Three axis magnetic field sensor
Three bridge circuits (101, 111, 121), each include magnetoresistive sensors coupled as a Wheatstone bridge (100) to sense a magnetic field (160) in three orthogonal directions (110, 120, 130) that are set with a single pinning material deposition and bulk wafer setting procedure. One of the three bridge circuits (121) includes a first magnetoresistive sensor (141) comprising a first sensing element (122) disposed on a pinned layer (126), the first sensing element (122) having first and second edges and first and second sides, and a first flux guide (132) disposed non-parallel to the first side of the substrate and having an end that is proximate to the first edge and on the first side of the first sensing element (122). An optional second flux guide (136) may be disposed non-parallel to the first side of the substrate and having an end that is proximate to the second edge and the second side of the first sensing element (122).
Latest EVERSPIN TECHNOLOGIES, INC. Patents:
- Magnetoresistive stack/structure and methods therefor
- Midpoint sensing reference generation for STT-MRAM
- MAGNETORESISTIVE STACK WITH SEED REGION AND METHOD OF MANUFACTURING THE SAME
- Low resistance MTJ antifuse circuitry designs and methods of operation
- Magnetoresistive stack/structure and methods therefor
This application is a continuation reissue application of U.S. Reissue application Ser. No. 14/638,583, filed on Mar. 4, 2015, now U.S. Pat. No. RE. 46,180, which is a reissue application of U.S. Pat. No. 8,390,283 B2, which issued on Mar. 5, 2013, from U.S. patent application Ser. No. 12/567,496, filed on Sep. 25, 2009, the entire disclosure of which is expressly incorporated herein by reference.
More than one reissue application has been filed for the reissue of U.S. Pat. No. 8,390,283 B2. The reissue applications are (i) U.S. Reissue application Ser. No. 14/638,583, now U.S. Patent No. RE. 46,180, (iii) the present application, i.e., U.S. Reissue application Ser. No. 15/165,600, which is a continuation reissue application of U.S. Reissue application Ser. No. 14/638,583, and (iii) U.S. Reissue Application Ser. No. 15/470,997, which is a continuation reissue application of the present application, i.e., U.S. Reissue Application Ser. No. 15/165,600.
FIELDThe present invention generally relates to the field of magnetoelectronic devices and more particularly to CMOS-compatible magnetoelectronic field sensors used to sense magnetic fields in three orthogonal directions.
BACKGROUNDSensors are widely used in modern systems to measure or detect physical parameters, such as position, motion, force, acceleration, temperature, pressure, etc. While a variety of different sensor types exist for measuring these and other parameters, they all suffer from various limitations. For example, inexpensive low field sensors, such as those used in an electronic compass and other similar magnetic sensing applications generally consist of anisotropic magnetoresistance (AMR) based devices. In order to arrive at the required sensitivity and reasonable resistances that match well with CMOS, the sensing units of such sensors are generally on the order of square millimeters in size. For mobile applications, such AMR sensor configurations are costly, in terms of expense, circuit area, and power consumption.
Other types of sensors, such as Hall effect sensors, giant magnetoresistance (GMR) sensors, and magnetic tunnel junction (MTJ) sensors, have been used to provide smaller profile sensors, but such sensors have their own concerns, such as inadequate sensitivity and being effected by temperature changes. To address these concerns, MTJ sensors and GMR sensors have been employed in a Wheatstone bridge structure to increase sensitivity and to eliminate temperature dependent resistance changes. Many magnetic sensing technologies are inherently responsive to one orientation of applied field, to the exclusion of orthogonal axes. Indeed, two-axis magnetic field sensors have been developed for electronic compass applications to detect the earth's field direction by using a Wheatstone bridge structure for each sense axis.
For example, Hall sensors are generally responsive to out-of-plane field components normal to the substrate surface, while magneto-resistive sensors are responsive to in-plane applied magnetic fields. Utilizing these responsive axes, development of a small footprint three axis sensing solution typically involves a multi chip module with one or more chips positioned at orthogonal angles to one another. For magnetoresistive sensors, the orthogonal in-plane components may be achieved with careful sensor design, but the out-of-plane response is commonly garnered through vertical bonding or solder reflow to contact a secondary chip that has be mounted vertically. As the size of the vertically bonded chip is typically dominated by the pad pitch as determined from the handling constraints, such a technique results in a large vertical extent of the finished package, high die and assembly costs, and makes chip scale packaging difficult and costly as through chip vias must be incorporated.
Accordingly, a need exists for an improved design and fabrication process for forming a single chip magnetic sensor that is responsive an applied magnetic field in three dimensions. There is also a need for a three-axis sensor that can be efficiently and inexpensively constructed as an integrated circuit structure for use in mobile applications. There is also a need for an improved magnetic field sensor and fabrication to overcome the problems in the art, such as outlined above. Furthermore, other desirable features and characteristics of the present invention will become apparent from the subsequent detailed description and the appended claims, taken in conjunction with the accompanying drawings and this background.
Embodiments of the present invention will hereinafter be described in conjunction with the following drawing figures, wherein like numerals denote like elements, and
It will be appreciated that for simplicity and clarity of illustration, elements illustrated in the drawings have not necessarily been drawn to scale. For example, the dimensions of some of the elements are exaggerated relative to other elements for purposes of promoting and improving clarity and understanding. Further, where considered appropriate, reference numerals have been repeated among the drawings to represent corresponding or analogous elements.
SUMMARYA ferromagnetic thin-film based magnetic field sensor includes a first magnetoresistive sensor comprising a substrate having a planar surface, and a first sensing element having a first side lying parallel to the planar surface of the substrate, the first sensing element having a second side opposed to the first side and having first and second opposed edges; and a first flux guide disposed non-parallel to the first side of the substrate and having an end that is proximate to the first edge and the first side of the first sensing element. An optional second flux guide may be disposed non-parallel to the first side of the substrate and having an end that is proximate to the second edge and the second side of the first sensing element.
In another exemplary embodiment, a ferromagnetic thin-film based magnetic field sensor includes first, second, and third magnetoresistive sensors. The first magnetic tunnel junction sensor includes a first pinned layer and a first sensing element formed on the first pinned layer, the second magnetic tunnel junction sensor includes a second pinned layer and a second sensing element formed on the second pinned layer and orthogonal to the first sensing element, and the third magnetic tunnel junction sensor includes a third pinned layer and a third sensing element formed on the third pinned layer, the third pinned layer disposed at about 45 degrees to each of the first and second pinned layers, the third sensing element having first and second edges and first and second sides. A flux guide is disposed non-parallel to a planar surface of the substrate and has an end that is proximate to the first edge and the first side of the third sensing element.
DETAILED DESCRIPTIONThe following detailed description is merely exemplary in nature and is not intended to limit the invention or the application and uses of the invention. Furthermore, there is no intention to be bound by any theory presented in the preceding background or the following detailed description.
Through the integration of high aspect ratio vertical bars (flux guides) of a high permeability material, for example, nickel iron (NiFe), whose ends terminate in close proximity to opposed edges and opposite sides of a magnetic sense element, a portion of the Z axis field can be brought into the XY plane. These flux guides serve to capture magnetic flux from an applied field oriented in the Z direction, and in so doing, bend the field lines in a substantially horizontal manner near the ends of the flux guides. Through asymmetric positioning of the flux guides, e.g., the flux guide segment above the left edge of sense elements in two legs of the four legs of a Wheatstone bridge, and the flux guide above the right edge of sense elements in the other two legs, the horizontal components may act in an opposite directions for the two pairs of legs resulting in a strong differential signal. A field applied in the X or Y direction will project equally on all four legs of the bridge and hence be subtracted out and not contribute to the final sensor signal. Separate bridges are included elsewhere on the magnetic sensor chip for determining the X and Y components of the magnetic signal, and in this manner, a field with components in all three spatial orientations can be accurately determined by a single chip magnetoresistive sensing module, for example, based on magnetic tunnel junction (MTJ) sense elements. Finite Element Method (FEM) simulations have shown that a pair of high aspect ratio flux guides, e.g., 25 nm wide by 500 nm high and extending several microns in the third direction, when optimally positioned will provide a signal on an individual element that is about 80% of the of the signal measured from an in plane (x axis) field of the same strength. Additional signal may be obtained through closer proximity of the flux guide to the sensor, increases in the flux guide height, and additional shaping of the guide geometry. One example is to add horizontal segments parallel to the sense element which extend over the edges of the sense element. Other examples are to form a U which is placed with the interior horizontal segment aligned with the outer edge of the sense element, angled termination of the vertical segments to extend the flux guide partially in the plane of the sense element, and a similarly placed box structure. These geometries serve to further enhance the horizontal component of the guided flux and move it to a more central region of the sensor. A structure with individual 25 nm wide vertical bars utilized as flux guides is tolerant to overlay errors and produces an apparent x to z field conversion (for a differentially wired Wheatstone bridge) at the rate of 2.5% for a misalignment of 85 nm (3 sigma) between a single flux guiding layer and the sense layer.
The flux guiding layer may be formed from layers typically used in the magnetic random access memory (MRAM) process flow, during which bit and digit lines cladded with a high permeability magnetic material (such as in typical magnetic memory devices), referred to herein as a flux guide, are used to increase the field factors present to reduce the current needed to switch the memory storage element. In the sensor application, the same process flow may be used with the optional additional step of sputtering out the bottom of the digit line in order to remove any cladding present on the trench's bottom. Modifications may be made to the process flow so that the height and width of the cladding used for flux guiding are at optimum values instead of the 500 nm and 25 nm, respectively that are used in the exemplary process described above.
A method and apparatus are subsequently described in more detail for providing multi-axis pinning on a bulk wafer which may be used to form an integrated circuit sensor with different reference layers having three different pinning directions, two of which are substantially orthogonal that are set with a single pinning material deposition and bulk wafer setting procedure. As a preliminary step, a stack of one or more layers of ferromagnetic and antiferromagnetic materials are etched into shaped reference layers having a two-dimensional shape with a high aspect ratio, where the shape provides a distinction for the desired magnetization direction for each reference layer. Depending on the materials and techniques used, the final magnetization direction may be oriented along the short axis or the long axis of the shaped layer. For example, if the pinned layer is formed with a slightly imbalanced synthetic anti-ferromagnet (SAF) patterned into micron-scale dimensions, the magnetization will direct along the short axis. As will be appreciated by those skilled in the art, the SAF embodiment provides a number of benefits related to the use of pinned-SAF reference layers in magnetoelectronic devices. In other embodiments, by controlling the thicknesses of the pinned and fixed layers and the in-plane spatial extent of the patterned structure, the final magnetization may be directed along the long axis. Using shape anisotropy, different magnetization directions are induced in the reference layers by heating in the presence of an orienting field that is aligned between the desired magnetization directions for the reference layers. In selected embodiments, the reference layers are heated sufficiently to reduce the material component of the anisotropy and allow the shape and external field to dominate the magnetization direction. In this manner, once the orienting field is removed, the shape anisotropy directs the magnetization in the desired direction. Upon removing the orienting field, the magnetizations of the reference layers relax to follow the shape of the reference layers so as to induce a magnetization that is aligned along the desired axis of the shaped reference layer. An optional compensating field may be applied to help induce orthogonality, and the reference layers are then heated to above the phase transition temperature of the antiferromagnetic pinning layers. For example, if two reference layers are shaped to have longer dimensions which are perpendicular to one another, then the induced magnetizations for the two reference layers will be close to being perpendicular to one another.
Various illustrative embodiments of the present invention will now be described in detail with reference to the accompanying figures. While various details are set forth in the following description, it will be appreciated that the present invention may be practiced without these specific details, and that numerous implementation-specific decisions may be made to the invention described herein to achieve the device designer's specific goals, such as compliance with process technology or design-related constraints, which will vary from one implementation to another. While such a development effort might be complex and time-consuming, it would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure. In addition, selected aspects are depicted with reference to simplified cross sectional drawings without including every device feature or geometry in order to avoid limiting or obscuring the present invention. It is also noted that, throughout this detailed description, conventional techniques and features related to magnetic sensor design and operation, Magnetoresistive Random Access Memory (MRAM) design, MRAM operation, semiconductor device fabrication, and other aspects of the integrated circuit devices may not be described in detail herein. While certain materials will be formed and removed to fabricate the integrated circuit sensors as part of an existing MRAM fabrication process, the specific procedures for forming or removing such materials are not detailed below since such details are well known and not considered necessary to teach one skilled in the art of how to make or use the present invention. Furthermore, the circuit/component layouts and configurations shown in the various figures contained herein are intended to represent exemplary embodiments of the invention. It should be noted that many alternative or additional circuit/component layouts may be present in a practical embodiment.
By positioning the first and second sensors 101, 111 to be orthogonally aligned, each with the sense element orientations deflected equally from the sensor's pinning direction and orthogonal to one another in each sensor, the sensors can detect the component directions of an applied field along the first and second axes. Flux guides 132-139 are positioned in sensor 121 above and below the opposite edges of the elements 122-125, in an asymmetrical manner between legs 141, 143 and legs 142, 144. As flux guides 132, 134 are placed above the sense elements 122, 124, the magnetic flux from the Z field may be guided by the flux guides 132 and 134 into the xy plane along the right side and cause the magnetization of sense elements 122 and 124 to rotate in a first direction towards a higher resistance. Similarly, the magnetic flux from the Z field may be guided by the flux guides 133 and 135 into the xy plane along the right side of the sense element and cause the magnetization of sense elements 123 and 125 to rotate in a second direction, opposite from the first direction towards a lower resistance, as these flux guides are located below the sense elements 123, 125. Thus, the sensor 121 can detect the component directions of an applied field along the third axis. Although in the preferred embodiment, the flux guides are in a plane orthogonal to the plane of the field sensor, the flux guides will still function if the angle they make with the sensor is not exactly 90 degrees. In other embodiments, the angle between the flux guide and the field sensor could be in a range from 45 degrees to 135 degrees, with the exact angle chosen depending on other factors such as on the ease of fabrication.
As seen from the foregoing, a magnetic field sensor may be formed from differential sensors 101, 111, 121 which use unshielded sense elements 102-105, 112-115, and sense elements 122-125 with guided magnetic flux connected in a bridge configuration over respective pinned, or reference, layers 106-109, 116-119, and 126-129 to detect the presence and direction of an applied magnetic field. With this configuration, the magnetic field sensor provides good sensitivity, and also provides the temperature compensating properties of a bridge configuration.
The bridge circuits 101, 111, 121 may be manufactured as part of an existing MRAM or thin-film sensor manufacturing process with only minor adjustments to control the magnetic orientation of the various sensor layers and cross section of the flux guiding structures. Each of the pinned layers 106-109, 116-119, and 126-129 may be formed with one or more lower ferromagnetic layers, and each of the sense elements 102-105, 112-125, 122-125 may be formed with one or more upper ferromagnetic layers. An insulating tunneling dielectric layer (not shown) (e.g., 200, 201, 202, and 203 shown in FIG. 2) may be disposed between the sense elements 102-105, 112-125, 122-125 and the pinned layers 106-109, 116-119, and 126-129. The pinned and sense electrodes are desirably magnetic materials whose magnetization direction can be aligned. Suitable electrode materials and arrangements of the materials into structures commonly used for electrodes of magnetoresistive random access memory (MRAM) devices and other magnetic tunnel junction (MTJ) sensor devices are well known in the art. For example, pinned layers 106-109, 116-119, and 126-129 may be formed with one or more layers of ferromagnetic and antiferromagnetic materials to a combined thickness in the range 10 to 1000 Å, and in selected embodiments in the range 250 to 350 Å. In an exemplary implementation, each of the pinned layers 106-109, 116-119, and 126-129 is formed with a single ferromagnetic layer and an underlying anti-ferromagnetic pinning layer. In another exemplary implementation, each pinned layer 106-109, 116-119, and 126-129 includes a synthetic anti-ferromagnetic stack component (e.g., a stack of CF (Cobalt Iron), Ruthenium (Ru) and CFB) which is 20 to 80 Å thick, and an underlying anti-ferromagnetic pinning layer that is approximately 200 Å thick. The lower anti-ferromagnetic pinning materials may be re-settable materials, such as IrMn, though other materials, such as PtMn, can be used which are not readily re-set at reasonable temperatures. As formed, the pinned layers 106-109, 116-119, and 126-129 function as a fixed or pinned magnetic layer when the direction of its magnetization is pinned in one direction that does not change during normal operating conditions. As disclosed herein, the heating qualities of the materials used to pin the pinned layers 106-109, 116-119, and 126-129 can change the fabrication sequence used to form these layers.
One of each of the sense elements 102-105, 112-125, 122-125 and one of each of the pinned layers 106-109, 116-119, 126-129 form a magnetic tunnel junction (MTJ) sensor. For example, for bridge circuit 121, sense element 122 and pinned layer 126 form an MTJ sensor 141. Likewise, sense element 123 and pinned layer 127 form an MTJ sensor 142, sense element 124 and pinned layer 128 form an MTJ sensor 143, and sense element 125 and pinned layer 129 form an MTJ sensor 144.
The pinned layers 106-109, 116-119, and 126-129 may be formed with a single patterned ferromagnetic layer having a magnetization direction (indicated by the arrow) that aligns along the long-axis of the patterned reference layer(s). However, in other embodiments, the pinned reference layer may be implemented with a synthetic anti-ferromagnetic (SAF) layer which is used to align the magnetization of the pinned reference layer along the short axis of the patterned reference layer(s). As will be appreciated, the SAF layer may be implemented in combination with an underlying anti-ferromagnetic pinning layer, though with SAF structures with appropriate geometry and materials that provide sufficiently strong magnetization, the underlying anti-ferromagnetic pinning layer may not be required, thereby providing a simpler fabrication process with cost savings.
The sense elements 102-105, 112-125, 122-125 may be formed with one or more layers of ferromagnetic materials to a thickness in the range 10 to 5000 Å, and in selected embodiments in the range 10 to 60 Å. The upper ferromagnetic materials may be magnetically soft materials, such as NiFe, CoFe, Fe, CFB and the like. In each MTJ sensor, the sense elements 102-105, 112-125, 122-125 function as a sense layer or free magnetic layer because the direction of their magnetization can be deflected by the presence of an external applied field, such as the Earth's magnetic field. As finally formed, sense elements 102-105, 112-125, 122-125 may be formed with a single ferromagnetic layer having a magnetization direction (indicated with the arrows) that aligns along the long-axis of the patterned shapes.
The pinned layers 106-109, 116-119, 126-129 and sense elements 102-105, 112-125, 122-125 may be formed to have different magnetic properties. For example, the pinned layers 106-109, 116-119, 126-129 may be formed with an anti-ferromagnetic film exchange layer coupled to a ferromagnetic film to form layers with a high coercive force and offset hysteresis curves so that their magnetization direction will be pinned in one direction, and hence substantially unaffected by an externally applied magnetic field. In contrast, the sense elements 102-105, 112-125, 122-125 may be formed with a magnetically soft material to provide different magnetization directions having a comparatively low anisotropy and coercive force so that the magnetization direction of the sense electrode may be altered by an externally applied magnetic field. In selected embodiments, the strength of the pinning field is about two orders of magnitude larger than the anisotropy field of the sense electrodes, although different ratios may be used by adjusting the respective magnetic properties of the electrodes using well known techniques to vary their composition.
The pinned layers 106-109, 116-119, 126-129 in the MTJ sensors are formed to have a shape determined magnetization direction in the plane of the pinned layers 106-109, 116-119, 126-129 (identified by the vector arrows for each sensor bridge labeled “Pinning direction” in
The exemplary embodiments described herein may be fabricated using known lithographic processes as follows. The fabrication of integrated circuits, microelectronic devices, micro electro mechanical devices, microfluidic devices, and photonic devices involves the creation of several layers of materials that interact in some fashion. One or more of these layers may be patterned so various regions of the layer have different electrical or other characteristics, which may be interconnected within the layer or to other layers to create electrical components and circuits. These regions may be created by selectively introducing or removing various materials. The patterns that define such regions are often created by lithographic processes. For example, a layer of photoresist material is applied onto a layer overlying a wafer substrate. A photomask (containing clear and opaque areas) is used to selectively expose this photoresist material by a form of radiation, such as ultraviolet light, electrons, or x-rays. Either the photoresist material exposed to the radiation, or that not exposed to the radiation, is removed by the application of a developer. An etch may then be applied to the layer not protected by the remaining resist, and when the resist is removed, the layer overlying the substrate is patterned. Alternatively, an additive process could also be used, e.g., building a structure using the photoresist as a template.
Referring to
Referring again to
In another exemplary embodiment (shown in
Another exemplary embodiment (see
While various exemplary embodiments have been shown for the flux guides, including the vertical elements 132-139 of
Although the described exemplary embodiments disclosed herein are directed to various sensor structures and methods for making same, the present invention is not necessarily limited to the exemplary embodiments which illustrate inventive aspects of the present invention that are applicable to a wide variety of semiconductor processes and/or devices. Thus, the particular embodiments disclosed above are illustrative only and should not be taken as limitations upon the present invention, as the invention may be modified and practiced in different but equivalent manners apparent to those skilled in the art having the benefit of the teachings herein. For example, the relative positions of the sense and pinning layers in a sensor structure may be reversed so that the pinning layer is on top and the sense layer is below. Also the sense layers and the pinning layers may be formed with different materials than those disclosed. Moreover, the thickness of the described layers may deviate from the disclosed thickness values. Accordingly, the foregoing description is not intended to limit the invention to the particular form set forth, but on the contrary, is intended to cover such alternatives, modifications and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims so that those skilled in the art should understand that they can make various changes, substitutions and alterations without departing from the spirit and scope of the invention in its broadest form.
Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential feature or element of any or all the claims. As used herein, the terms “comprises,” “comprising,” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus.
While at least one exemplary embodiment has been presented in the foregoing detailed description, it should be appreciated that a vast number of variations exist. It should also be appreciated that the exemplary embodiment or exemplary embodiments are only examples, and are not intended to limit the scope, applicability, or configuration of the invention in any way. Rather, the foregoing detailed description will provide those skilled in the art with a convenient road map for implementing an exemplary embodiment of the invention, it being understood that various changes may be made in the function and arrangement of elements described in an exemplary embodiment without departing from the scope of the invention as set forth in the appended claims.
Claims
1. A ferromagnetic thin-film based magnetic field sensor comprising:
- a substrate having a planar surface; and
- a first magnetoresistive sensor comprising: a first sensing element having a first side lying parallel to the planar surface of the substrate, the first sensing element having a second side opposed to the first side and having first and second opposed edges; and a first flux guide comprising a soft ferromagnetic material disposed non-parallel to the first side of the first sensing element and having an end that is proximate to the first edge and the first side of the first sensing element.
2. The ferromagnetic thin-film based magnetic field sensor of claim 1 wherein the first magnetoresistive sensor further comprises:
- a second flux guide comprising a soft ferromagnetic material disposed non-parallel to the first side of the first sensing element and having an end that is proximate to the second edge and the second side of the first sensing element.
3. The ferromagnetic thin-film based magnetic field sensor of claim 1 wherein the first magnetoresistive sensor comprises one of an array of ferromagnetic thin-film based magnetic field sensors.
4. The ferromagnetic thin-film based magnetic field sensor of claim 1 wherein the first flux guide comprises a high aspect ratio structure non-parallel to the first sense element.
5. The ferromagnetic thin-film based magnetic field sensor of claim 1 wherein the first flux guide comprises a U shaped element.
6. The ferromagnetic thin-film based magnetic field sensor of claim 1 wherein the first flux guide includes a flared end.
7. The ferromagnetic thin-film based magnetic field sensor of claim 1 further comprising a material disposed adjacent the first flux guide and comprising one of the group consisting of a high conductivity metal and a dielectric material.
8. The ferromagnetic thin-film based magnetic field sensor of claim 1 wherein the first flux guide comprises a box shaped structure.
9. The ferromagnetic thin-film based magnetic field sensor of claim 1 wherein at least one of the first and second flux guides is disposed substantially orthogonal to the plane of the substrate.
10. The ferromagnetic thin-film based magnetic field sensor of claim 1 wherein at least one of the first and second flux guides is disposed at an angle of between 45 degrees and 90 degrees to the plane of the substrate.
11. The ferromagnetic thin-film based magnetic field sensor of claim 1 further comprising:
- a second magnetoresistive sensor having a second sensing element for detecting a magnetic field in a second direction orthogonal to the first direction; and
- a third magnetoresistive sensor having a third sensing element orthogonal to the second sensing element for detecting a magnetic field in a third direction orthogonal to the first and second directions,
- wherein the third sensing element is in a plane with the first and second sensing elements.
12. The ferromagnetic thin-film based magnetic field sensor of claim 11, wherein the first, second, and third sensor elements each comprise an imbalanced synthetic antiferromagnet formed with first and second ferromagnetic layers separated by a spacer layer, where the first and second ferromagnetic layers have different magnetic moments.
13. The ferromagnetic thin-film based magnetic field sensor of claim 1 further comprising:
- the first magnetoresistive sensor comprising: a first pinned layer;
- a second magnetoresistive sensor comprising: a second pinned layer; and a second sensing element formed on the second pinned layer;
- a third magnetoresistive sensor comprising: a third pinned layer; and a third sensing element formed on the third pinned layer and orthogonal to the second sensing element; wherein the second and third pinned layers are oriented about 45 degrees to the first pinned layer.
14. The ferromagnetic thin-film based magnetic field sensor of claim 13 wherein the first magnetic tunnel junction further comprises:
- a second flux guide disposed non-parallel to the first side of the first sensing element and having an end that is proximate to the second edge and the second side of the first sensing element.
15. The ferromagnetic thin-film based magnetic field sensor of claim 14 wherein the first and second flux guides each comprise an aspect ratio greater than 10.
16. A ferromagnetic thin-film magnetic field sensor comprising:
- a first bridge circuit comprising first, second, third, and fourth magnetic tunnel junction sensors coupled as a Wheatstone bridge for sensing a magnetic field orthogonal to the plane of the sensors;
- the first magnetic tunnel junction sensor comprising: a first reference layer; and a first sensing element formed on the first reference layer, the first sensing element having first and second edges and first and second sides; and a first flux guide comprising a soft ferromagnetic material disposed orthogonal to and spaced from the first edge and the first side of the first sensing element;
- the second magnetic tunnel junction sensor comprising: a second reference layer; and a second sensing element formed on the second reference layer, the second sensing element having first and second edges and first and second sides; and a second flux guide comprising a soft ferromagnetic material disposed orthogonal to and spaced from the first edge and the first side of the second sensing element;
- the third magnetic tunnel junction sensor comprising: a third reference layer; and a third sensing element formed on the third reference layer, the third sensing element having first and second edges and first and second sides; and a third flux guide comprising a soft ferromagnetic material disposed orthogonal to and spaced from the first edge and the first side of the third sensing element;
- the fourth magnetic tunnel junction sensor comprising: a fourth reference layer; and a fourth sensing element formed on the fourth reference layer, the fourth sensing element having first and second edges and first and second sides; and a fourth flux guide disposed orthogonal to and spaced from the first edge and the first side of the fourth sensing element.
17. The ferromagnetic thin-film based magnetic field sensor of claim 16 wherein the first, second, third, and fourth magnetic tunnel junction sensors further comprise fifth, sixth, seventh, and eighth flux guides disposed orthogonal to and spaced from the second edge and the second side of the first, second, third, and fourth sensing elements, respectively.
18. The ferromagnetic thin-film based magnetic field sensor of claim 16 further comprising:
- a second bridge circuit comprising fifth, sixth, seventh, and eighth magnetic tunnel junction sensors coupled as a second Wheatstone bridge for sensing a magnetic field in a second direction orthogonal to the first direction; and
- a third bridge circuit comprising ninth, tenth, eleventh, and twelfth magnetic tunnel junction sensors coupled as a third Wheatstone bridge for sensing a magnetic field in a third direction orthogonal to the first and second directions.
19. The ferromagnetic thin-film based magnetic field sensor of claim 16 wherein each of the first, second, third, and fourth sensors comprises an array of sense elements.
20. A method of testing the functionality and sensitivity of a response of the Z axis of a ferromagnetic thin-film magnetic field sensor including a substrate having a planar surface, and a first magnetoresistive sensor comprising a sensing element having a first side lying parallel to the planar surface of the substrate, the sensing element having a second side opposed to the first side and having first and second opposed edges, a first flux guide comprising a soft ferromagnetic material disposed non-parallel to the first side of the substrate and having an end that is proximate to the first edge and the first side of the sensing element, and a metal line formed adjacent contiguous to the flux guide, the method comprising:
- applying a current through the metal line to provide a magnetic field with a component parallel to the plane of the flux guides.
21. The method of claim 20, further comprising:
- applying a current pulse through the metal line to reset the flux guide domain structure.
22. A ferromagnetic thin-film based magnetic field sensor comprising:
- a plurality of magnetoresistive sensors connected in a first circuit to sense a magnetic field orthogonal to a plane of the plurality of magnetoresistive sensors, wherein the plurality of magnetoresistive sensors includes first, second, third, and fourth magnetoresistive sensors;
- the first magnetoresistive sensor comprising in an order in a direction: a reference layer, an intermediate layer, and a sensing element, and
- wherein the first magnetoresistive sensor further comprises a first flux guide comprising a soft ferromagnetic material, wherein the first flux guide is (i) adjacent to the sensing element of the first magnetoresistive sensor and (ii) above or below the sensing element of the first magnetoresistive sensor in the direction;
- the second magnetoresistive sensor comprising in the direction: a reference layer, an intermediate layer, and a sensing element, and
- wherein the second magnetoresistive sensor further comprises a second flux guide comprising a soft ferromagnetic material, wherein the second flux guide is (i) adjacent to the sensing element of the second magnetoresistive sensor and (ii) above or below the sensing element of the second magnetoresistive sensor in the direction;
- the third magnetoresistive sensor comprising in the direction: a reference layer, an intermediate layer, and a sensing element, and
- wherein the third magnetoresistive sensor further comprises a third flux guide comprising a soft ferromagnetic material, wherein the third flux guide is (i) adjacent to the sensing element of the third magnetoresistive sensor and (ii) above or below the sensing element of the third magnetoresistive sensor in the direction; and
- the fourth magnetoresistive sensor comprising in the direction: a reference layer, an intermediate layer, and a sensing element, and
- wherein the fourth magnetoresistive sensor further comprises a fourth flux guide comprising a soft ferromagnetic material, wherein the fourth flux guide is (i) adjacent to the sensing element of the fourth magnetoresistive sensor and (ii) above or below the sensing element of the fourth magnetoresistive sensor in the direction.
23. The ferromagnetic thin-film based magnetic field sensor of claim 22, wherein the first circuit is a bridge circuit.
24. The ferromagnetic thin-film based magnetic field sensor of claim 22, wherein the plurality of magnetoresistive sensors are connected in the first circuit to provide a differential measurement.
25. The ferromagnetic thin-film based magnetic field sensor of claim 22, wherein each of the first, second, third, and fourth magnetoresistive sensors is a magnetic tunnel junction sensor.
26. The ferromagnetic thin-film based magnetic field sensor of claim 22, wherein each of the first, second, third, and fourth flux guides is a bar comprising a soft ferromagnetic material.
27. The ferromagnetic thin-film based magnetic field sensor of claim 22, wherein the first circuit is electrically coupled to a voltage meter.
28. The ferromagnetic thin-film based magnetic field sensor of claim 22, wherein the first circuit includes input terminals configured to connect to an electrical source.
29. The ferromagnetic thin-film based magnetic field sensor of claim 22, wherein each of the sensing elements of the first, second, third, and fourth magnetoresistive sensors includes a sense axis parallel to the plane of the plurality of magnetoresistive sensors.
30. A ferromagnetic thin-film based magnetic field sensor comprising:
- a first plurality of magnetoresistive sensors electrically connected into a first circuit to sense a first magnetic field orthogonal to a plane of the first plurality of magnetoresistive sensors, wherein each magnetoresistive sensor of the first plurality of magnetoresistive sensors comprises in an order in a direction: a reference layer, an intermediate layer, and a sensing element, and
- wherein each magnetoresistive sensor further comprises a flux guide (i) adjacent to an associated sensing element and (ii) above or below the associated sensing element in the direction, wherein the flux guide comprises a soft ferromagnetic material; and
- a second plurality of magnetoresistive sensors electrically connected into a second circuit to sense a second magnetic field orthogonal to the first magnetic field.
31. The ferromagnetic thin-film based magnetic field sensor of claim 30, wherein the first and second circuits are located on or in a single substrate.
32. The ferromagnetic thin-film based magnetic field sensor of claim 30, wherein each magnetoresistive sensor of the first and second pluralities of magnetoresistive sensors is a magnetic tunnel junction sensor.
33. The ferromagnetic thin-film based magnetic field sensor of claim 30, wherein each of the first and second circuits is a bridge circuit.
34. The ferromagnetic thin-film based magnetic field sensor of claim 30, wherein the first circuit is electrically coupled to a voltage meter.
35. The ferromagnetic thin-film based magnetic field sensor of claim 30, wherein each magnetoresistive sensor of the first and second pluralities of magnetoresistive sensors includes a sense axis parallel to the plane of the first plurality of magnetoresistive sensors.
36. The ferromagnetic thin-film based magnetic field sensor of claim 30, wherein the flux guide of each magnetoresistive sensor of the first plurality of magnetoresistive sensors is a bar comprising a soft ferromagnetic material.
37. The ferromagnetic thin-film based magnetic field sensor of claim 30, wherein the reference layer of each magnetoresistive sensor of the first plurality of magnetoresistive sensors includes a first pinning direction, and wherein each magnetoresistive sensor of the second plurality of magnetoresistive sensors includes a reference layer having a second pinning direction orthogonal to the first pinning direction.
38. The ferromagnetic thin-film based magnetic field sensor of claim 30, wherein the first circuit includes input and output terminals, and wherein the magnetic field sensor further includes:
- an electrical source electrically coupled to the input terminals, and
- a voltage meter electrically coupled to the output terminals.
39. The ferromagnetic thin-film based magnetic field sensor of claim 30, wherein the intermediate layer of each magnetoresistive sensor of the first plurality of magnetoresistive sensors is an insulating dielectric layer.
40. The ferromagnetic thin-film based magnetic field sensor of claim 22, wherein at least one of the first, second, third, and fourth flux guides is directly above or directly below a portion of the sensing element of the first, second, third, and fourth magnetoresistive sensors, respectively.
41. The ferromagnetic thin-film based magnetic field sensor of claim 22, wherein the order in the direction includes:
- the sensing element of each of the first, second, third, and fourth magnetoresistive sensors being formed on or above the intermediate layer of each of the first, second, third, and fourth magnetoresistive sensors, respectively, and
- the intermediate layer of each of the first, second, third, and fourth magnetoresistive sensors being formed on or above the reference layer of each of the first, second, third, and fourth magnetoresistive sensors, respectively.
42. The ferromagnetic thin-film based magnetic field sensor of claim 22, wherein the order in the direction includes:
- the reference layer of each of the first, second, third, and fourth magnetoresistive sensors being formed on or above the intermediate layer of each of the first, second, third, and fourth magnetoresistive sensors, respectively, and
- the intermediate layer of each of the first, second, third, and fourth magnetoresistive sensors being formed on or above the sensing element of each of the first, second, third, and fourth magnetoresistive sensors, respectively.
43. The ferromagnetic thin-film based magnetic field sensor of claim 30, wherein the flux guide is directly above or directly below a portion of the associated sensing element.
44. The ferromagnetic thin-film based magnetic field sensor of claim 30, wherein the order in the direction includes:
- the sensing element of each magnetoresistive sensor of the first plurality of magnetoresistive sensors being formed on or above the associated intermediate layer of each magnetoresistive sensor, and
- the intermediate layer of each magnetoresistive sensor of the first plurality of magnetoresistive sensors being formed on or above the associated reference layer of each magnetoresistive sensor.
45. The ferromagnetic thin-film based magnetic field sensor of claim 30, wherein the order in the direction includes:
- the reference layer of each magnetoresistive sensor of the first plurality of magnetoresistive sensors being formed on or above the associated intermediate layer of each magnetoresistive sensor, and
- the intermediate layer of each magnetoresistive sensor of the first plurality of magnetoresistive sensors being formed on or above the associated sensing element of each magnetoresistive sensor.
46. A ferromagnetic thin-film based magnetic field sensor comprising:
- a first plurality of magnetoresistive sensors electrically connected into a first circuit, wherein each magnetoresistive sensor of the first plurality of magnetoresistive sensors comprises in an order in a direction: a reference layer, an intermediate layer, and a sensing element, and
- wherein each magnetoresistive sensor further comprises a flux guide (i) adjacent to an associated sensing element and (ii) in a plane that is above or below the associated sensing element in the direction and parallel to the associated sensing element, wherein the flux guide includes a soft ferromagnetic material.
47. The ferromagnetic thin-film based magnetic field sensor of claim 46, further comprising:
- a second plurality of magnetoresistive sensors electrically connected into a second circuit, wherein the first circuit is configured to sense a first magnetic field orthogonal to a plane of the first plurality of magnetoresistive sensors, and wherein the second circuit is configured to sense a second magnetic field orthogonal to the first magnetic field.
48. The ferromagnetic thin-film based magnetic field sensor of claim 46, wherein the intermediate layer of each magnetoresistive sensor of the first plurality of magnetoresistive sensors is an insulating dielectric layer.
49. The ferromagnetic thin-film based magnetic field sensor of claim 46, wherein each magnetoresistive sensor of the first plurality of magnetoresistive sensors is a magnetic tunnel junction sensor.
50. The ferromagnetic thin-film based magnetic field sensor of claim 46, wherein the first circuit is a Wheatstone bridge circuit.
51. The ferromagnetic thin-film based magnetic field sensor of claim 46, wherein the first circuit includes input conductors configured for connection to an electrical source.
52. The ferromagnetic thin-film based magnetic field sensor of claim 46, wherein the first circuit includes output conductors configured for connection to a voltage meter.
53. The ferromagnetic thin-film based magnetic field sensor of claim 46, wherein the order in the direction includes:
- the sensing element of each magnetoresistive sensor of the first plurality of magnetoresistive sensors being formed on or above the associated intermediate layer of each magnetoresistive sensor, and
- the intermediate layer of each magnetoresistive sensor of the first plurality of magnetoresistive sensors being formed on or above the associated reference layer of each magnetoresistive sensor.
54. The ferromagnetic thin-film based magnetic field sensor of claim 46, wherein the order in the direction includes:
- the reference layer of each magnetoresistive sensor of the first plurality of magnetoresistive sensors being formed on or above the associated intermediate layer of each magnetoresistive sensor, and
- the intermediate layer of each magnetoresistive sensor of the first plurality of magnetoresistive sensors being formed on or above the associated sensing element of each magnetoresistive sensor.
55. A ferromagnetic thin-film based magnetic field sensor comprising:
- a first plurality of magnetoresistive sensors electrically connected into a first Wheatstone bridge circuit to sense a first magnetic field in a direction orthogonal to a plane of the first plurality of magnetoresistive sensors, wherein each magnetoresistive sensor of the first plurality of magnetoresistive sensors includes a sensing element, and wherein each magnetoresistive sensor further comprises a flux guide (i) adjacent to an associated sensing element and (ii) in a plane that is above or below the associated sensing element in the direction and parallel to the associated sensing element, wherein the flux guide includes a soft ferromagnetic material; and
- a second plurality of magnetoresistive sensors electrically connected into a second Wheatstone bridge circuit to sense a second magnetic field orthogonal to the first magnetic field.
56. The ferromagnetic thin-film based magnetic field sensor of claim 55, wherein the sensing element of each magnetoresistive sensor is disposed adjacent to a reference layer, and wherein an intermediate layer is disposed between the sensing element and the reference layer.
57. The ferromagnetic thin-film based magnetic field sensor of claim 55, wherein the sensing element of each magnetoresistive sensor is disposed adjacent to a reference layer, and wherein an insulating dielectric layer is disposed between the sensing element and the reference layer.
58. The ferromagnetic thin-film based magnetic field sensor of claim 55, wherein each magnetoresistive sensor of the first plurality of magnetoresistive sensors is a magnetic tunnel junction sensor.
59. The ferromagnetic thin-film based magnetic field sensor of claim 55, wherein the first circuit includes input conductors configured for connection to an electrical source.
60. The ferromagnetic thin-film based magnetic field sensor of claim 55, wherein the first circuit includes output conductors configured for connection to a voltage meter.
61. The ferromagnetic thin-film based magnetic field sensor of claim 55, further comprising:
- a third plurality of magnetoresistive sensors electrically connected into a third Wheatstone bridge circuit to sense a third magnetic field orthogonal to the first and second magnetic fields.
62. A ferromagnetic thin-film based magnetic field sensor comprising:
- a first plurality of magnetoresistive sensors connected in a first bridge circuit to sense a magnetic field in a first direction orthogonal to a plane of the first plurality of magnetoresistive sensors, wherein the first plurality of magnetoresistive sensors includes first, second, third, and fourth magnetoresistive sensors;
- the first magnetoresistive sensor comprising: a sensing element, and a first flux guide comprising a soft ferromagnetic material, wherein the first flux guide is (i) adjacent to the sensing element of the first magnetoresistive sensor and (ii) above or below the sensing element of the first magnetoresistive sensor in the first direction;
- the second magnetoresistive sensor comprising: a sensing element, and a second flux guide comprising a soft ferromagnetic material, wherein the second flux guide is (i) adjacent to the sensing element of the second magnetoresistive sensor and (ii) above or below the sensing element of the second magnetoresistive sensor in the first direction;
- the third magnetoresistive sensor comprising: a sensing element, and a third flux guide comprising a soft ferromagnetic material, wherein the third flux guide is (i) adjacent to the sensing element of the third magnetoresistive sensor and (ii) above or below the sensing element of the third magnetoresistive sensor in the first direction; and
- the fourth magnetoresistive sensor comprising: a sensing element, and a fourth flux guide comprising a soft ferromagnetic material, wherein the fourth flux guide is (i) adjacent to the sensing element of the fourth magnetoresistive sensor and (ii) above or below the sensing element of the fourth magnetoresistive sensor in the first direction.
63. The ferromagnetic thin-film based magnetic field sensor of claim 62, wherein each of the first, second, third, and fourth magnetoresistive sensors is a magnetic tunnel junction sensor.
64. The ferromagnetic thin-film based magnetic field sensor of claim 62, wherein the first bridge circuit includes output conductors configured for connection to a voltage meter.
65. The ferromagnetic thin-film based magnetic field sensor of claim 62, wherein the first bridge circuit includes input conductors configured for connection to an electrical source.
66. The ferromagnetic thin-film based magnetic field sensor of claim 62, further comprising:
- a second plurality of magnetoresistive sensors connected in a second bridge circuit to sense a magnetic field in a second direction orthogonal to the first direction.
67. The ferromagnetic thin-film based magnetic field sensor of claim 62, further comprising:
- a second plurality of magnetoresistive sensors connected in a second bridge circuit to sense a magnetic field in a second direction orthogonal to the first direction; and
- a third plurality of magnetoresistive sensors connected in a third bridge circuit to sense a magnetic field in a third direction orthogonal to the first and second directions.
68. The ferromagnetic thin-film based magnetic field sensor of claim 22, wherein each of the soft ferromagnetic materials is nickel iron (NiFe).
69. The ferromagnetic thin-film based magnetic field sensor of claim 30, wherein the soft ferromagnetic material is nickel iron (NiFe).
70. The ferromagnetic thin-film based magnetic field sensor of claim 46, wherein the soft ferromagnetic material is nickel iron (NiFe).
71. The ferromagnetic thin-film based magnetic field sensor of claim 55, wherein the soft ferromagnetic material is nickel iron (NiFe).
72. The ferromagnetic thin-film based magnetic field sensor of claim 62, wherein each of the soft ferromagnetic materials is nickel iron (NiFe).
5343143 | August 30, 1994 | Voisine et al. |
5477143 | December 19, 1995 | Wu |
5659499 | August 19, 1997 | Chen et al. |
5739988 | April 14, 1998 | Gill |
5850624 | December 15, 1998 | Gard et al. |
5893981 | April 13, 1999 | Dovek et al. |
5930087 | July 27, 1999 | Brug et al. |
5940319 | August 17, 1999 | Durlam et al. |
6174737 | January 16, 2001 | Durlam et al. |
6501678 | December 31, 2002 | Lenssen et al. |
6577124 | June 10, 2003 | Coehoorn et al. |
6724584 | April 20, 2004 | Mack et al. |
6784510 | August 31, 2004 | Grynkewich et al. |
7054114 | May 30, 2006 | Jander |
7116100 | October 3, 2006 | Mock et al. |
7126330 | October 24, 2006 | Peczalski et al. |
7235968 | June 26, 2007 | Popovic et al. |
7259556 | August 21, 2007 | Popovic et al. |
7358722 | April 15, 2008 | Peczalski et al. |
7505233 | March 17, 2009 | Grimm et al. |
7509748 | March 31, 2009 | Xue et al. |
7564237 | July 21, 2009 | Rieger et al. |
7642773 | January 5, 2010 | Takahashi et al. |
7682840 | March 23, 2010 | Hiebert et al. |
7710113 | May 4, 2010 | Crolly et al. |
7833806 | November 16, 2010 | Smith et al. |
7915886 | March 29, 2011 | Stolfus et al. |
7932571 | April 26, 2011 | Rizzo et al. |
7956604 | June 7, 2011 | Ausserlechner |
8044494 | October 25, 2011 | Mistry et al. |
8093886 | January 10, 2012 | Okada et al. |
8193805 | June 5, 2012 | Kasajima |
8257596 | September 4, 2012 | Mather et al. |
8269491 | September 18, 2012 | Cummings et al. |
8278919 | October 2, 2012 | Fischer et al. |
8390283 | March 5, 2013 | Mather et al. |
8476899 | July 2, 2013 | Ide et al. |
8518734 | August 27, 2013 | Whig et al. |
9269891 | February 23, 2016 | Whig et al. |
20020131219 | September 19, 2002 | Mack |
20030048676 | March 13, 2003 | Daughton et al. |
20040137275 | July 15, 2004 | Jander et al. |
20040137681 | July 15, 2004 | Motoyoshi |
20040164840 | August 26, 2004 | Xiao et al. |
20040207396 | October 21, 2004 | Xiao |
20050013060 | January 20, 2005 | Grimm |
20050036244 | February 17, 2005 | Carey |
20050270020 | December 8, 2005 | Peczalski et al. |
20050275497 | December 15, 2005 | Ramadan et al. |
20060022286 | February 2, 2006 | Leuschner et al. |
20060087318 | April 27, 2006 | Crolly et al. |
20060103381 | May 18, 2006 | Schmollngruber et al. |
20060126229 | June 15, 2006 | Grimm et al. |
20070190669 | August 16, 2007 | Durlam et al. |
20070209437 | September 13, 2007 | Xue et al. |
20070217080 | September 20, 2007 | Jayasekara |
20070230066 | October 4, 2007 | Gill |
20090115405 | May 7, 2009 | Guo et al. |
20090279212 | November 12, 2009 | Engel et al. |
20100072566 | March 25, 2010 | Kang et al. |
20100148167 | June 17, 2010 | Whig et al. |
20100181999 | July 22, 2010 | Sudai et al. |
20100213933 | August 26, 2010 | Mather et al. |
20110062538 | March 17, 2011 | Rizzo et al. |
20110074406 | March 31, 2011 | Mather et al. |
20120200292 | August 9, 2012 | Sugihara et al. |
20140138346 | May 22, 2014 | Whig et al. |
20160104835 | April 14, 2016 | Whig et al. |
1726561 | January 2006 | CN |
101203769 | June 2008 | CN |
101221849 | July 2008 | CN |
0427171 | May 1991 | EP |
1054449 | November 2000 | EP |
2006700 | December 2008 | EP |
2717324 | September 1995 | FR |
H07-65329 | March 1995 | JP |
08-075403 | March 1996 | JP |
2005/197364 | July 2005 | JP |
2005/216390 | August 2005 | JP |
2006-003116 | January 2006 | JP |
2008/525789 | July 2008 | JP |
2009/216390 | September 2009 | JP |
2009/276159 | November 2009 | JP |
584735 | April 2004 | TW |
200604520 | February 2006 | TW |
200849684 | December 2008 | TW |
WO 2008/146809 | December 2008 | WO |
WO-2008/148600 | December 2008 | WO |
WO-2009/048018 | April 2009 | WO |
WO-2009/120894 | October 2009 | WO |
- Extended European Search Report, dated Oct. 11, 2016, in corresponding European App. No. 16170979.5 (7 pages).
- Utility U.S. Appl. No. 12/433,679, filed Apr. 30, 2009.
- Utility U.S. Appl. No. 12/363,404, filed Jan. 30, 2009.
- Utility U.S. Appl. No. 12/567,469, filed Sep. 25, 2009.
- Utility U.S. Appl. No. 12/567,496, filed Sep. 25, 2009.
- U.S. Patent Office, International Searching Authority “International Preliminary Report on Patentability and Written Opinion” mailed Oct. 2, 2012, International Appln. No. PCT/US2011/030361, filed Mar. 29, 2011.
- International Search Report and Written Opinion issued in International Application No. PCT/US2011/030361, mailed Jun. 29, 2011 (7 pages).
- Non-final Office Action mailed Aug. 31, 2012 in U.S. Appl. No. 12/751,927.
- European Patent Office Search Report issued in European Application No. 11763327.1, mailed Apr. 23, 2015 (4 pages).
- International Search Report and Written Opinion issued in International Application No. PCT/US2010/050398, mailed Nov. 22, 2010 (8 pages).
- International Search Report on Patentability issued in International Application No. PCT/US2010/050398, mailed Mar. 27, 2012 (7 pages).
- Appeal Decision in Japanese Patent Application No. 2012-531101 dated Jan. 10, 2017 (19 pages).
- English translation of Office Action and Search Report issued in Taiwanese Application No. 104121762, dated Jan. 6, 2017 (3 pages).
- International Report on Patentability mailed Apr 5, 2012 in PCT/US2010/050398.
Type: Grant
Filed: May 26, 2016
Date of Patent: Jun 6, 2017
Assignee: EVERSPIN TECHNOLOGIES, INC. (Chandler, AZ)
Inventors: Phillip Mather (Phoenix, AZ), Jon Slaughter (Chandler, AZ), Nicholas Rizzo (Gilbert, AZ)
Primary Examiner: Anjan Deb
Application Number: 15/165,600
International Classification: G01R 33/09 (20060101); G01R 33/02 (20060101); G01R 33/00 (20060101); H01L 27/22 (20060101); H01L 43/08 (20060101); B82Y 25/00 (20110101);