; encodes a plurality of antigenic peptide sequences of Table 1; exhibits at least about 80% identity to a natural cDNA encoding the segment; is an expression vector; further comprises an origin of replication; is from a natural source; comprises a detectable label; comprises synthetic nucleotide sequence; is less than 6 kb, preferably less than 3 kb; is from a mammal, including a primate; comprises a natural full length coding sequence; is a hybridization probe for a gene encoding the IL-B30; or is a PCR primer, PCR product, or mutagenesis primer. The invention also provides a cell, tissue, or organ comprising such a recombinant nucleic acid, and preferably the cell will be: a prokaryotic cell; a eukaryotic cell; a bacterial cell; a yeast cell; an insect cell; a mammalian cell; a mouse cell; a primate cell; or a human cell.

Kit embodiments include those with such nucleic acids, and: a compartment comprising the nucleic acid; a compartment further comprising the IL-B30 protein or polypeptide; and/or instructions for use or disposal of reagents in the kit. Typically, the kit is capable of making a qualitative or quantitative analysis.

In certain embodiments, the nucleic acid: hybridizes under wash conditions of 30° C. and less than 2M salt, or of 45° C. and/or 500 mM salt, or 55° C. and/or 150 mM salt, to SEQ ID NO: 1; or exhibits at least about 85% identity and/or the stretch is at least about 30 nucleotides, or exhibits at least 90% identity and/or the stretch is at least 55 nucleotides, or exhibits at least 95% and/or the stretch is at least 75 nucleotides, to a primate IL-B30.

The invention embraces a method of modulating physiology or development of a cell or tissue culture cells comprising contacting the cell with an agonist or antagonist of a mammalian IL-B30. The method may be where: the contacting is in combination with an agonist or antagonist of G-CSF and/or IL-6; or the contacting is with an antagonist, including a binding composition comprising an antibody binding site which specifically binds an IL-B30.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

All references cited herein are incorporated herein by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

OUTLINE

I. General

II. Purified IL-B30

A. physical properties

B. biological properties

III. Physical Variants

A. sequence variants, fragments

B. post-translational variants

    • 1. glycosylation
    • 2. others
      IV. Functional Variants

A. analogs, fragments

    • 1. agonists
    • 2. antagonists

B. mimetics

    • 1. protein
    • 2. chemicals

C. species variants

V. Antibodies

A. polyclonal

B. monoclonal

C. fragments, binding compositions

VI. Nucleic Acids

A. natural isolates; methods

B. synthetic genes

C. methods to isolate

VII. Making IL-B30, mimetics

A. recombinant methods

B. synthetic methods

C. natural purification

VIII. Uses

A. diagnostic

B. therapeutic

IX. Kits

A. nucleic acid reagents

B. protein reagents

C. antibody reagents

X. Isolating receptors for IL-B30

I. GENERAL

The present invention provides amino acid sequences and DNA sequences encoding various mammalian proteins which are cytokines, e.g., which are secreted molecules which can mediate a signal between immune or other cells. See, e.g., Paul (1994) Fundamental Immunology (3d ed.) Raven Press, N.Y. The full length cytokines, and fragments, or antagonists will be useful in physiological modulation of cells expressing a receptor. It is likely that IL-B30 has either stimulatory or inhibitory effects on hematopoietic cells, including, e.g., lymphoid cells, such as T-cells, B-cells, natural killer (NK) cells, macrophages, dendritic cells, hematopoietic progenitors, etc. The proteins will also be useful as antigens, e.g., immunogens, for raising antibodies to various epitopes on the protein, both linear and conformational epitopes.

A cDNA encoding IL-B30 was identified from a human cell line. The molecule was designated huIL-B30. A related gene corresponding to a pig sequence was also identified. A rodent sequence, e.g., from mouse, is also described.

The human gene encodes a small soluble cytokine-like protein, of about 168 amino acids. The signal sequence probably is about 21 residues, and would run from the Met to about Ala. See Table 1 and SEQ. ID. NO: 1 and 2. IL-B30 exhibits structural motifs characteristic of a member of the long chain cytokines. Compare, e.g., IL-B30, G-CSF, and IL-6, sequences available from GenBank. See also Table 2.

TABLE 1 Nucleic acid (SEQ ID NO: 1) encoding IL-B30 from a primate, e.g., human. Translated amino acid sequence is SEQ ID NO: 2. ATG CTG GGG AGC AGA GCT GTA ATG CTG CTG TTG CTG CTG CCC TGG ACA   48 Met Leu Gly Ser Arg Ala Val Met Leu Leu Leu Leu Leu Pro Trp Thr −21 −20                 −15                 −10 GCT CAG GGC AGA GCT GTG CCT GGG GGC AGC AGC CCT GCC TGG ACT CAG   96 Ala Gln Gly Arg Ala Val Pro Gly Gly Ser Ser Pro Ala Trp Thr Gln  −5                   1               5                 10 TGC CAG CAG CTT TCA CAG AAG CTC TGC ACA CTG GCC TGG AGT GCA CAT  144 Cys Gln Gln Leu Ser Gln Lys Leu Cys Thr Leu Ala Trp Ser Ala His              15                  20                  25 CCA CTA GTG GGA CAC ATG GAT CTA AGA GAA GAG GGA GAT GAA GAG ACT  192 Pro Leu Val Gly His Met Asp Leu Arg Glu Glu Gly Asp Glu Glu Thr          30                  35                  40 ACA AAT GAT GTT CCC CAT ATC CAG TGT GGA GAT GGC TGT GAC CCC CAA  240 Thr Asn Asp Val Pro His Ile Gln Cys Gly Asp Gly Cys Asp Pro Gln      45                  50                  55 GGA CTC AGG GAC AAC AGT CAG TTC TGC TTG CAA AGG ATC CAC CAG GGT  288 Gly Leu Arg Asp Asn Ser Gln Phe Cys Leu Gln Arg Ile His Gln Gly  60                  65                  70                  75 CTG ATT TTT TAT GAG AAG CTG CTA GGA TCG GAT ATT TTC ACA GGG GAG  336 Leu Ile Phe Tyr Glu Lys Leu Leu Gly Ser Asp Ile Phe Thr Gly Glu                  80                  85                  90 CCT TCT CTG CTC CCT GAT AGC CCT GTG GCG CAG CTT CAT GCC TCC CTA  384 Pro Ser Leu Leu Pro Asp Ser Pro Val Ala Gln Leu His Ala Ser Leu              95                 100                 105 CTG GGC CTC AGC CAA CTC CTG CAG CCT GAG GGT CAC CAC TGG GAG ACT  432 Leu Gly Leu Ser Gln Leu Leu Gln Pro Glu Gly His His Trp Glu Thr         110                 115                 120 CAG CAG ATT CCA AGC CTC AGT CCC AGC CAG CCA TGG CAG CGT CTC CTT  480 Gln Gln Ile Pro Ser Leu Ser Pro Ser Gln Pro Trp Gln Arg Leu Leu     125                 130                 135 CTC CGC TTC AAA ATC CTT CGC AGC CTC CAG GCC TTT GTG GCT GTA GCC  528 Leu Arg Phe Lys Ile Leu Arg Ser Leu Gln Ala Phe Val Ala Val Ala 140                 145                 150                 155 GCC CGG GTC TTT GCC CAT GGA GCA GCA ACC CTG AGT CCC TAA  570 Ala Arg Val Phe Ala His Gly Ala Ala Thr Leu Ser Pro                 160                 165 coding sequence: ATGCTGGGGA GCAGAGCTGT AATGCTGCTG TTGCTGCTGC CCTGGACAGC TCAGGGCAGA GCTGTGCCTG GGGGCAGCAG CCCTGCCTGG ACTCAGTGCC AGCAGCTTTC ACAGAAGCTC TGCACACTGG CCTGGAGTGC ACATCCACTA GTGGGACACA TGGATCTAAG AGAAGAGGGA GATGAAGAGA CTACAAATGA TGTTCCCCAT ATCCAGTGTG GAGATGGCTG TGACCCCCAA GGACTCAGGG ACAACAGTCA GTTCTGCTTG CAAAGGATCC ACCAGGGTCT GATTTTTTAT GAGAAGCTGC TAGGATCGGA TATTTTCACA GGGGAGCCTT CTCTGCTCCC TGATAGCCCT GTGGCGCAGC TTCATGCCTC CCTACTGGGC CTCAGCCAAC TCCTGCAGCC TGAGGGTCAC CACTGGGAGA CTCAGCAGAT TCCAAGCCTC AGTCCCAGCC AGCCATGGCA GCGTCTCCTT CTCCGCTTCA AAATCCTTCG CAGCCTCCAG GCCTTTGTGG CTGTAGCCGC CCGGGTCTTT GCCCATGGAG CAGCAACCCT GAGTCCCTAA Rodent, e.g., mouse, IL-B30 (SEQ ID NO: 3 and 4): CGCTTAGAAG TCGGACTACA GAGTTAGACT CAGAACCAAA GGAGGTGGAT AGGGGGTCCA   60 CAGGCCTGGT GCAGATCACA GAGCCAGCCA GATCTGAGAA GCAGGAACA AG ATG  115                                                          Met                                                          −21 CTG GAT TGC AGA GCA GTA ATA ATG CTA TGG CTG TTG CCC TGG GTC ACT  163 Leu Asp Cys Arg Ala Val Ile Met Leu Trp Leu Leu Pro Trp Val Thr −20                 −15                 −10                  −5 CAG GGC CTG GCT GTG CCT AGG AGT AGC AGT CCT GAC TGG GCT CAG TGC  211 Gln Gly Leu Ala Val Pro Arg Ser Ser Ser Pro Asp Trp Ala Gln Cys                   1               5                  10 CAG CAG CTC TCT CGG AAT CTC TGC ATG CTA GCC TGG AAC GCA CAT GCA  259 Gln Gln Leu Ser Arg Asn Leu Cys Met Leu Ala Trp Asn Ala His Ala          15                  20                  25 CCA GCG GGA CAT ATG AAT CTA CTA AGA GAA GAA GAG GAT GAA GAG ACT  307 Pro Ala Gly His Met Asn Leu Leu Arg Glu Glu Glu Asp Glu Glu Thr      30                  35                  40 AAA AAT AAT GTG CCC CGT ATC CAG TGT GAA GAT GGT TGT GAC CCA CAA  355 Lys Asn Asn Val Pro Arg Ile Gln Cys Glu Asp Gly Cys Asp Pro Gln  45                  50                  55                  60 GGA CTC AAG GAC AAC AGC CAG TTC TGC TTG CAA AGG ATC CGC CAA GGT  403 Gly Leu Lys Asp Asn Ser Gln Phe Cys Leu Gln Arg Ile Arg Gln Gly                  65                  70                  75 CTG GCT TTT TAT AAG CAC CTG CTT GAC TCT GAC ATC TTC AAA GGG GAG  451 Leu Ala Phe Tyr Lys His Leu Leu Asp Ser Asp Ile Phe Lys Gly Glu              80                  85                  90 CCT GCT CTA CTC CCT GAT AGC CCC ATG GAG CAA CTT CAC ACC TCC CTA  499 Pro Ala Leu Leu Pro Asp Ser Pro Met Glu Gln Leu His Thr Ser Leu          95                 100                 105 CTA GGA CTC AGC CAA CTC CTC CAG CCA GAG GAT CAC CCC CGG GAG ACC  547 Leu Gly Leu Ser Gln Leu Leu Gln Pro Glu Asp His Pro Arg Glu Thr     110                 115                 120 CAA CAG ATG CCC AGC CTG ATG TCT AGT CAG CAG TGG CAG CGC CCC CTT  595 Gln Gln Met Pro Ser Leu Ser Ser Ser Gln Gln Trp Gln Arg Pro Leu 125                 130                 135                 140 CTC CGT TCC AAG ATC CTT CGA AGC CTC CAG GCC TTT TTG GCC ATA GCT  643 Leu Arg Ser Lys Ile Leu Arg Ser Leu Gln Ala Phe Leu Ala Ile Ala                 145                 150                 155 GCC CGG GTC TTT GCC CAC GGA GCA GCA ACT CTG ACT GAG CCC TTA GTG  691 Ala Arg Val Phe Ala His Gly Ala Ala Thr Leu Thr Glu Pro Leu Val             160                 165                 170 CCA ACA GCT TAAGGATGCC CAGGTTCCCA TGGCTACCAT GATAAGACTA  740 Pro Thr Ala         175 ATCTATCAGC CCAGACATCT ACCAGTTAAT TAACCCATTA GGACTTGTGC TGTTCTTGTT  800 TCGTTTGTTT TGCGTGAAGG GCAAGGACAC CATTATTAAA GAGAAAAGAA ACAAACCCCA  860 GAGCAGGCAG CTGGCTAGAG AAAGGAGCTG GAGAAGAAGA ATAAAGTCTC GAGCCCTTGG  920 CCTTGGAAGC GGGCAAGCAG CTGCGTGGCC TGAGGGGAAG GGGGCGGTGG CATCGAGAAA  980 CTGTGAGAAA ACCCAGAGCA TCAGAAAAAG TGAGCCCAGG CTTTGGCCAT TATCTGTAAG 1040 AAAAACAAGA AAAGGGGAAC ATTATACTTT CCTGGGTGGC TCAGGGAAAT GTGCAGATGC 1100 ACAGTACTCC AGACAGCAGC TCTGTACCTG CCTGCTCTGT CCCTCAGTTC TAACAGAATC 1160 TAGTCACTAA GAACTAACAG GACTACCAAT ACGAACTGAC AAA 1203 MLDCRAVIMLWLLFWVTQGLAVPRSSSPDWAQCQQLSRNLCMLAWNAHAPAGHMNLLREEEDEETKNNV PRIQCEDGCDPQGLKDNSQFCLQRIRQGLAFYKHLLDSDIFKGEPALLPDSPMEQLHTSLLGLSQLLQP EDHPRETQQNPSLSSSQQWQRPLLRSKILRSLQAFLAIAARVFAHGAATLTEPLVPTA

TABLE 2 Comparison of various IL-6 and G-CSF embodiments compared to IL-B30. Human IL-B30 is SEQ ID NO: 2; mouse IL-B30 is SEQ ID NO: 4; pig IL-B30 is SEQ ID NO: 5; bovine G-CSF is SEQ ID NO: 6; feline G-CSF is SEQ ID NO: 7; human G-CSF is SEQ ID NO: 8; mouse G-CSF is SEQ ID NO: 9; otter IL-6 is SEQ ID NO: 10; feline IL-6 is SEQ ID NO: 11; human IL-6 is SEQ ID NO: 12; sheep IL-6 is SEQ ID NO: 13; mouse IL-6 is SEQ ID NO: 14; chicken MGF is SEQ ID NO: 15; and KSHV, kaposi's sarcoma herpes virus, a viral IL-6, is SEQ ID NO: 16. i130_human .......... ......VPGG SSPVWTQCQQ LSQKLCT.LA WSAHPLVG.. i130_mouse .......... ......VPRS SSPDWAQCQQ LSRNLCM.LA WNAHAPAG.. i130_pig .......... .......... .......... .......... .......... gcsf_bovin ......TPLG P.......AR SLPQSFLLKC LEQVRKIQAD GAELQERL.. gcsf_felca ......TPLG P.......TS SLPQSFLLKC LEQVRKVQAD GTALQERL.. gcsf_human ......TPLG P.......AS SLPQSFLLKC LEQVRKIQGD GAALQEKLVS gcsf_mouse VPLVTVSALP P.......SL PLPRSFLLKS LEQVRKIQAS GSVLLEQL.. i16_otter .AFPTPGPLP GDSKDDATSN RPPLTSADKM EDFIKFILGK ISALRNEM.. i16_felca .AFPTPGPLG G....DATSN RLPLTPADKM EELIKYILGK ISALKKEM.. i16_human .AFPAPVPPG EDSKDVAAPH RQPLTSSERI DKQIRYILDG ISALRKET.. i16_sheep .AFPTPGPLG EDFKNDTTPS RLLLTTPEKT EALIKHIVDK ISAIRKEI.. i16_mouse .AFPTSQVRR GDFTEDTTPN R.PVYTTSQV GGLITHVLWE IVEMRKEL.. mgf_chick .......... .APLAELSGD HDFQLFLHKN LEFTRKIRGD VAALQRAV.. i16_khsv .......... .......TRG KLPDAPEFEK DLLIQRLNWM LWVIDECFRD i130_human .HMD.LREEG DEETTNDVPH I...QCGDGC DPQGLRDNSQ FCLQRIHQGL i130_mouse .HMNLLREEE DEETKNNVPR I...QCEDGC DPQGLKDNSQ FCLQRIRQGL i130_pig .......... .......... .......... .......... SCLQRIHQGL gcsf_bovin .CAA.HKLCH PEELMLLRHS LGIP.QAPLS SCSSQSLQLR GCLNQLHGGL gcsf_felca .CAA.HKLCH PEELVLLGHA LGIP.QAPLS SCSSQALQLT GCLRQLHSGL gcsf_human ECAT.YKLCH PEELVLLGHS LGIP.WAPLS SCPSQALQLA GCLSQLHSGL gcsf_mouse .CAT.YKLCH PEELVLLGHS LGIP.KASLS GCSSQALQQT QCLSQLHSGL i16_otter .CDK.YNKCE DSKEVLAENN LNLPKLAEKD RCFQSRFNQE TCLTRITTGL i16_felca .CDN.YNKCE DSKEALAENN LNLPKLAEKD GCFQSGFNQE TCLTRITTGL i16_human .CNK.SNMCE SSKEALAENN LNLPKMAEKD GCFQSGFNEE TCLVKIITGL i16_sheep .CEK.NDECE NSKETLAENK LKLPKMEEKD GCFQSGFNQA ICLIKTTAGL i16_mouse .CNG.NSDCM NNDDALAENN LKLPEIQRND GCYQTGYNQE ICLLKISSGL mgf_chick .CDT.FQLCT EEELQLVQPD PHLV.QAPLD QCHKRGFQAE VCFTQIRAGL i16_khsv LCYR.TGICK GILEPAAIFH LKLPAINDTD HCGLIGFNET SCLKKLADGF i130_human IFYEKLLGSD IFTGE..... .PSLLPDSPV AQLHASLLGL SQLLQPE..C i130_mouse AFYKHLLDSD IFKGE..... .PALLPDSPM EQLHTSLLGL SQLLQPE..D i130_pig VFYEKLLGSD IFTGE..... .PSLHPDGSV GQLHASLLGL RQLLQPE..G gcsf_bovin FLYQGLLQAL AGIS...... .PELAPTLDT LQLDVTDFAT NIWLQMEDLG gcsf_felca FLYQGLLQAL AGIS...... .PELAPTLDM LQLDITDFAI NIWQQMEDVG gcsf_human FLYQGLLQAL EGIS...... .PELGFTLDT LQLDVADFAT TIWQQMEELG gcsf_mouse CLYQGLLQAL SGIS...... .PALAPTLDL LQLDVANFAT TIWQQMENLG i16_otter QEFQIHLKYL ESNYEG...N KDNAHSVYIS TKHLLQTLRP M..NQIEVTT i16_felca QEFQIYLKFL QDKYEG...D KENAKSVYTS TNVLLQMLKR KGKNQDEVTI i16_human LEFEVYLEYL QNRFES...S EEQARAVQMS TKVLIQFLQK KAKNLDAITT i16_sheep LEYQIYLDFL QNEFEG...N QETVMELQSS IRTLIQILKE KIAGL....I i16_mouse LEYHSYLEYM KNNLKDN..K KDKARVLQRD TETLIHIFNQ EVKDLHKIVL mgf_chick HAYHDSLGAV LRLLP..... ..NHTTLVET LQLDAANLSS NIQQQMEDLG i16_khsv FEFEVLFKFL TTEFGKSVIN VDVMELLTKT LGWDIQEELN KLTKTHY..S i130_human HHWETQQIP. .SLSPSQ..P WQRLLLRFKI LRSLQAFVAV AARVFAHGAA i130_mouse HPRETQQMP. .SLSSSQ..Q WQRPLLRSKI LRSLQAFLAI AARVFAHGAA i130_pig HHWETEQTP. .SPSPSQ..P WQRLLLRLKI LRSLQAFVAV AARVFAHGAA gcsf_bovin AAPAVQPTQ. .GAMPTFTSA FQRRAGGVLV ASQLHRFLEL AYRGLRYLAE gcsf_felca MAPAVPPTQ. .GTMPTFTSA FQRRAGGTLV ASNLQSFLEV AYRALRHFTK gcsf_human MAPALQPTQ. .GAMPAFASA FQRRAGGVLV ASHLQSFLEV SYRVLRHLAQ gcsf_mouse VAPTVQPTQ. .SAMPAFTSA FQRRAGGVLA ISYLQGFLET ARLALHHLA. i16_otter PDPTTDASL. .QALFKSQDK WLKHTTIHLI LRRLEDFLQF SLRAIRIM.. i16_felca PVPTVEVGL. .QLSCSHR.R VAEAHNNHLT LRRLEDFLQL RLRAVRIM.. i16_human PDPTTNASL. .LTKLQAQNQ WLQDHTTHLI LRSPKEFLQS SLRALRQM.. i16_sheep TTPATHTDM. .LEKMQSSNE WVKNAKVIII LRSLENFLQF SLRAIRMK.. i16_mouse PTPISNALL. .TDKLESQKE WLRTKTIQFI LKSLEEFLKV TLRSTRQT.. mgf_chick LDTVTLPAEQ RSPPPTFSGP FQQQVGGFFI LANFQRFLET AYRALRHLAR i16_khsv P.PKFDRG.. LLGRLQGLKY WVRHFASFYV LSAMEKPAGQ AVRVLDSIPD i130_human TLSP.... i130_mouse TLTEPLVPTA i130_pig TLSQ.... gcsf_bovin P....... gcsf_felca P....... gcsf_human P....... gcsf_mouse ........ i16_otter ........ i16_felca ........ i16_human ........ i16_sheep ........ i16_mouse ........ mgf_chick L....... i16_khsv VTPDVHDK

I. General Methods

Many of the standard methods below are described or referenced, e.g., in Maniatis, et al. (1982) Molecular Cloning, A Laboratory Manual Cold Spring Harbor Laboratory, Cold Spring Harbor Press, NY; Sambrook, et al. (1989) Molecular Cloning: A Laboratory Manual (2d ed.) Vols. 1-3, CSH Press, NY; Ausubel, et al., Biology Greene Publishing Associates, Brooklyn, N.Y.; or Ausubel, et al. (1987 and Supplements) Current Protocols in Molecular Biology Wiley/Greene, NY; Innis, et al. (eds. 1990) PCR Protocols: A Guide to Methods and Applications Academic Press, NY. Methods for protein purification include such methods as ammonium sulfate precipitation, column chromatography, electrophoresis, centrifugation, crystallization, and others. See, e.g., Ausubel, et al. (1987 and periodic supplements); Deutscher (1990) “Guide to Protein Purification,” Methods in Enzymology vol. 182, and other volumes in this series; Coligan, et al. (1995 and supplements) Current Protocols in Protein Science John Wiley and Sons, New York, N.Y.; P. Matsudaira (ed. 1993) A Practical Guide to Protein and Peptide Purification for Microsequencing, Academic Press, San Diego, Calif.; and manufacturer's literature on use of protein purification products, e.g., Pharmacia, Piscataway, N.J., or Bio-Rad, Richmond, Calif. Combination with recombinant techniques allow fusion to appropriate segments (epitope tags), e.g., to a FLAG sequence or an equivalent which can be fused, e.g., via a protease-removable sequence. See, e.g., Hochuli (1989) Chemische Industrie 12:69-70; Hochuli (1990) “Purification of Recombinant Proteins with Metal Chelate Absorbent” in Setlow (ed.) Genetic Engineering Principle and Methods 12:87-98, Plenum Press, NY; and Crowe, et al. (1992) OIAexpress: The High Level Expression & Protein Purification System QUIAGEN, Inc., Chatsworth, Calif.

Standard immunological techniques are described, e.g., in Hertzenberg, et al. (eds. 1996) Weir's Handbook of Experimental Immunology vols. 1-4, Blackwell Science; Coligan (1991) Current Protocols in Immunology Wiley/Greene, NY; and Methods in Enzymology vols. 70, 73, 74, 84, 92, 93, 108, 116, 121, 132, 150, 162, and 163. Cytokine assays are described, e.g., in Thomson (ed. 1994) The Cytokine Handbook (2d ed.) Academic Press, San Diego; Metcalf and Nicola (1995) The Hematopoietic Colony Stimulating Factors Cambridge University Press; and Aggarwal and Gutterman (1991) Human Cytokines Blackwell Pub. Assays for vascular biological activities are well known in the art. They will cover angiogenic and angiostatic activities in tumor, or other tissues, e.g., arterial smooth muscle proliferation (see, e.g., Koyoma, et al. (1996) Cell 87:1069-1078), monocyte adhesion to vascular epithelium (see McEvoy, et al. (1997) J. Exp. Med. 185:2069-2077), etc. See also Ross (1993) Nature 362:801-809; Rekhter and Gordon (1995) Am. J. Pathol. 147:668-677; Thyberg, et al. (1990) Atherosclerosis 10:966-990; and Gumbiner (1996) Cell 84:345-357.

Assays for neural cell biological activities are described, e.g., in Wouterlood (ed. 1995) Neuroscience Protocols modules 10, Elsevier; Methods in Neuroscieces Academic Press; and Neuromethods Humana Press, Totowa, N.J. Methodology of development systems is described, e.g., in Meisami (ed.) Handbook of Human Growth and Developmental Bioloy CRC Press; and Chrispeels (ed.) Molecular Techniques and Approaches in Developmental Biology Interscience.

FACS analyses are described in Melamed, et al. (1990) Flow Cytometry and Sortina Wiley-Liss, Inc., New York, N.Y.; Shapiro (1988) Practical Flow Cytometry Liss, New York, N.Y.; and Robinson, et al. (1993) Handbook of Flow Cytometry Methods Wiley-Liss, New York, N.Y.

II. Cloning of Human IL-B30

The sequence of the gene is provided in Table 1. The sequence is derived from a cDNA library made from melanocyte, fetal heart, and pregnant uterus. It is also found from a cDNA library sequence derived from a pancreatic islet. These sequences allow preparation of PCR primers, or probes, to determine cellular distribution of the gene. The sequences allow isolation of genomic DNA which encode the message.

Using the probe or PCR primers, various tissues or cell types are probed to determine cellular distribution. PCR products are cloned using, e.g., a TA cloning kit (Invitrogen). The resulting cDNA plasmids are sequenced from both termini on an automated sequencer (Applied Biosystems).

III. Cellular Expression of IL-B30

An appropriate probe or primers specific for cDNA encoding primate IL-B30 are prepared. Typically, the probe is labeled, e.g., by random priming. The expression is probably in the cell types described, and perhaps also in pancreatic islets. Southern Analysis: DNA (5 μg) from a primary amplified cDNA library was digested with appropriate restriction enzymes to release the inserts, run on a 1% agarose gel and transferred to a nylon membrane (Schleicher and Schuell, Keene, N.H.).

Samples for human mRNA isolation include: peripheral blood mononuclear cells (monocytes, T cells, NK cells, granulocytes, B cells), resting (T100); peripheral blood mononuclear cells, activated with anti-CD3 for 2, 6, 12 h pooled (T101); T cell, TH0 clone Mot 72, resting (T102); T cell, TH0 clone Mot 72, activated with anti-CD28 and anti-CD3 for 3, 6, 12 h pooled (T103); T cell, TH0 clone Mot 72, anergic treated with specific peptide for 2, 7, 12 h pooled (T104); T cell, TH1 clone HY06, resting (T107); T cell, TH1 clone HY06, activated with anti-CD28 and anti-CD3 for 3, 6, 12 h pooled (T108); T cell, TH1 clone HY06, anergic treated with specific peptide for 2, 6, 12 h pooled (T109); T cell, TH2 clone HY935, resting (T110); T cell, TH2 clone HY935, activated with anti-CD28 and anti-CD3 for 2, 7, 12 h pooled (T111); T cell tumor lines Jurkat and Hut78, resting (T117); T cell clones, pooled AD130.2, Tc783.12, Tc783.13, Tc783.58, Tc782.69, resting (T118); T cell random γδ T cell random γδ T cell clones, resting (Tll9); CD28-T cell clone; Splenocytes, resting (B100); Splenocytes, activated with anti-CD40 and IL-4 (B100); B cell EBV lines pooled WT49, RSB, JY, CVIR, 721.221, RM3, HSY, resting (B102); B cell line JY, activated with PMA and ionomycin for 1, 6 h pooled (B103); NK 20 clones pooled, resting (K100); NK 20 clones pooled, activated with PMA and ionomycin for 6 h (K101); NKL clone, derived from peripheral blood of LGL leukemia patient, IL-2 treated (K106); hematopoietic precursor line TF1, activated with PMA and ionomycin for 1, 6 h pooled (C100); U937 premonocytic line, resting (M100); U937 premonocytic line, activated with PMA and ionomycin for 1, 6 h pooled (M101); elutriated monocytes, activated with LPS, IFNγ, anti-IL-10 for 1, 2, 6, 12, 24 h pooled (M102); elutriated monocytes, activated with LPS, IFNγ, IL-10 for 1, 2, 6, 12, 24 h pooled (M103); elutriated monocytes, activated with LPS, IFNγ, anti-IL-10 for 4, 16 h pooled (M106); elutriated monocytes, activated with LPS, IFNγ, IL-10 for 4, 16 h pooled (M107); elutriated monocytes, activated LPS for 1 h (M108); elutriated monocytes, activated LPS for 6 h (M109); DC 70% CD1a+, from CD34+ GM-CSF, TNFα 12 days, resting (D101); DC 70% CD1a+, from CD34+ GM-CSF, TNFα 12 days, activated with PMA and ionomycin for 1 hr (D102); DC 70% CD1a+, from CD34+ GM-CSF, TNFα 12 days, activated with PMA and ionomycin for 6 hr (D103); DC 95% CD1a+, from CD34+ GM-CSF, TNFα 12 days FACS sorted, activated with PMA and ionomycin for 1, 6 h pooled (D104); DC 95% CD14+, ex CD34+ GM-CSF, TNFα 12 days FACS sorted, activated with PMA and ionomycin 1, 6 hr pooled (D105); DC CD1a+ CD86+, from CD34+ GM-CSF, TNFα 12 days FACS sorted, activated with PMA and ionomycin for 1, 6 h pooled (D106); DC from monocytes GM-CSF, IL-4 5 days, resting (D107); DC from monocytes GM-CSF, IL-4 5 days, resting (D108); DC from monocytes GM-CSF, IL-4 5 days, activated LPS 4, 16 h pooled (D109); DC from monocytes GM-CSF, IL-4 5 days, activated TNFα, monocyte supe for 4, 16 h pooled (D110); epithelial cells, unstimulated; epithelial cells, IL-1β activated; lung fibroblast sarcoma line MRC5, activated with PMA and ionomycin for 1, 6 h pooled (C101); kidney epithelial carcinoma cell line CHA, activated with PMA and ionomycin for 1, 6 h pooled (C102). Expression of IL-B30 transcript was very high in elutriated monocytes, activated with LPS, IFNγ, anti-IL-10 for 4, 16 h pooled (M106); elutriated monocytes, activated with LPS, IFNγ, anti-IL-10 for 1, 2, 6, 12, 24 h pooled (M102); elutriated monocytes, activated LPS for 6 h (M109); and elutriated monocytes, activated LPS for 1 h (M108). Expression was high in DC 95% CD1a+, from CD34+ GM-CSF, TNFα 12 days FACS sorted, activated with PMA and ionomycin for 1, 6 h pooled (D104); and NK 20 clones pooled, activated with PMA and ionomycin for 6 h (K101). Lesser expression was detected in DC 70% CD1a+, from CD34+ GM-CSF, TNFα 12 days, activated with PMA and ionomycin for 6 hr (D103); DC 70% CD1a+, from CD34+ GM-CSF, TNFα 12 days, activated with PMA and ionomycin for 1 hr (D102) ; T cell, TH1 clone HY06, anergic treated with specific peptide for 2, 6, 12 h pooled (T109); peripheral blood mononuclear cells, activated with anti-CD3 for 2, 6, 12 h pooled (T101); T cell, TH0 clone Mot 72, activated with anti-CD28 and anti-CD3 for 3, 6, 12 h pooled (T103); Splenocytes, activated with anti-CD40 and IL-4 (B101); T cell, TH0 clone Mot 72, anergic treated with specific peptide for 2, 7, 12 h pooled (T104); Splenocytes, resting (B100); T cell, TH1 clone HY06, activated with anti-CD28 and anti-CD3 for 3, 6, 12 h pooled (T108); epithelial cells, IL-1β activated; elutriated monocytes, activated with LPS, IFNγ, IL-10 for 4, 16 h pooled (M107); and B cell line JY, activated with PMA and ionomycin for 1, 6 h pooled (B103). Detectable expression was observed in DC from monocytes GM-CSF, IL-4 5 days, activated LPS 4, 16 h pooled (D109); T cell, TH0 clone Mot 72, resting (T102); peripheral blood mononuclear cells (monocytes, T cells, NK cells, granulocytes, B cells), resting (T100); T cells CD4+ CD45RO- T cells polarized 27 days in anti-CD28, IL-4, and anti IFN-γ, TH2 polarized, activated with anti-CD3 and anti-CD28 4 h (T116); T cell clones, pooled AD130.2, Tc783.12, Tc783.13, Tc783.58, Tc782.69, resting (T118); U937 premonocytic line, resting (M100); hematopoietic precursor line TF1, activated with PMA and ionomycin for 1, 6 h pooled (C100); T cell, Th2 clone HY935, activated with anti-CD28 and anti-CD3 for 2, 7, 12 h pooled (T111); DC Cd1a+ CD86+, from CD34+ GM-CSF, TNFα 12 days FACS sorted, activated with PMA and ionomycin for 1, 6 h pooled (D106); elutriated monocytes, activated with LPS, IFNγ, IL-10 for 1, 2, 6, 12, 24 h pooled (M103); DC from monocytes GM-CSF, IL-4 5 days, activated TNFα, monocyte supe for 4, 16 h pooled (D110); DC from monocytes GM-CSF, IL-4 5 days, resting (D108); U937 premonocytic line, activated with PMA and ionomycin for 1, 6 h pooled (M101); T cell random γδ cell clones, resting (T119); and T cell, TH1 clone HY06, activated with anti-CD28 and anti-CD3 for 3, 6, 12 h pooled (T108). No signal was detected in the other samples.

In summary, the distribution shows IL-B30 elevated in activated macrophages, suggesting a role in inflammation; activated Th1 cells, suggesting a regulation or effector role in T helper subsets, particularly Th1 immune responses; and activated dendritic cells, suggesting a role in antigen presentation or germinal center T or B cell interactions with DC.

Samples for mouse mRNA isolation include: resting mouse fibroblastic L cell line (C200); Braf:ER (Braf fusion to estrogen receptor) transfected cells, control (C201); Me114+ naive T cells from spleen, resting (T209); Mel14+ naive T cells from spleen, stimulated with IFNγ, IL-12, and anti IL-4 to polarize to TH1 cells, exposed to IFNγ and IL-4 for 6, 12, 24 h, pooled (T210); Mel14+ naive T cells from spleen, stimulated with IL-4 and anti IFNγ to polarize to Th2 cells, exposed to IL-4 and anti IFNγ for 6, 13, 24 h, pooled (T211); T cells, TH1 polarized (Mel14 bright, CD4+ cells from spleen, polarized for 7 days with IFN-γ and anti IL-4; T200); T cells, TH2 polarized (Mel14 bright, CD4+ cells from spleen, polarized for 7 days with IL-4 and anti-IFN-γ; T201); T cells, highly TH1 polarized 3× from transgenic Balb/C (see Openshaw, et al. (1995) J. Exp. Med. 182:1357-1367; activated with anti-CD3 for 2, 6, 24 h pooled; T202); T cells, highly TH2 polarized 3× from transgenic Balb/C (activated with anti-CD3 for 2, 6, 24 h pooled (T203); T cells, highly TH1 polarized 3× from transgenic C57 bl/6 (activated with anti-CD3 for 2, 6, 24 h pooled; T212); T cells, highly TH2 polarized 3× from transgenic C57 bl/6 (activated with anti-CD3 for 2, 6, 24 h pooled; T213); T cells, highly TH1 polarized (naive CD4+ T cells from transgenic Balb/C, polarized 3× with IFNγ, IL-12, and anti-IL-4; stimulated with IGIF, IL-12, and anti IL-4 for 6, 12, 24 h, pooled); CD44- CD25+ pre T cells, sorted from thymus (T204); TH1 T cell clone D1.1, resting for 3 weeks after last stimulation with antigen (T205); TH1 T cell clone D1.1, 10 μg/ml ConA stimulated 15 h (T206); TH2 T cell clone CDC35, resting for 3 weeks after last stimulation with antigen (T207); TH2 T cell clone CDC35, 10 μg/ml ConA stimulated 15 h (T208); unstimulated B cell line CH12 (B201); unstimulated mature B cell leukemia cell line A20 (B200); unstimulated large B cells from spleen (B202); B cells from total spleen, LPS activated (B203); metrizamide enriched dendritic cells from spleen, resting (D200); dendritic cells from bone marrow, resting (D201); unstimulated bone marrow derived dendritic cells depleted with anti B220, anti CD3, and anti Class II, cultured in GM-CSF and IL-4 (D202); bone marrow derived dendritic cells depleted with anti B220, anti CD3, and anti Class II, cultured in GM-CSF and IL-4, stimulated with anti CD40 for 1,5 d, pooled (D203); monocyte cell line RAW 264.7 activated with LPS 4 h (M200); bone-marrow macrophages derived with GM and M-CSF (M201); bone-marrow macrophages derived with GM-CSF, stimulated with LPS, IFNγ, and IL-10 for 24 h (M205); bone-marrow macrophages derived with GM-CSF, stimulated with LPS, IFNγ, and anti IL-10 for 24 h (M206); peritoneal macrophages (M207); macrophage cell line J774, resting (M202); macrophage cell line J774+LPS+anti-IL-10 at 0.5, 1, 3, 6, 12 h pooled (M203); macrophage cell line J774+LPS+IL-10 at 0.5, 1, 3, 5, 12 h pooled (M204); unstimulated mast cell lines MC-9 and MCP-12 (M208); immortalized endothelial cell line derived from brain microvascular endothelial cells, unstimulated (E200); immortalized endothelial cell line derived from brain microvascular endothelial cells, stimulated overnight with TNFα (E201); immortalized endothelial cell line derived from brain microvascular endothelial cells, stimulated overnight with TNFα (E202); immortalized endothelial cell line derived from brain microvascular endothelial cells, stimulated overnight with TNFα and IL-10 (E203); total aorta from wt C57 bl/6 mouse; total aorta from 5 month ApoE KO mouse (X207); total aorta from 12 month ApoE KO mouse (X207); wt thymus (O214); total thymus rag-1 (O208); total kidney, rag-1 (O209); total kidney, NZ B/W mouse; and total heart, rag-1 (O202). High signal was detected in the monocyte cell line RAW 264.7 activated with LPS 4 h (M200); T cells, highly TH1 polarized 3× from transgenic C57 bl/6 (activated with anti-CD3 for 2, 6, 24 h pooled; T212); and T cells, highly TH1 polarized (naive CD4+ T cells from transgenic Balb/C, polarized 3× with IFNγ, IL-12, and anti-IL-4; stimulated with IGIF, IL-12, and anti IL-4 for 6, 12, 24 h, pooled). Detectable signals were detected in T cells, highly TH1 polarized 3× from transgenic Balb/C (see Openshaw, et al. (1995) J. Exp. Med. 182:1357-1367; activated with anti-CD3 for 2, 6, 24 h pooled; T202); T cells, TH2 polarized (Mel14 bright, CD4+ cells from spleen, polarized for 7 days with IL-4 and anti-IFN-γ, T201); T cells, TH1 polarized (Mel14 bright, CD4+ cells from spleen, polarized for 7 days with IFN-γ and anti IL-4; T200); macrophage cell line J774+LPS+anti-IL-10 at 0.5, 1, 3, 6, 12 h pooled (M203); macrophage cell line J774, resting (M202); macrophage cell line J774+LPS+IL-10 at 0.5, 1, 3, 5, 12 h pooled (M204); immortalized endothelial cell line derived from brain microvascular endothelial cells, stimulated overnight with TNFα (E201); and bone-marrow macrophages derived with GM-CSF, stimulated with LPS, IFNγ, and anti IL-10 for 24 h (M206). Other samples showed no signal. The expression in the RAW 264.7 mouse monocyte cell line suggests a natural source for protein.

IV. Chromosome mapping of IL-B30

An isolated cDNA encoding the IL-B30 is used. Chromosome mapping is a standard technique. See, e.g., BIOS Laboratories (New Haven, Conn.) and methods for using a mouse somatic cell hybrid panel with PCR. Circumstantial evidence suggests that the mouse gene is localized on chromosome 10.

V. Purification of IL-B30 Protein

Multiple transfected cell lines are screened for one which expresses the cytokine at a high level compared with other cells. Various cell lines are screened and selected for their favorable properties in handling. Natural IL-B30 can be isolated from natural sources, or by expression from a transformed cell using an appropriate expression vector. Purification of the expressed protein is achieved by standard procedures, or may be combined with engineered means for effective purification at high efficiency from cell lysates or supernatants, FLAG or His6 segments can be used for such purification features. Alternatively, affinity chromatography may be used with specific antibodies, see below.

Protein is produced in coli, insect cell, or mammalian expression systems, as desired.

VI. Isolation of Homologous IL-B30 Genes

The IL-B30 cDNA, or other species counterpart sequence, can be used as a hybridization probe to screen a library from a desired source, e.g., a primate cell cDNA library. Many different species can be screened both for stringency necessary for easy hybridization, and for presence using a probe. Appropriate hybridization conditions will be used to select for clones exhibiting specificity of cross hybridization.

Screening by hybridization using degenerate probes based upon the peptide sequences will also allow isolation of appropriate clones. Alternatively, use of appropriate primers for PCR screening will yield enrichment of appropriate nucleic acid clones.

Similar methods are applicable to isolate either species, polymorphic, or allelic variants. Species variants are isolated using cross-species hybridization techniques based upon isolation of a full length isolate or fragment from one species as a probe.

Alternatively, antibodies raised against human IL-B30 will be used to screen for cells which express cross-reactive proteins from an appropriate, e.g., cDNA library. The purified protein or defined peptides are useful for generating antibodies by standard methods, as described above. Synthetic peptides or purified protein are presented to an immune system to generate monoclonal or polyclonal antibodies. See, e.g., Coligan (1991) Current Protocols in Immunology Wiley/Greene; and Harlow and Lane (1989) Antibodies: A Laboratory Manual Cold Spring Harbor Press. The resulting antibodies are used for screening, purification, or diagnosis, as described.

VII. Preparation of antibodies specific of IL-B30

Synthetic peptides or purified protein are presented to an immune system to generate monoclonal or polyclonal antibodies. See, e.g., Coligan (1991) Current Protocols in Immunology Wiley/Greene; and Harlow and Lane (1989) Antibodies: A Laboratory Manual Cold Spring Harbor Press. Polyclonal serum, or hybridomas may be prepared. In appropriate situations, the binding reagent is either labeled as described above, e.g., fluorescence or otherwise, or immobilized to a substrate for panning methods. Immunoselection and related techniques are available to prepare selective reagents, as desired.

VIII. Evaluation of Breadth of Biological Functions

Biological activities of IL-B30 were tested based on the sequence and structural homology between IL-B30 and IL-6 and G-CSF. Initially, assays that had shown biological activities of IL-6 or G-CSF are examined.

A. Effects on proliferation of cells

The effect on proliferation of various cell types are evaluated with various concentrations of cytokine. A dose response analysis is performed, in combinations with the related cytokines IL-6, G-CSF, etc.

B. Effects on the expression of cell surface molecules on human monocytes

Monocytes are purified by negative selection from peripheral blood mononuclear cells of normal healthy donors. Briefly, 3×108 ficoll banded mononuclear cells are incubated on ice with a cocktail of monoclonal antibodies (Becton-Dickinson; Mountain View, Calif.) consisting, e.g., of 200 μl Dickinson; Mountain View, Calif.) consisting, e.g., of 200 μl of αCD2 (Leu-5A), 200 μl of αCD3 (Leu-4), 100 μl of αCD8 (Leu 2a), 100 μl of αCD19 (Leu-12), 100 μl of αCD20 (Leu-16), 100 μl of αCD56 (Leu-19), 100 μl of αCD67 (IOM 67; Immunotech, Westbrook, Me.), and anti-glycophorin antibody (10F7MN, ATCC, Rockville, Md.). Antibody bound cells are washed and then incubated with sheep anti-mouse IgG coupled magnetic beads (Dynal, Oslo, Norway) at a bead to cell ratio of 20:1. Antibody bound cells are separated from monocytes by application of a magnetic field. Subsequently, human monocytes are cultured in Yssel's medium (Gemini Bioproducts, Calabasas, Calif.) containing 1% human AB serum in the absence or presence of IL-B30, IL-6, G-CSF or combinations.

Analyses of the expression of cell surface molecules can be performed by direct immunoflorescence. For example, 2×105 purified human monocytes are incubated in phosphate buffered saline (PBS) containing 1% human serum on ice for 20 minutes. Cells are pelleted at 200×g. Cells are resuspended in 20 ml PE or FITC labeled mAb. Following an additional 20 minute incubation on ice, cells are washed in PBS containing 1% human serum followed by two washes in PBS alone. Cells are fixed in PBS containing 1% paraformaldehyde and analyzed on FACScan flow cytometer (Becton Dickinson; Mountain View, Calif.). Exemplary mAbs are used, e.g.: CD11b (anti-mac1), CD11c (a gp150/95), CD14 (Leu-M3), CD54 (Leu 54), CD80 (anti-BB1/B7), HLA-DR (L243) from Becton-Dickinson and CD86 (FUN 1; Pharmingen), CD64 (32.2; Medarex), CD40 (mAb89; Schering-Plough France).

C. Effects of IL-B30 on cytokine production by human monocytes

Human monocytes are isolated as described and cultured in Yssel's medium (Gemini Bioproducts, Calabasas, Calif.) containing 1% human AB serum in the absence or presence of IL-B30 (1/100 dilution baculovirus expressed material). In addition, monocytes are stimulated with LPS (E. coli 0127:B8 Difco) in the absence or presence of IL-B30 and the concentration of cytokines (IL-1β, IL-6, TNFα, GM-CSF, and IL-10) in the cell culture supernatant determined by ELISA.

For intracytoplasmic staining for cytokines, monocytes are cultured (1 million/ml) in Yssel's medium in the absence or presence of IL-B30 and LPS (E. coli 0127:B8 Difco) and 10 mg/ml Brefeldin A (Epicentre technologies Madison Wis.) for 12 hrs. Cells are washed in PBS and incubated in 2% formaldehyde/PBS solution for 20 minutes at RT. Subsequently cells are washed, resuspended in permeabilization buffer (0.5% saponin/(Sigma) in PBS/BSA (0.5%)/Azide (1 mM)) and incubated for 20 minutes at RT. Cells (2×105) are centrifuged and resuspended in 20 ml directly conjugated anti-cytokine mAbs diluted 1:10 in permeabilization buffer for 20 minutes at RT. The following antibodies can be used: IL-1α-PE (364-3B3-14); IL-6-PE (MQ2-13A5); TNFα-PE (MAb11); GM-CSF-PE (BVD2-21C11); and IL-12-PE (C11.5.14; Pharmingen San Diego, Calif.). Subsequently, cells are washed twice in permeabilization buffer and once in PBS/BSA/Azide and analyzed on FACScan flow cytometer (Becton Dickinson; Mountain View, Calif.).

D. Effects of IL-B30 on proliferation of human peripheral blood mononuclear cells (PBMC).

Total PBMC are isolated from buffy coats of normal healthy donors by centrifugation through ficoll-hypaque as described (Boyum, et al.). PBMC are cultured in 200 μl Yssel's medium (Gemini Bioproducts, Calabasas, Calif.) containing 1% human AB serum in 96 well plates (Falcon, Becton-Dickinson, N.J.) in the absence or presence of IL-B30. Cells are cultured in medium alone or in combination with 100 U/ml IL-2 (R&D Systems) for 120 hours. 3H-Thymidine (0.1 mCi) is added during the last six hours of culture and 3H-Thymidine incorporation determined by liquid scintillation counting.

The native, recombinant, and fusion proteins would be tested for agonist and antagonist activity in many other biological assay systems, e.g., on T-cells, B-cells, NK, macrophages, dendritic cells, hematopoietic progenitors, etc. Because of the IL-6 and G-CSF structural relationship, assays related to those activities should be analyzed

IL-B30 is evaluated for agonist or antagonist activity on transfected cells expressing IL-6 or G-CSF receptor and controls. See, e.g., Ho, et al. (1993) Proc. Nat'l Acad. Sci. USA 90, 11267-11271; Ho, et al. (1995) Mol. Cell. Biol. 15:5043-5053; and Liu, et al. (1994). J. Immunol. 152:1821-1829.

IL-B30 is evaluated for effect in macrophage/dendritic cell activation and antigen presentation assays, T cell cytokine production and proliferation in response to antigen or allogeneic stimulus. See, e.g., de Waal Malefyt et al. (1991) J. Exp. Med. 174:1209-1220; de Waal Malefyt et al. (1991) J. Exp. Med. 174:915-924; Fiorentino, et al. (1991) J. Immunol. 147, 3815-3822; Fiorentino, et al. (1991) J. Immunol. 146:3444-3451; and Groux, et al. (1996) J. Exp. Med. 184:19-29.

IL-B30 will also be evaluated for effects on NK cell stimulation. Assays may be based, e.g., on Hsu, et al. (1992) Internat. Immunol. 4:563-569; and Schwarz, et al. (1994) J. Immunother. 16:95-104.

B cell growth and differentiation effects will be analyzed, e.g., by the methodology described, e.g., in Defrance, et al. (1992). J. Exp. Med. 175:671-682; Rousset, et al. (1992) Proc. Nat'l Acad. Sci. USA 89:1890-1893; including IgG2 and IgA2 switch factor assays. Note that, unlike COS7 supernatants, NIH3T3 and COP supernatants apparently do not interfere with human B cell assays.

IX. Generation and Analysis of Genetically Altered Animals

Transgenic mice can be generated by standard methods.

Such animals are useful to determine the effects of deletion of the gene, in specific tissues, or completely throughout the organism. Such may provide interesting insight into development of the animal or particular tissues in various stages. Moreover, the effect on various responses to biological stress can be evaluated. See, e.g., Hogan, et al. (1995) Manipulating the Mouse Embryo: A Laboratory Manual (2d ed.) Cold Spring Harbor Laboratory Press.

A transgenic mouse has been generated, and while the animal seems to survive birth, it fails to thrive, and typically dies within a few weeks. The construct is based upon an actin promoter with a CMV enhancer, which should lead to broad and high expression. The mice, like IL-6 transgenic mice, are runted. Moreover, they exhibit a bloated abdomen, inflammation of the stomach and intestines, infiltration of cells into the liver, and typically die before day 50. The mice do not breed. A second subset of the transgenic mice have a less severe phenotype, and attempts to breed them are taking place.

The genomic structure for the mouse IL-B30 has been determined. A strategy for the production of IL-B30 knockout mice has been developed, and constructs have been started.

All references cited herein are incorporated herein by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference in its entirety for all purposes.

Many modifications and variations of this invention can be made without departing from its spirit and scope, as will be apparent to those skilled in the art. The specific embodiments described herein are offered by way of example only, and the invention is to be limited only by the terms of the appended claims, along with the full scope of equivalents to which such claims are entitled.

Claims

1. An isolated or recombinant polynucleotide encoding an antigenic polypeptide comprising:

a) at least 17 contiguous amino acids from a mature coding portion of SEQ ID NO: 2,
b) at least 17 contiguous amino acids from a mature coding portion of SEQ ID NO: 4; or
c) at least 17 contiguous amino acids from a mature coding portion of SEQ ID NO: 5.

2. The polynucleotide of claim 1, encoding a mature polypeptide of:

a) SEQ ID NO: 2;
b) SEQ ID NO: 4; or
c) SEQ ID NO: 5.

3. The polynucleotide of claim 1, which encodes amino residues 155-164 of SEQ ID NO: 2 and hybridizes under stringent wash conditions of at least 65° C., less than about 150 mM salt to the complement of:

a) the open reading frame of SEQ ID NO: 1; or
b) the open reading frame of SEQ ID NO: 3.

4. The polynucleotide of claim 3, comprising:

a) at least 67 contiguous nucleotides of a coding portion of SEQ ID NO: 1, wherein said contiguous nucleotides are from nucleotides 466-555 of SEQ ID NO: 1; or
b) at least 67 contiguous nucleotides of a coding portion of SEQ ID NO: 3, wherein said contiguous nucleotides are from nucleotides 580-670 of SEQ ID NO: 3.

5. A recombinant or expression vector comprising said polynucleotide of claim 1.

6. An isolated host cell comprising said expression vector of claim 5.

7. A method of making an antigenic polypeptide comprising expressing said recombinant polynucleotide of claim 1 and isolating said polypeptide, thereby making said antigenic polypeptide.

8. Said polynucleotide of claim 1, wherein said contiguous amino acids number 20.

9. Said polynucleotide of claim 1, wherein said contiguous amino acids number 30.

10. Said polynucleotide of claim 1, wherein said contiguous amino acids number 35.

11. Said polynucleotide of claim 1, wherein said contiguous amino acids number 40.

12. Said polynucleotide of claim 2, that is a variant due to the degeneracy of the genetic code.

13. The polynucleotide of claim 8, wherein said wash conditions are

a) at least 70° C.;
b) less than about 100 mM salt; or
c) both a) and b).

14. The polynucleotide of claim 3, wherein said wash conditions

a) are at least 50% formamide;
b) are less than about 100 mM salt; or
c) are both a) and b).

15. The polynucleotide of claim 1, that:

a) encodes the mature polypeptide of SEQ ID NO:2,4, or 5; or
b) comprises the mature coding portion of SEQ ID NO: 1 or 3.

16. The polynucleotide of claim 2, wherein said polynucleotide:

a) encodes a polypeptide with a natural sequence of the mature coding portion of SEQ ID NO: 2 or 4;
b) is isolated from nature;
c) encodes a polypeptide comprising five or fewer conservative substitutions from a natural sequence of SEQ ID NO: 2 or 4;
d) encodes a polypeptide comprising five or fewer conservative substitutions from a natural sequence of SEQ ID NO: 4.

17. The polynucleotide of claim 8, which:

a) is attached to a solid substrate;
b) is detectably labeled;
c) is in a sterile composition;
d) encodes an antigenic polypeptide having at least 12 amino acid residues; or
e) is synthetically produced.

18. An isolated or recombinant polynucleotide encoding a polypeptide of:

a) SEQ ID NO:2;
b) SEQ ID NO:4; or
c) SEQ ID NO:5.

19. A recombinant or expression vector comprising said polynucleotide of claim 18.

20. An isolated host cell comprising said expression vector of claim 19.

21. A method of making a polypeptide comprising expressing said recombinant polynucleotide of claim 18 and isolating said polypeptide, thereby making said polypeptide.

22. The polynucleotide of claim 18, that is a variant due to the degeneracy of the genetic code.

23. An isolated or recombinant polynucleotide that:

a) encodes the mature polypeptide of SEQ ID NO: 2, 4, or 5; or
b) comprises the mature coding portion of SEQ ID NO: 1 or 3.

24. The polynucleotide of claim 18, wherein said polynucleotide is isolated from a human or a mouse.

25. The polynucleotide of claim 18, which:

a) is attached to a solid substrate;
b) is detectably labeled;
c) is in sterile composition; or
d) is synthetically produced.

26. A recombinant or expression vector comprising said polynucleotide of claim 23.

27. An isolated host cell comprising said expression vector of claim 26.

28. A method of making a polypeptide comprising expressing said recombinant polynucleotide of claim 23 and isolating said polypeptide, thereby making said polypeptide.

29. The polynucleotide of claim 23, that is a variant due to the degeneracy of the genetic code.

30. The polynucleotide of claim 23, wherein said polynucleotide is isolated from a human or a mouse.

31. The polynucleotide of claim 23, which:

a) is attached to a solid substrate;
b) is detectably labeled;
c) is in sterile composition; or
d) is synthetically produced.
Referenced Cited
Other references
  • Voet et al. Biochemistry. 1990. John Wiley & Sons, Inc. pp. 126-128 and 228-234.
  • Doerks et al. Protein annotation: detective work for function prediction. Trends in Genetics. Jun. 1998, vol. 14, No. 6, pp. 248-250.
  • Brenner et al. Errors in Genome Annotation. Trends in Genetics 1999, 15:132-133.
  • Bork et al. Go Hunting in sequence databases but watch out for the traps. Trends in Genetics 1996, 12:425-427.
  • Bork et al., Current Opinion in Structural Biology (1998) 8:331-332.
  • Ngo et al., The Protein Folding Problem and Tertiary Structure Prediction (1994) pp. 492-495.
  • Schafer et al., Gene (1993) 136:295-300.
  • Skolnick et al., Tibtech (2000) 18:34-39.
  • Wells, Aditivity of Mutational Effects in Proteins, Biochemistry (1990) 26(37):8509-8517.
  • F.R. Blattner, et al., GenPept, Accession No. 2506659, Nov. 1, 1997. Definition: “Hypothetical 55.1 KD Protein in OGT-DBPA Intergenic Region.”
  • T.D. Gaffney, et al., GenPept, Accession No. 1172467, Nov. 1, 1995. Definition: “CDP-Diacylglycerol—Glycerol-3-Phosphate 3-Phosphatidyltransferase (Phosphatidylglycerophosphate Synthase) (PGP Synthase).”
  • Toshio Hirano, The Cytokine Handbook, Angus W. Thompson, Editor, 2nd Ed., Ch. 8:145-168, Academic Press, San Diego, 1994. “Interleukin-6”.
  • L. Hillier, et al., GenBank, Accession No. AA418955, Oct. 16, 1997. Definition: “zw01c10.r1 Soars NhHMPu S1 Homo sapiens cDNA clone 768018 5′.”
  • Y. Ito, GenBank, Accession No. AB004061, Jun. 2, 1997. Definition: “domestic pig mRNA for STAT2, complete cds.”
  • Shigekazu Nagata, The Cytokine Handbook, Angus W. Thompson, Editor, 2nd Ed., Ch. 20:371-385-168, Academic Press, San Diego, 1994. “Granulocyte Colony Stimulation Factor and its Receptor”.
  • W. Northemann, et al., GenPept, Accession No. 111880, Jun. 18, 1993. Definition: “interleukin-6-precursor—rat.”
  • W. Northemann, et al., GenPept, Accession No. 124350, Jul. 15, 1998. Definition: “Interleukin-6 Precursor (IL-6)”.
  • J. Takeda, GenBank, Accession No. C06368, Oct. 11, 1996. Definition: “similar to none”.
  • M. Tsuchiya, et al., GenPept, Accession No. 117565, Jul. 15, 1998. Definition: “Granulocyte Colony-Stimulating Factor Precursor (G-CSF).”
  • M. Tsuchiya, et al., GenPept, Accession No. 90543, Jun. 7, 1996. Definition: “granulocyte colony-stimulating factor precursor—mouse.”
  • J. Van Snick, et al., GenPept, Accession No. 124348, Jul. 15, 1998. Definition: Interleukin-6 Precursor (IL-6) (Interleukin HP-1) (B-Cell Hybridoma Growth Factor).
  • J. Van Snick, et al., GenPept, Accession No. 69691, Jun. 7, 1996. Definition “interleukin-6 precursor—mouse.”
Patent History
Patent number: RE39015
Type: Grant
Filed: Aug 22, 2001
Date of Patent: Mar 14, 2006
Assignee: Schering Corporation (Kenilworth, NJ)
Inventor: J. Fernando Bazan (Palo Alto, CA)
Primary Examiner: Prema Mertz
Attorney: Laurie L. Hill
Application Number: 09/935,366