Patents Issued in October 2, 2007
  • Patent number: 7276758
    Abstract: Disclosed is a non-volatile memory having three data states and a method for manufacturing the same. The non-volatile memory includes a silicon substrate having a device separation film; a floating gate formed on the silicon substrate; a tunnel oxide film interposed between the silicon substrate and the floating gate below both ends of the floating gate; a ferroelectric substance interposed between the silicon substrate and the floating gate inside the tunnel oxide film; a diffusion barrier film enclosing the ferroelectric substance; a control gate formed on the substrate including the floating gate; a gate oxide film formed below the control gate; spacers formed on both lateral walls of the laminated floating gate and control gate including the tunnel oxide film and gate oxide film, respectively; and source/drain regions formed within the substrate surfaces on both sides of the control gate including the spacers, respectively.
    Type: Grant
    Filed: May 4, 2005
    Date of Patent: October 2, 2007
    Assignee: Hynix Semiconductor Inc.
    Inventor: Kyung Do Kim
  • Patent number: 7276759
    Abstract: In a memory cell array, each memory cell includes a control gate disposed laterally adjacent a floating gate. The memory cells in each memory column are disposed inside a single well. The control gate and the floating gate are disposed between two diffusion regions. Each memory cell may be erased and programmed by applying a combination of voltages to the diffusion regions, the control gate, and the well.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: October 2, 2007
    Assignee: Nanostar Corporation
    Inventors: Andy Yu, Ying W. Go
  • Patent number: 7276760
    Abstract: The memory system is comprised of a plurality of memory arrays that are coupled to a processor. The memory arrays are comprised of non-volatile memory cells that have read/write speeds and charge retention times that are different from the other memory arrays of the system. Each of the memory cells of each array has a tunnel layer under an embedded trap layer. Each array has memory cells with a different tunnel layer thickness to change the read/write speeds and charge retention times for that array.
    Type: Grant
    Filed: February 25, 2005
    Date of Patent: October 2, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Arup Bhattacharyya
  • Patent number: 7276761
    Abstract: A semiconductor memory device of the invention comprises a plurality of bit lines formed by implanting a second conductive-type impurity in a first conductive-type semiconductor substrate; a thick insulating film on the bit lines; a thin insulating film between the neighboring bit lines; and a plurality of word lines formed on the thick and thin insulating films so as to cross the bit lines, wherein each of the word lines includes a plurality of first conductors and a second conductor which electrically connects the first conductors in series, the respective first conductors are formed on the thin insulating film, the top face of the thickest portion of the thick insulating film is higher than the top face of the first conductors, and the film thickness of the thick insulating film is made thinner toward the end.
    Type: Grant
    Filed: March 23, 2005
    Date of Patent: October 2, 2007
    Assignee: Sharp Kabushiki Kaisha
    Inventor: Yoshimitsu Yamauchi
  • Patent number: 7276762
    Abstract: An NROM flash memory cell is implemented in an ultra-thin silicon-on-insulator structure. In a planar device, the channel between the source/drain areas is normally fully depleted. An oxide layer provides an insulation layer between the source/drain areas and the gate insulator layer on top. A control gate is formed on top of the gate insulator layer. In a vertical device, an oxide pillar extends from the substrate with a source/drain area on either side of the pillar side. Epitaxial regrowth is used to form ultra-thin silicon body regions along the sidewalls of the oxide pillar. Second source/drain areas are formed on top of this structure. The gate insulator and control gate are formed on top.
    Type: Grant
    Filed: August 25, 2005
    Date of Patent: October 2, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Leonard Forbes
  • Patent number: 7276763
    Abstract: In a method of forming semiconductor device, a semiconductor fin is formed on a semiconductor-on-insulator substrate. A gate dielectric is formed over at least a portion of the semiconductor fin. A first gate electrode material is formed over the gate dielectric and a second gate electrode material is formed over the first gate electrode material. The second gate electrode material is planarized and then etched selectively with respect to first gate electrode material. The first gate electrode material can then be etched.
    Type: Grant
    Filed: December 15, 2005
    Date of Patent: October 2, 2007
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Yee-Chia Yeo, Fu-Liang Yang
  • Patent number: 7276764
    Abstract: An object of the present invention is to provide a semiconductor device capable of radiating electron-beams only to a desired region without forming a layer for restricting the radiating rays. A source electrode 22 made of aluminum prevents the generation of bremsstrahlung even when the electron-beams are radiated to the source electrode in a exposed condition. Also, the source electrode having an opening 25 at above of a crystal defect region 11 is used as a mask when the electron-beams are radiated thereto. That is the source electrode made of aluminum can be used both as a wiring and a mask for the radiating rays.
    Type: Grant
    Filed: November 25, 1998
    Date of Patent: October 2, 2007
    Assignee: Rohm Co., Ltd.
    Inventor: Kazuhisa Sakamoto
  • Patent number: 7276765
    Abstract: A buried transistor particularly suitable for SOI technology, where the transistor is fabricated within a trench in a substrate and the resulting transistor incorporates completely isolated active areas. The resulting substrate has a decreased topography and there is no need for polysilicon (or other) plugs to connect to the transistor, unless desired. With this invention, better control is achieved in processing, particularly of gate length. The substrate having the buried transistor can be silicon oxide bonded to another substrate to form an SOI structure.
    Type: Grant
    Filed: March 21, 2005
    Date of Patent: October 2, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Theodore M. Taylor, Won-Joo Kim, John K. Skrovan
  • Patent number: 7276766
    Abstract: A lateral FET cell is formed in a body of semiconductor material. The lateral FET cell includes a super junction structure formed in a drift region between a drain contact and a body region. The super junction structure includes a plurality of spaced apart filled trenches bounding in part a multiplicity of striped doped regions having opposite or alternating conductivity types.
    Type: Grant
    Filed: August 1, 2005
    Date of Patent: October 2, 2007
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventors: Shanghui Larry Tu, James Adams, Mohammed Quddus, Rajesh S. Nair
  • Patent number: 7276767
    Abstract: The present invention provides a thin film resistor and method of manufacture therefor. The thin film resistor comprises a resistive layer located on a first dielectric layer, first and second contact pads located on the resistive layer, and a second dielectric layer located over the resistive layer and the first and second contact pads. In an illustrative embodiment, the thin film resistor further includes a first interconnect that contacts the first contact pad and a second interconnect that contacts the second contact pad.
    Type: Grant
    Filed: January 22, 2004
    Date of Patent: October 2, 2007
    Assignee: Agere Systems Inc.
    Inventors: Robert D. Huttemann, George J. Terefenko
  • Patent number: 7276768
    Abstract: Semiconductor structures and methods for suppressing latch-up in bulk CMOS devices. The semiconductor structure comprises a shaped-modified isolation region that is formed in a trench generally between two doped wells of the substrate in which the bulk CMOS devices are fabricated. The shaped-modified isolation region may comprise a widened dielectric-filled portion of the trench, which may optionally include a nearby damage region, or a narrowed dielectric-filled portion of the trench that partitions a damage region between the two doped wells. Latch-up may also be suppressed by providing a lattice-mismatched layer between the trench base and the dielectric filler in the trench.
    Type: Grant
    Filed: January 26, 2006
    Date of Patent: October 2, 2007
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Robert J. Gauthier, Jr., David Vaclav Horak, Charles William Koburger, III, Jack Allan Mandelman, William Robert Tonti
  • Patent number: 7276769
    Abstract: In a semiconductor integrated circuit device, semiconductor elements formed in active regions included in a first element formation portion (stress transition region) in a peripheral circuit formation portion are not electrically driven, while only semiconductor elements of a second element formation portion (steady stress region) are electrically driven. Therefore, the second element formation portion in the peripheral circuit formation portion is located away from an outer STI region so as to be hardly affected by compressive stress.
    Type: Grant
    Filed: April 6, 2004
    Date of Patent: October 2, 2007
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Masaru Yamada, Yasutoshi Okuno
  • Patent number: 7276770
    Abstract: Fast silicon diodes and arrays with high quantum efficiency built on dielectrically isolated wafers. A waveguide is formed in the top surface of the silicon that utilizes total internal reflection from the Si—Si Oxide interface to form an internal mirror. This mirror reflects incoming light into the waveguide cavity, with the light being trapped there by surrounding reflective interfaces. A masking layer may be used to define an input window. Individual diodes or linear arrays may be formed as desired. Some alternate embodiments are described.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: October 2, 2007
    Assignee: Semicoa Semiconductors
    Inventors: Alexander O. Goushcha, Richard A. Metzler
  • Patent number: 7276771
    Abstract: A diode is provided which includes a first-conductivity-type cathode layer, a first-conductivity-type drift layer placed on the cathode region and having a lower concentration than the cathode layer, a generally ring-like second-conductivity-type ring region formed in the drift layer, second-conductivity-type anode region formed in the drift layer located inside the ring region, a cathode electrode formed in contact with the cathode layer, and an anode electrode formed in contact with the anode region, wherein the lowest resistivity of the second-conductivity-type anode region is at least 1/100 of the resistivity of the drift layer, and the thickness of the anode region is smaller than the diffusion depth of the ring region.
    Type: Grant
    Filed: June 23, 2006
    Date of Patent: October 2, 2007
    Assignee: Fuji Electric Co., Ltd.
    Inventors: Tatsuhiko Fujihira, Yasushi Miyasaka
  • Patent number: 7276772
    Abstract: A semiconductor device, including: a semiconductor substrate of a first conduction type; an active region used as a function-element-forming region on the semiconductor substrate; a low-resistance region of a second conduction type formed on an outermost periphery of the active region to surround the active region and having contact with the semiconductor substrate, the second conduction type being different from the first conduction type; and an electrode connected to the function element and the low-resistance region. A diode is formed by the semiconductor substrate and the low-resistance region. The function element and the diode are electrically connected in parallel between the semiconductor substrate and the electrode, and, between the semiconductor substrate and the electrode, resistance of the low-resistance region is lower than resistance of an electrical conduction path via the function element.
    Type: Grant
    Filed: March 5, 2007
    Date of Patent: October 2, 2007
    Assignee: Rohm Co., Ltd.
    Inventor: Kenichi Yoshimochi
  • Patent number: 7276773
    Abstract: A power semiconductor device includes second semiconductor layers of a first conductivity type and third semiconductor layers of a second conductivity type alternately disposed on a first semiconductor layer of the first conductivity type. The device further includes fourth semiconductor layers of the second conductivity type disposed in contact with upper portions of the third semiconductor layers between the second semiconductor layers, and fifth semiconductor layers of the first conductivity type formed in surfaces of the fourth semiconductor layers. The first semiconductor layer is lower in impurity concentration of the first conductivity type than each second semiconductor layer. The third semiconductor layer includes a fundamental portion and an impurity-amount-larger portion formed locally in a depth direction and higher in impurity amount than the fundamental portion.
    Type: Grant
    Filed: April 29, 2005
    Date of Patent: October 2, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Wataru Saito, Ichiro Omura
  • Patent number: 7276774
    Abstract: A dielectric film is formed by atomic layer deposition to conformally fill a narrow, deep trench for device isolation. The method of the illustrated embodiments includes alternately pulsing vapor-phase reactants in a string of cycles, where each cycle deposits no more than about a monolayer of material, capable of completely filling high aspect ratio trenches. Additionally, the trench-fill material composition can be tailored by processes described herein, particularly to match the coefficient of thermal expansion (CTE) to that of the surrounding substrate within which the trench is formed. Mixed phases of mullite and silica have been found to meet the goals of device isolation and matched CTE. The described process includes mixing atomic layer deposition cycles of aluminum oxide and silicon oxide in ratios selected to achieve the desired composition of the isolation material, namely on the order of 30% alumina and 70% silicon oxide by weight.
    Type: Grant
    Filed: June 14, 2004
    Date of Patent: October 2, 2007
    Assignee: ASM International N.V.
    Inventors: Ivo Raaijmakers, Pekka T. Soininen, Ernst H. A. Granneman
  • Patent number: 7276775
    Abstract: Damascene or non-damascene processing when used with a method that includes (a) forming a mask having an opening therethrough on a structure, said opening having sidewalls; (b) implanting an inhibiting species into said structure through the opening so as to form an inhibiting region in said structure; and (c) growing a dielectric layer on the structure in said opening, wherein the inhibiting region partially inhibits growth of the dielectric layer is capable of forming a semiconductor structure, e.g., MOSFET or anti-fuse, including a dual thickness dielectric layer. Alternatively, the dual thickness dielectric can be formed by replacing the inhibiting species mentioned above with a dielectric growth enhancement species which forms an enhancing region in the structure which aids in the growth of the dielectric layer.
    Type: Grant
    Filed: December 26, 2002
    Date of Patent: October 2, 2007
    Assignee: International Business Machines Corporation
    Inventors: Claude Louis Bertin, Anthony J. Dally, John Atkinson Fifield, John Jesse Higgins, Jack Allan Mandelman, William Robert Tonti, Nicholas Martin van Heel
  • Patent number: 7276776
    Abstract: A semiconductor device includes a semiconductor substrate including a main surface; a plurality of first interconnections formed in a capacitance forming region defined on the main surface and extending in a predetermined direction; a plurality of second interconnections each adjacent to the first interconnection located at an edge of the capacitance forming region, extending in the predetermined direction, and having a fixed potential; and an insulating layer formed on the main surface and filling in between each of the first interconnections and between the first interconnection and the second interconnection adjacent to each other. The first interconnections and the second interconnections are located at substantially equal intervals in a plane parallel to the main surface, and located to align in a direction substantially perpendicular to the predetermined direction.
    Type: Grant
    Filed: December 17, 2004
    Date of Patent: October 2, 2007
    Assignees: Renesas Technology Corp., Renesas Device Design Corp.
    Inventors: Takashi Okuda, Yasuo Morimoto, Yuko Maruyama, Toshio Kumamoto
  • Patent number: 7276777
    Abstract: One embodiment of an integrated circuit includes a substrate and a SiWNi thin film resistor formed on the substrate.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: October 2, 2007
    Assignee: TriQuint Semiconductor, Inc.
    Inventor: Fabian Radulescu
  • Patent number: 7276778
    Abstract: A semiconductor system includes a self arc-extinguishing device, and an IGBT that works as a thyristor when a current between a first terminal and a second terminal connected to a second well electrode is small, and as a bipolar transistor when that current is large, and automatically switches between them according to the magnitude of the current. The IGBT is formed with a first conductivity-type semiconductor substrate. On a surface layer of the substrate is a second conductivity-type well region to which a first well electrode is connected. A first conductivity-type emitter region, to which an emitter electrode is connected, is disposed on a surface layer in the well region. A control electrode is disposed through an insulating film partially covering the well and emitter regions. A second conductivity-type well layer, to which the second well electrode is connected, is disposed on a back surface side of the substrate.
    Type: Grant
    Filed: June 30, 2005
    Date of Patent: October 2, 2007
    Assignee: Fuji Electric Holdings Co., Ltd.
    Inventor: Koh Yoshikawa
  • Patent number: 7276779
    Abstract: A III-V group nitride system semiconductor substrate is of a III-V group nitride system single crystal. The III-V group nitride system semiconductor substrate has a flat surface, and a vector made by projecting on a surface of the substrate a normal vector of a low index surface closest to the substrate surface at an arbitrary point in a plane of the substrate is converged on a specific point or a specific region inside or outside the plane of the substrate.
    Type: Grant
    Filed: August 30, 2004
    Date of Patent: October 2, 2007
    Assignee: Hitachi Cable, Ltd.
    Inventor: Masatomo Shibata
  • Patent number: 7276780
    Abstract: A semiconductor device has multiple power-supply through electrodes, grounding through electrodes, and signal-routing through electrodes made through a semiconductor chip. The power-supply through electrodes, the grounding through electrodes, and the signal-routing through electrodes differ mutually in cross-sectional area. Hence, a semiconductor device and a chip-stack semiconductor device are provided which are capable of preventing the electrodes' resistance from developing excessive voltage drop, heat, delay, and loss, and also from varying from one electrode to the other.
    Type: Grant
    Filed: June 20, 2006
    Date of Patent: October 2, 2007
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yoshihisa Dotta, Toshio Kimura
  • Patent number: 7276781
    Abstract: A multichip module for leads-on-chip mounting is described. The multichip module has a lead-frame, a common, contiguous part of a wafer slice disposed in the lead-frame, and a number of semiconductor chips disposed next to one another in the lead-frame. At least some of the semiconductor chips disposed in the lead-frame are disposed on the common, contiguous part of the wafer slice.
    Type: Grant
    Filed: December 17, 2001
    Date of Patent: October 2, 2007
    Assignee: Infineon Technologies AG
    Inventors: Klemens Ferstl, Andreas Woerz, Ulrich Vidal
  • Patent number: 7276782
    Abstract: A package structure for a semiconductor is described. The advantages thereof are that it has a great structural strength and when being penetrated by light, it will not be influenced by external light and can condense the light. Therefore, it is not easily be deformed so that the yield and quality of package can be increased, and when packaging an LED chip, it easily meets the package requirements of an electronic chip. In addition, the substrate structure is cheaper than the prior art, because a double-layered substrate is employed to improve the strength, and the package structure is also preferred because an external frame device is additionally used for preventing interference by external light. The package structure for the semiconductor has a substrate, an external frame device and a polymer filler.
    Type: Grant
    Filed: December 15, 2004
    Date of Patent: October 2, 2007
    Assignee: Harvatek Corporation
    Inventors: Billy Wang, Jonnie Chuang, Chi-Wen Hung, Chuan-Fa Lin
  • Patent number: 7276783
    Abstract: An electronic component with a plastic package and to a method for its production, includes a semiconductor chip. An underside of the plastic package has external contacts. The external contacts are connected to contact areas on an active upper side of the semiconductor chip by contact pillars of the semiconductor chip and wiring lines arranged on the plastic package molding compound. In this case, the contact pillars represent an electrically conducting elevation of the contact areas.
    Type: Grant
    Filed: July 31, 2002
    Date of Patent: October 2, 2007
    Assignee: Infineon Technologies AG
    Inventors: Bernd Goller, Robert Christian Hagen, Gerald Ofner, Christian Stuempfl, Josef Thumbs, Stefan Wein, Holger Woerner
  • Patent number: 7276784
    Abstract: A semiconductor device includes a base substrate; a first fixing layer provided on the base substrate; a first semiconductor chip fixed on the first fixing layer; a first substrate provided above the first semiconductor chip; a plurality of first connection members isolated from the first semiconductor chip, electrically connecting to the first substrate with the base substrate; and a first encapsulating layer provided around the first connection members.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: October 2, 2007
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Shoko Omizo, Mikio Matsui
  • Patent number: 7276785
    Abstract: The invention relates to an electronic module having electronic components, which are arranged in vertically staggered component layers, which are electrically conductively connected to one another via regions, which are uncovered within the respective component layers, of contact bumps or of bonding connections and via interconnects, which are arranged between the component layers and are connected to the uncovered regions. Moreover, the invention relates to a process for producing the electronic module, either in a panel or as individual components.
    Type: Grant
    Filed: September 7, 2004
    Date of Patent: October 2, 2007
    Assignee: Infineon Technologies AG
    Inventors: Michael Bauer, Wolfram Eurskens, Gerold Gruendler, Rudolf Kerler, Heinz Pape, Peter Strobel
  • Patent number: 7276786
    Abstract: Embodiments of the invention include a stacked board-on-chip (BOC) package having a mirroring structure and a dual inline memory module (DIMM) on which the stacked BOC package is mounted. A bottom surface of a first semiconductor chip faces a bottom surface of a second semiconductor chip. An interposer electrically connects first and second packages, respectively comprising the first and second semiconductor chips, to each other. The DIMM is obtained by electrically connecting BOC packages to each other on upper and lower substrates of a printed circuit board. Since a height of the stacked BOC packages is greater than a height of a conventional stacked BOC package, the DIMM has a minimum stub length and an optimal topology. Hence, the DIMM can have a signal with excellent fidelity by reducing a load upon a signal line, and installation or wiring of components within the DIMM 300 requires less effort.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: October 2, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jeong-Hyeon Cho, Jung-Joon Lee, Do-Hyung Kim, Byung-Se So
  • Patent number: 7276787
    Abstract: A carrier structure and method for fabricating a carrier structure with through-vias each having a conductive structure with an effective coefficient of thermal expansion which is less than or closely matched to that of the substrate, and having an effective elastic modulus value which is less than or closely matches that of the substrate. The conductive structure may include concentric via fill areas having differing materials disposed concentrically therein, a core of the substrate material surrounded by an annular ring of conductive material, a core of CTE-matched non-conductive material surrounded by an annular ring of conductive material, a conductive via having an inner void with low CTE, or a full fill of a conductive composite material such as a metal-ceramic paste which has been sintered or fused.
    Type: Grant
    Filed: December 5, 2003
    Date of Patent: October 2, 2007
    Assignee: International Business Machines Corporation
    Inventors: Daniel Charles Edelstein, Paul Stephen Andry, Leena Paivikki Buchwalter, Jon Alfred Casey, Sherif A. Goma, Raymond R. Horton, Gareth Geoffrey Hougham, Michael Wayne Lane, Xiao Hu Liu, Chirag Suryakant Patel, Edmund Juris Sprogis, Michelle Leigh Steen, Brian Richard Sundlof, Cornelia K. Tsang, George Frederick Walker
  • Patent number: 7276788
    Abstract: A conductive system and a method of forming an insulator for use in the conductive system is disclosed. The conductive system comprises a foamed polymer layer on a substrate. The foamed polymer layer has a surface that is hydrophobic, and a plurality of conductive structures are embedded in the foamed polymer layer. An insulator is formed by forming a polymer layer having a thickness on a substrate. The polymer layer is foamed to form a foamed polymer layer having a surface and a foamed polymer layer thickness, which is greater than the polymer layer thickness. The surface of the foamed polymer layer is treated to make the surface hydrophobic.
    Type: Grant
    Filed: August 25, 1999
    Date of Patent: October 2, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Paul A. Farrar
  • Patent number: 7276789
    Abstract: Improved microelectromechanical systems (MEMS), processes and apparatus using thermocompression bonding are disclosed. For example, process embodiments are disclosed in which wafer-scale as well as die-scale thermocompression bonding is utilized to encapsulate MEMS and/or to provide electrical interconnections with MEMS. Apparatus embodiments include apparatus for performing thermocompression bonding and bonded hybrid structures manufactured in accordance with the process embodiments. Devices having various substrate bonding and/or sealing configurations variously offer the advantage of reduced size, higher manufacturing yields, reduced costs, improved reliability, improved compatibility with existing semiconductor manufacturing process and/or greater versatility of applications.
    Type: Grant
    Filed: May 20, 2004
    Date of Patent: October 2, 2007
    Assignee: Microassembly Technologies, Inc.
    Inventors: Michael B. Cohn, Joseph T. Kung
  • Patent number: 7276790
    Abstract: An assembly method that includes providing a first semiconductor device and positioning a second semiconductor device at least partially over the first semiconductor device is disclosed. Spacers space the active surface of the first semiconductor device substantially a predetermined distance apart from the back side of the second semiconductor device. Discrete conductive elements are extended between the active surface of the first semiconductor device and the substrate prior to positioning of the second semiconductor device. Intermediate portions of the discrete conductive elements pass through an aperture formed between the active surface of the first semiconductor chip, the back side of the second semiconductor chip, and two of the spacers positioned therebetween. Assemblies and packaged semiconductor devices that are formed in accordance with the method are also disclosed.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: October 2, 2007
    Assignee: Micron Technology, Inc.
    Inventor: Eric Tan Swee Seng
  • Patent number: 7276791
    Abstract: An electronic device is provided on which semiconductor packages can be mounted efficiently. The electronic device includes a board that can receive a plurality of first semiconductor packages each carrying a processor device and a plurality of second semiconductor packages each carrying a memory device. Mount regions where the packages are to be mounted and non-mount regions are alternately arranged in rows and columns on the board. This ensures approximately equal wiring distances between the packages, allowing processor devices to access associated memory devices at the same time.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: October 2, 2007
    Assignee: Sony Computer Entertainment Inc.
    Inventor: Masaaki Oka
  • Patent number: 7276792
    Abstract: A semiconductor device in the first embodiment includes: an electrode pad and a resin projection, formed on an active surface; a conductive film deposited from a surface of the electrode pad to a surface of the resin projection; a resin bump formed with the resin projection and with the conductive film. The semiconductor device is conductively connected to the opposing substrate through the resin bump electrode. The testing electrode is formed with the conductive film that is extended and applied to the opposite side of the electrode pad across the resin projection.
    Type: Grant
    Filed: May 13, 2005
    Date of Patent: October 2, 2007
    Assignee: Seiko Epson Corporation
    Inventors: Shuichi Tanaka, Haruki Ito, Yasuhito Aruga, Ryohei Tamura, Michiyoshi Takano
  • Patent number: 7276793
    Abstract: A semiconductor device is provided wherein conductive paths 40, formed of crystal that grows better along the X-Y axis than along the Z axis, are embedded in an insulating resin 44, and the back surface of the conductive path 40 is exposed through the insulating resin 44 and sealed. With this arrangement, fractures of the conductive paths 40 embedded in the insulating resin 44 are suppressed.
    Type: Grant
    Filed: February 8, 2005
    Date of Patent: October 2, 2007
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Noriaki Sakamoto, Yoshiyuki Kobayashi, Junji Sakamoto, Shigeaki Mashimo, Katsumi Okawa, Eiju Maehara, Kouji Takahashi
  • Patent number: 7276794
    Abstract: A process for forming a junction-isolated, electrically conductive via in a silicon substrate and a conductive apparatus to carry electrical signal from one side of a silicon wafer to the other side are provided. The conductive via is junction-isolated from the bulk of the silicon substrate by diffusing the via with a dopant that is different than the material of the silicon substrate. Several of the junction-isolated vias can be formed in a silicon substrate and the silicon wafer coupled to a second silicon substrate of a device that requires electrical connection. This process for forming junction-isolated, conductive vias is simpler than methods of forming metallized vias, especially for electrical devices more tolerant of both resistance and capacitance.
    Type: Grant
    Filed: March 2, 2005
    Date of Patent: October 2, 2007
    Assignee: Endevco Corporation
    Inventor: Leslie B. Wilner
  • Patent number: 7276795
    Abstract: A first layer of titanium nitride (TiN) is formed on a semiconductor structure, such as an interconnect via. Then, a second layer of TiN is formed on the first layer of TiN. The first layer of TiN is amorphous. The second layer of TiN is polycrystalline, having a mixed grain orientation. Finally, an aluminum film is formed on the second layer of titanium nitride. Optionally, a titanium silicide layer is formed on the semiconductor structure prior to the step of forming the first layer of titanium nitride. Interconnects formed according to the invention have polycrystalline aluminum films with grain sizes of approximately less than 0.25 microns.
    Type: Grant
    Filed: July 27, 2004
    Date of Patent: October 2, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Wing-Cheong Gilbert Lai, Gurtej Singh Sandhu
  • Patent number: 7276796
    Abstract: An interconnect structure of the single or dual damascene type and a method of forming the same, which substantially reduces the surface oxidation problem of plating a conductive material onto a noble metal seed layer are provided. In accordance with the present invention, a hydrogen plasma treatment is used to treat a noble metal seed layer such that the treated noble metal seed layer is highly resistant to surface oxidation. The inventive oxidation-resistant noble metal seed layer has a low C content and/or a low nitrogen content.
    Type: Grant
    Filed: March 15, 2006
    Date of Patent: October 2, 2007
    Assignee: International Business Machines Corporation
    Inventors: Chih-Chao Yang, Nancy R. Klymko, Christopher C. Parks, Keith Kwong Hon Wong
  • Patent number: 7276797
    Abstract: A structure and method for an improved a bond pad structure. A top wiring layer and a top dielectric (IMD) layer over a semiconductor structure are provided. The buffer dielectric layer is formed over the top wiring layer and the top dielectric (IMD) layer. A buffer opening is formed in the buffer dielectric layer exposing at least of portion of the top wiring layer. A barrier layer is formed over the buffer dielectric layer, and the top wiring layer in the buffer opening. A conductive buffer layer is formed over the barrier layer. The conductive buffer layer is planarized to form a buffer pad in the buffer opening. A passivation layer is formed over the buffer pad and the buffer dielectric layer. A bond pad opening is formed in the passivation layer over at least a portion of the buffer pad. A bond pad support layer is formed over the buffer pad and the buffer dielectric layer. A bond pad layer is formed over the bond pad support layer.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: October 2, 2007
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Zhang Fan, Zhang Bei Chao, Liu Wuping, Chok Kho Liep, Hsia Liang Choo, Lim Yeow Kheng, Alan Cuthbertson, Tan Juan Boon
  • Patent number: 7276798
    Abstract: An integrated vacuum package having an added volume on a perimeter within the perimeter of a bonding seal between two wafers. The added volume of space may be an etching of material from the inside surface of the top wafer. This wafer may have vent holes that may be sealed to maintain a vacuum within the volume between the two wafers after the pump out of gas and air. The inside surface of the top wafer may have an anti-reflective pattern. Also, an anti-reflective pattern may be on the outside surface of the top wafer. The seal between the two wafers may be ring-like and have a spacer material. Also, it may have a malleable material such as solder to compensate for any flatness variation between the two facing surfaces of the wafers.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: October 2, 2007
    Assignee: Honeywell International Inc.
    Inventors: Robert E. Higashi, Karen M. Newstrom-Peitso, Jeffrey A. Ridley
  • Patent number: 7276799
    Abstract: A chip stack package is manufactured at a wafer level by forming connection vias in the scribe lanes adjacent the chips and connecting the device chip pads to the connection vias using rerouting lines. A lower chip is then attached and connected to a substrate, which may be a test wafer, and an upper chip is attached and connected to the lower chip, the electrical connections being achieved through their respective connection vias. In addition to the connection vias, the chip stack package may include connection bumps formed between vertically adjacent chips and/or the lower chip and the substrate. The preferred substrate is a test wafer that allows the attached chips to be tested, and replaced if faulty, thereby ensuring that each layer of stacked chips includes only “known-good die” before the next layer of chips is attached thereby increasing the production rate and improving the yield.
    Type: Grant
    Filed: July 15, 2004
    Date of Patent: October 2, 2007
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kang-Wook Lee, Gu-Sung Kim, Dong-Hyeon Jang, Seung-Duk Baek, Jae-Sik Chung
  • Patent number: 7276800
    Abstract: A carrying structure of electronic components is proposed. The carrying structure includes at least one supporting board with at least one cavity disposed thereon, at least one adhesive layer formed on the supporting board, and at least one electronic component having an active face and a non-active face located in the cavity. The gap between the cavity and the electronic component is filled with a portion of the adhesive layer, and thus the electronic component is fixed in the cavity of the supporting board.
    Type: Grant
    Filed: September 27, 2005
    Date of Patent: October 2, 2007
    Assignee: Phoenix Precision Technology Corporation
    Inventor: Shih-Ping Hsu
  • Patent number: 7276801
    Abstract: Methods, techniques, and structures relating to die packaging. In one exemplary implementation, a die package interconnect structure includes a semiconductor substrate and a first conducting layer in contact with the semiconductor substrate. The first conducting layer may include a base layer metal. The base layer metal may include Cu. The exemplary implementation may also include a diffusion barrier in contact with the first conducting layer and a wetting layer on top of the diffusion barrier. A bump layer may reside on top of the wetting layer, in which the bump layer may include Sn, and Sn may be electroplated. The diffusion barrier may be electroless and may be adapted to prevent Cu and Sn from diffusing through the diffusion barrier. Furthermore, the diffusion barrier may be further adapted to suppress a whisker-type formation in the bump layer.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: October 2, 2007
    Assignee: Intel Corporation
    Inventors: Valery M. Dubin, Sridhar Balakrishnan, Mark Bohr
  • Patent number: 7276802
    Abstract: Integrated circuit packages that connect solder balls between solder ball pads of a die and substrate pads of a printed circuit board (PCB). The solder balls are electrically disconnected from any circuit of the die, i.e., “dummy” solder balls, and are used to temporarily hold the die in position with respect to the PCB until the circuit is wire bonded and an underfill material is cured between the die and the PCB to more permanently connect them together. The underfill material is selected to have a coefficient of thermal expansion (CTE) that is substantially equal to the CTE of the solder balls to prevent thermal mismatch problems. An overmolding compound is disposed about the die and the underfill material and about the wire bonds to complete the package. Various arrangements of the solder ball pads on the die include columnar and row, corner, diagonal, cross, and periphery arrangements.
    Type: Grant
    Filed: April 15, 2002
    Date of Patent: October 2, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Frank L. Hall, Cary J. Baerlocher
  • Patent number: 7276803
    Abstract: Semiconductor components having a semiconductor body which includes a semiconductor base surface have to be sealed with a molding compound in order to protect against moisture or heat. Mechanical interlocking of the molding compound to the semiconductor base surface is achieved by means of at least one interlocking structure. This may be either a horizontal interlocking structure for mechanically interlocking the molding compound to the semiconductor base surface in the direction which is horizontal with respect to the semiconductor base surface and/or a vertical interlocking structure for mechanically interlocking the molding compound to the semiconductor base surface in the direction which is vertical with respect to the semiconductor base surface.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: October 2, 2007
    Assignee: Infineon Technologies AG
    Inventors: Matthias Stecher, Renate Hofmann, Joerg Busch
  • Patent number: 7276804
    Abstract: This invention discloses a vehicle electrical system voltage regulator with improved electrical protection and warning means that discerns and responds to regulator, generator, or vehicle electrical system operation and malfunctions. The regulator includes monitoring, control, and protection circuits with a phase signal monitor, a field switching circuit that operates the field coil in response to electrical power demands, and a field enable switch in series with the field regulating switch. The phase monitor and protection circuit ascertains and transmits generator rotational motion for use by the monitoring and control circuit in discerning the various operating conditions. The monitoring and control circuit operates on the field switching circuit to meet the electrical power demands and provide multi level fault protection to include field switching circuit reconfiguration to continue operating under various fault conditions.
    Type: Grant
    Filed: June 22, 2005
    Date of Patent: October 2, 2007
    Assignee: C.E. Niehoff & Co.
    Inventor: Issam Jabaji
  • Patent number: 7276805
    Abstract: The invention provides a manually-powered electrical assembly. In one aspect, the manually-powered electrical assembly can be a light assembly that comprises a light source, an electrical generator, and a manual actuator assembly. The electrical generator is electrically connected to the light source and is operable to provide an electric current to the light source to operate the light source for providing light. The manual actuator assembly is arranged with the electrical generator for selectively manually operating the electrical generator. The manual actuator assembly includes an operator handle movable over a range of travel between a normal position and an operated position, a biasing mechanism for biasing the operator handle to the normal position, and a drive train connected to the operator handle and the electrical generator for rotating the rotor of the electrical generator. The invention is operable to power other electrical devices such as a mobile phone or a fan.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: October 2, 2007
    Assignee: AWA Micro Power Corporation
    Inventor: Wo Huen Poon
  • Patent number: 7276806
    Abstract: An engine speed detector detects an engine speed of an engine having a baseline torque versus engine speed curve. A torque sensor detects an engine torque of the engine. A data processor determines if the detected engine speed is within a first speed range and if the detected engine torque is within a first torque range. A motor controller activates an electric motor to rotate substantially synchronously with a corresponding engine speed associated with the detected engine torque in an electric propulsion mode in accordance with a supplemental torque versus engine speed curve if the detected engine speed is within the first speed range and if the detected engine torque is within the first torque range. The supplemental torque versus engine speed curve intercepts the baseline torque versus engine speed curve at a lower speed point and a higher speed point.
    Type: Grant
    Filed: February 7, 2007
    Date of Patent: October 2, 2007
    Assignee: Deere & Company
    Inventors: Alan David Sheidler, Brian Joseph Gilmore, Mark Charles DePoorter, Peter Finamore, Duane Herbert Ziegler, Joseph Albert Teijido
  • Patent number: 7276807
    Abstract: A wind turbine braking system including: a wind turbine including turbine blades and a control system; a generator coupled to the turbine blades; a generator converter coupled to the generator and connectable to a utility power grid; at least one dump resistor coupled to the generator and generator converter, and if the utility power grid losses power, the dump resistor applying an electrical load to the generator converter.
    Type: Grant
    Filed: January 19, 2006
    Date of Patent: October 2, 2007
    Assignee: General Electric Company
    Inventors: Henning Luetze, Thomas Edenfeld, Peter Gauchel