Patents Issued in February 21, 2017
  • Patent number: 9577067
    Abstract: Some embodiments of the present disclosure provide a semiconductor device including a semiconductive substrate, a metal gate including a metallic layer proximal to the semiconductive substrate. A dielectric layer surrounds the metal gate. The dielectric layer includes a first surface facing the semiconductive substrate and a second surface opposite to the first surface. A sidewall spacer surrounds the metallic layer with a greater longitudinal height. The sidewall spacer is disposed between the metallic layer and the dielectric layer. An etch stop layer over the metal gate comprises a surface substantially coplanar with the second surface of the dielectric layer. The etch stop layer has a higher resistance to etchant than the dielectric layer. A portion of the etch stop layer is over the sidewall spacer.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: February 21, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY LTD.
    Inventors: Wei-Shuo Ho, Chang-Yin Chen, Chai-Wei Chang, Tsung-Yu Chiang
  • Patent number: 9577068
    Abstract: Semiconductor-oxide-containing gate dielectrics can be formed on surfaces of semiconductor fins prior to formation of a disposable gate structure. A high dielectric constant (high-k) dielectric spacer can be formed to protect each semiconductor-oxide-containing gate dielectric. Formation of the high-k dielectric spacers may be performed after formation of gate cavities by removal of disposable gate structures, or prior to formation of disposable gate structures. The high-k dielectric spacers can be used as protective layers during an anisotropic etch that vertically extends the gate cavity, and can be removed after vertical extension of the gate cavities. A subset of the semiconductor-oxide-containing gate dielectrics can be removed for formation of high-k gate dielectrics for first type devices, while another subset of the semiconductor-oxide-containing gate dielectrics can be employed as gate dielectrics for second type devices.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: February 21, 2017
    Assignee: International Business Machines Corporation
    Inventors: Gregory Costrini, Ravikumar Ramachandran, Reinaldo A. Vega, Richard S. Wise
  • Patent number: 9577069
    Abstract: A method of fabricating a MOS device is disclosed. A substrate having an active area (AA) silicon portion and shallow trench isolation (STI) region surrounding the active area is provided. A hard mask is formed on the substrate. A portion of the hard mask is removed to form an opening on the AA silicon portion. The opening exposes an edge of the STI region. The AA silicon portion is recessed through the opening to a predetermined depth to form a silicon spacer along a sidewall of the STI region in a self-aligned manner. An oxidation process is performed to oxidize the AA silicon portion and the silicon spacer to form a gate oxide layer.
    Type: Grant
    Filed: April 24, 2016
    Date of Patent: February 21, 2017
    Assignee: UNITED MICROELECTRONICS CORP.
    Inventors: Shih-Chieh Pu, Ping-Hung Chiang, Chang-Po Hsiung, Chia-Lin Wang, Nien-Chung Li, Wen-Fang Lee, Shih-Yin Hsiao, Chih-Chung Wang, Kuan-Lin Liu
  • Patent number: 9577070
    Abstract: Methods and structures for forming devices, such as transistors, are discussed. A method embodiment includes forming a gate spacer along a sidewall of a gate stack on a substrate; passivating at least a portion of an exterior surface of the gate spacer; and epitaxially growing a material in the substrate proximate the gate spacer while the at least the portion of the exterior surface of the gate spacer remains passivated. The passivating can include using at least one of a thermal treatment, a plasma treatment, or a thermal treatment.
    Type: Grant
    Filed: November 26, 2014
    Date of Patent: February 21, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chun Hsiung Tsai, Kuo-Feng Yu
  • Patent number: 9577071
    Abstract: A method of fabricating a field effect transistor (FET) includes forming a channel portion over a first surface of a substrate, wherein the channel portion comprises germanium and defines a second surface above the first surface. The method further includes forming cavities that extend through the channel portion and into the substrate. The method further includes epitaxially-growing a strained material in the cavities, wherein the strained material comprises SiGe, Ge, Si, SiC, GeSn, SiGeSn, SiSn or a III-V material.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: February 21, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Tsung-Lin Lee, Chih Chieh Yeh, Feng Yuan, Cheng-Yi Peng, Clement Hsingjen Wann
  • Patent number: 9577072
    Abstract: The present disclosure describes a termination structure for a high voltage semiconductor transistor device. The termination structure is composed of at least two termination zones and an electrical disconnection between the body layer and the edge of the device. A first zone is configured to spread the electric field within the device. A second zone is configured to smoothly bring the electric field back up to the top surface of the device. The electrical disconnection prevents the device from short circuiting the edge of the device. It is emphasized that this abstract is provided to comply with the rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: February 21, 2017
    Assignee: ALPHA AND OMEGA SEMICONDUCTOR INCORPORATED
    Inventors: Lingpeng Guan, Anup Bhalla, Hamza Yilmaz
  • Patent number: 9577073
    Abstract: A silicon-carbide semiconductor substrate having a plurality of first doped regions being laterally spaced apart from one another and beneath a main surface, and a second doped region extending from the main surface to a third doped region that is above the first doped regions is formed. Fourth doped regions extending from the main surface to the first doped regions are formed. A gate trench having a bottom that is arranged over a portion of one of the first doped regions is formed. A high-temperature step is applied to the substrate so as to realign silicon-carbide atoms along sidewalls of the trench and form rounded corners in the gate trench. A surface layer that forms along the sidewalls of the gate trench during the high-temperature step from the substrate is removed.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: February 21, 2017
    Assignee: Infineon Technologies AG
    Inventors: Romain Esteve, Dethard Peters, Wolfgang Bergner, Ralf Siemieniec, Thomas Aichinger, Daniel Kueck
  • Patent number: 9577074
    Abstract: A method of manufacturing a FinFET device is provided, comprising: a. providing a substrate (100); b. forming a fin (200) on the substrate; c. forming an shallow trench isolation structure (300) on the substrate; d. forming an sacrificial gate stack on the isolation structure, wherein the sacrificial gate stack intersects the fin; e. forming source/drain doping regions by ion implantation into the fin; f. depositing an interlayer dielectric layer (400) on the substrate; g. removing the sacrificial gate stack to form a sacrificial gate vacancy; h. forming an doped region (201) under the sacrificial gate vacancy; i. etching the shallow trench isolation structure (300) under the sacrificial gate vacancy until the top surface of the shallow trench isolation structure (300) levels with the bottom surface of the source/drain doping regions; j. forming a new gate stack in the sacrificial gate vacancy.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: February 21, 2017
    Assignee: INSTITUTE OF MICROELECTRONICS, CHINESE ACADEMY OF SCIENCES
    Inventors: Yunfei Liu, Haizhou Yin, Keke Zhang
  • Patent number: 9577075
    Abstract: A method of manufacturing a semiconductor device includes forming a preliminary fin-type active pattern extending in a first direction, forming a device isolation pattern covering a lower portion of the preliminary fin-type active pattern, forming a gate structure extending in a second direction and crossing over the preliminary fin-type active pattern, forming a fin-type active pattern having a first region and a second region, forming a preliminary impurity-doped pattern on the second region by using a selective epitaxial-growth process, and forming an impurity-doped pattern by injecting impurities using a plasma doping process, wherein the upper surface of the first region is at a first level and the upper surface of the second region is at a second level lower than the first level.
    Type: Grant
    Filed: August 15, 2014
    Date of Patent: February 21, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kyungin Choi, Sunghyun Choi, Yong-Suk Tak, Bonyoung Koo, Jaejong Han
  • Patent number: 9577076
    Abstract: In a method of manufacturing a semiconductor device, a plasma annealing and supplying a threshold voltage control gas onto a portion of a substrate is performed to form a fixed charge region including a fixed charge at a surface of the substrate. A MOS transistor is formed on the substrate including the fixed charge region. By the above processes, the threshold voltage of the MOS transistor may be easily controlled.
    Type: Grant
    Filed: February 3, 2015
    Date of Patent: February 21, 2017
    Assignee: Samsung Electronics Co., Ltd
    Inventors: Keun-Hwi Cho, Dong-Won Kim, Yoshinao Harada, Myung-Gil Kang, Jae-Young Park
  • Patent number: 9577077
    Abstract: Some embodiments of the present disclosure relate to a method for forming flash memory. In this method, a first tunnel oxide is formed over a semiconductor substrate. A self-assembled monolayer (SAM) is then formed on the first tunnel oxide. The SAM includes spherical or spherical-like crystalline silicon dots having respective diameters which are less than approximately 30 nm. A second tunnel oxide is then formed over the SAM.
    Type: Grant
    Filed: June 19, 2014
    Date of Patent: February 21, 2017
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Tsu-Hui Su, Chih-Ming Chen, Szu-Yu Wang, Chung-Yi Yu, Chia-Shiung Tsai
  • Patent number: 9577078
    Abstract: Structures and formation methods of a semiconductor device structure are provided. The semiconductor device structure includes a source structure in a semiconductor substrate. The semiconductor device structure also includes a channel layer over the semiconductor substrate. A first portion of the channel layer covers a portion of the source structure. A second portion of the channel layer laterally extends away from the source structure. The semiconductor device structure further includes a drain structure over the semiconductor substrate. The drain structure and the source structure have different conductivity types. The drain structure adjoins the second portion of the channel layer.
    Type: Grant
    Filed: January 13, 2016
    Date of Patent: February 21, 2017
    Assignees: Taiwan Semiconductor Manufacturing Co., Ltd., National Chiao Tung University
    Inventors: Steve S. Chung, E-Ray Hsieh, Yu-Bin Zhao, Samuel C. Pan
  • Patent number: 9577079
    Abstract: Tunnel field effect devices and methods of fabricating tunnel field effect devices are described. In one embodiment, the semiconductor device includes a first drain region of a first conductivity type disposed in a first region of a substrate, a first source region of a second conductivity type disposed in the substrate, the second conductivity type being opposite the first conductivity type, a first channel region electrically coupled between the first source region and the first drain region, the first source region underlying a least a portion of the first channel region, and a first gate stack overlying the first channel region.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: February 21, 2017
    Assignees: Infineon Technologies AG, Indian Institute of Technology Bombay
    Inventors: Harald Gossner, Ramgopal Rao, Ram Asra
  • Patent number: 9577080
    Abstract: A power semiconductor device includes a semiconductor substrate layer of a first conductive type which has a lower part semiconductor layer of a second conductive type and an active region that includes a body region of the second conductive type, a source region of the first conductive type disposed in the body region, and a first doped region of the first conductive type at least a part of which is disposed below the body region. An emitter electrode is electrically connected to the source region, and a groove extends into the substrate layer and includes a shielding electrode electrically connected to the emitter electrode. The groove extends to a deeper depth into the substrate layer than the first doped region. At least a part of a gate is formed above at least a part of the source region and the body region, and is electrically insulated from the shielding electrode.
    Type: Grant
    Filed: June 8, 2015
    Date of Patent: February 21, 2017
    Assignee: Infineon Technologies AG
    Inventors: Holger Huesken, Frank Dieter Pfirsch, Hans-Joachim Schulze
  • Patent number: 9577081
    Abstract: A semiconductor device includes a semiconductor substrate that includes an IGBT region. A first lifetime control layer extending along a planar direction of the semiconductor substrate is provided in a range in a drift region that is closer to the rear surface than an intermediate portion of the semiconductor substrate in a thickness direction. A crystal defect density in the first lifetime control layer is higher than any of a crystal defect density in a region adjacent to the first lifetime control layer on the rear surface side and a crystal defect density in a region adjacent to the first lifetime control layer on a front surface side. A crystal defect density in a region between the first lifetime control layer and the rear surface is lower than a crystal defect density in a region between the first lifetime control layer and the front surface.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: February 21, 2017
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Satoru Kameyama, Shinya Iwasaki
  • Patent number: 9577082
    Abstract: The semiconductor device includes: a plurality of interlayer insulation films, each interlayer insulation film covering a front surface of a corresponding one of the gate electrodes and protruding from the front surface of the semiconductor substrate; the first metal film covering the front surface of the semiconductor substrate and plurality of the interlayer insulation films; and the protective insulation film covering a part of the first metal film. In a cross-section traversing the plurality of trenches, the end of the protective insulation film is above one of the interlayer insulation films, and a width of the one of the interlayer insulation films that is below the end of the protective insulation film is wider than widths of other interlayer insulation films.
    Type: Grant
    Filed: June 21, 2016
    Date of Patent: February 21, 2017
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hidehiro Nakagawa, Hiroshi Hata
  • Patent number: 9577083
    Abstract: A field effect transistor (FET) device including a substrate and a plurality of semiconductor layers provided on the substrate, where a top semiconductor layer is a heavily doped cap layer and another one of the semiconductor layers directly below the cap layer is a Schottky barrier layer, and where a gate recess is formed through the cap layer and into the Schottky barrier layer. The FET device also includes a gate terminal having a titanium layer, an inhibitor layer provided on the titanium layer and a gold layer provided on the inhibitor layer, where the gate terminal is formed in the recess so that the titanium layer is in contact with the Schottky barrier layer, and where the inhibitor layer is effective for preventing hydrogen gas from being dissociated into hydrogen atoms so as to reduce or prevent hydrogen poisoning of the FET device.
    Type: Grant
    Filed: March 16, 2016
    Date of Patent: February 21, 2017
    Assignee: Northrop Grumman Systems Corporation
    Inventors: Yeong-Chang Chou, Richard Lai, Quin W. Kan, Keang H. Kho, Hsu-Hwei Chen, Matthew R. Parlee
  • Patent number: 9577084
    Abstract: A semiconductor device includes a substrate, a semiconductor layer stacked body, and a source electrode and a drain electrode formed on the semiconductor layer stacked body. The semiconductor layer stacked body includes a first nitride semiconductor layer formed on the substrate, and a second nitride semiconductor layer formed on the first nitride semiconductor layer. The semiconductor device further includes a third nitride semiconductor layer formed on the second nitride semiconductor layer and disposed between the source electrode and the drain electrode, and a gate electrode formed on the third nitride semiconductor layer. The semiconductor device includes a first magnesium-containing region having a magnesium concentration of 1×1018 cm?3 or more that is provided right under the third nitride semiconductor layer, from an upper surface of the second nitride semiconductor layer to a position lower than an interface between the first nitride semiconductor layer and the second nitride semiconductor layer.
    Type: Grant
    Filed: December 28, 2015
    Date of Patent: February 21, 2017
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Masahiro Hikita, Hideyuki Okita
  • Patent number: 9577085
    Abstract: A semiconductor device may include interlayer insulating layers stacked in a first direction and separated from each other, word lines formed between the interlayer insulating layers, and sacrificial insulating layers formed between the interlayer insulating layers so that the sacrificial insulating layers are arranged at layers where the word lines are formed. The semiconductor device may also include cell contact plugs each including a first pillar portion passing through at least one of the interlayer insulating layers and the sacrificial insulating layers in the first direction, and a first protruding portion protruding from a sidewall of the first pillar portion and contacting a sidewall of one of the word lines, wherein the cell contact plugs have different depths.
    Type: Grant
    Filed: September 25, 2014
    Date of Patent: February 21, 2017
    Assignee: SK HYNIX INC.
    Inventor: Nam Jae Lee
  • Patent number: 9577086
    Abstract: A device that increases a value of current flowing through a whole chip until a p-n diode in a unit cell close to a termination operates and reduces a size of the chip and a cost of the chip resulting from the reduced size. The device includes a second well region located to sandwich the entirety of a plurality of first well regions therein in plan view, a third separation region located to penetrate the second well region from a surface layer of the second well region in a depth direction, and a second Schottky electrode provided on the third separation region.
    Type: Grant
    Filed: March 27, 2014
    Date of Patent: February 21, 2017
    Assignee: Mitsubishi Electric Corporation
    Inventors: Shiro Hino, Naruhisa Miura, Masayuki Imaizumi, Kohei Ebihara
  • Patent number: 9577087
    Abstract: A semiconductor apparatus that has a first parallel pn-layer formed between an active region and an n+-drain region. A peripheral region is provided with a second parallel pn-layer, which has a repetition pitch narrower than the repetition pitch of the first parallel pn-layer. An n?-surface region is formed between the second parallel pn-layer and a first main surface. On the first main surface side of the n?-surface region, a plurality of p-guard ring regions are formed to be separated from each other. A field plate electrode is connected electrically to the outermost p-guard ring region among the p-guard ring regions. A channel stopper electrode is connected electrically to an outermost peripheral p-region of the peripheral region.
    Type: Grant
    Filed: December 7, 2011
    Date of Patent: February 21, 2017
    Assignee: FUI ELECTRIC CO., LTD.
    Inventors: Yasuhiko Onishi, Akio Sugi
  • Patent number: 9577088
    Abstract: A semiconductor device includes a drift region of a first conductivity type, a channel forming region of a second conductivity type that is selectively provided in a first main surface of the drift region, a first main electrode region of the first conductivity type that is selectively provided in an upper part of the channel forming region, a second main electrode region of the second conductivity type that is provided in a second main surface of the drift region, and a high-concentration region of the first conductivity type that is provided in a portion of the drift region below the channel forming region so as to be separated from the channel forming region. The high-concentration region has a higher impurity concentration than the drift region and the total amount of first-conductivity-type impurities in the high-concentration region is equal to or less than 2.0×1012 cm?2.
    Type: Grant
    Filed: August 11, 2015
    Date of Patent: February 21, 2017
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Koh Yoshikawa
  • Patent number: 9577089
    Abstract: First polysilicon (poly-1) is deposited into deep trenches that have been formed in a substrate. A first polysilicon polishing process is performed to planarize the exposed surfaces of the poly-1 so that the surfaces are flush with adjacent surfaces. Then, shallow trenches are formed in the substrate between the deep trenches, and second polysilicon (poly-2) is deposited into the shallow trenches. A second polysilicon polishing process is performed to planarize the exposed surface of the poly-2 so that the surface is flush with adjacent surfaces. Metal contacts to the poly-1 and the poly-2 are then formed.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: February 21, 2017
    Assignee: Vishay-Siliconix
    Inventors: Kyle Terrill, Deva Pattanayak, Zhiyun Luo
  • Patent number: 9577090
    Abstract: To satisfy both suppression of rise in contact resistance and improvement of breakdown voltage near the end part of a trench part. The trench part GT is provided between a source offset region and a drain offset region at least in plan view in a semiconductor layer, and is provided in a source-drain direction from the source offset region toward the drain offset region in plan view. A gate insulating film GI covers the side surface and the bottom surface of the trench part GT. A gate electrode is provided in the trench part at least in plan view, and contacts the gate insulating film GI. A contact GC contacts the gate electrode GE. The contact GC is disposed, shifted in a first direction perpendicular to the source-drain direction relative to the centerline in the trench part GT extending in the source-drain direction in plan view, and is provided in the trench part GT in plan view.
    Type: Grant
    Filed: November 25, 2015
    Date of Patent: February 21, 2017
    Assignee: Renesas Electronics Corporation
    Inventor: Souichirou Iguchi
  • Patent number: 9577091
    Abstract: A vertical transistor and a manufacturing method thereof are provided herein. The manufacturing method includes forming a first patterned conductive layer on a substrate; forming a patterned metal oxide layer on the first patterned conductive layer, in which the patterned metal oxide layer includes a first patterned insulator layer, a second patterned insulator layer, and a second patterned conductive layer; forming a semiconductor layer; and forming a third patterned conductive layer. The first patterned insulator layer, the second patterned insulator layer, and the second patterned conductive layer are made by using a single metal oxide material. The oxygen concentration of the second patterned conductive layer is different from the oxygen concentrations of the first patterned insulator layer and the second patterned insulator layer.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: February 21, 2017
    Assignee: E Ink Holdings Inc.
    Inventors: Chia-Chun Yeh, Wei-Tsung Chen, Cheng-Hang Hsu, Ted-Hong Shinn
  • Patent number: 9577092
    Abstract: Methods, apparatuses, and systems for providing a body connection to a vertical access device. The vertical access device may include a digit line extending along a substrate to a digit line contact pillar, a body connection line extending along the substrate to a body connection line contact pillar, a body region disposed on the body connection line, an electrode disposed on the body region, and a word line extending to form a gate to the body region. A method for operation includes applying a first voltage to the body connection line, and applying a second voltage to the word line to cause a conductive channel to form through the body region. A memory cell array may include a plurality of vertical access devices.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: February 21, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Kamal M. Karda, Rajesh N. Gupta, Srinivas Pulugurtha, Chandra V. Mouli, Wolfgang Mueller
  • Patent number: 9577093
    Abstract: According to an exemplary embodiment, a method of forming a semiconductor device is provided. The method includes: providing a vertical structure over a substrate; forming an etch stop layer over the vertical structure; forming an oxide layer over the etch stop layer; performing chemical mechanical polishing on the oxide layer and stopping on the etch stop layer; etching back the oxide layer and the etch stop layer to expose a sidewall of the vertical structure and to form an isolation layer; oxidizing the sidewall of the vertical structure and doping oxygen into the isolation layer by using a cluster oxygen doping treatment.
    Type: Grant
    Filed: October 7, 2015
    Date of Patent: February 21, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Cheng-Tung Lin, Teng-Chun Tsai, Li-Ting Wang, De-Fang Chen, Bing-Hung Chen, Huang-Yi Huang, Hui-Cheng Chang, Huan-Just Lin, Ming-Hsing Tsai
  • Patent number: 9577094
    Abstract: An integrated circuit and method includes a DEMOS transistor with improved CHC reliability that has a lower resistance surface channel under the DEMOS gate that transitions to a lower resistance subsurface channel under the drain edge of the DEMOS transistor gate.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: February 21, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Shaoping Tang, Amitava Chatterjee, Imran Mahmood Khan, Kaiping Liu
  • Patent number: 9577095
    Abstract: A semiconductor device includes a MISFET. The semiconductor device also includes a silicon nitride film 12 and a silicon nitride film 10 arranged on the silicon nitride film 12. The silicon nitride film 12 covers at least a portion of an upper part of a source/drain 8 of the MISFET and has a film thickness thinner than a height of a gate electrode 4. The source/drain 8 includes nickel silicide 9 on its boundary to the silicon nitride film 10. The silicon nitride film 10 is a stressed film. A tight adhering property between the silicon nitride film 12 and the surface of the source/drain 8 and that between the silicon nitride film 12 and the silicon nitride film 10 are rendered higher than a tight adhering property which would prevail when the silicon nitride film 10 be made to adhere tightly to the source/drain 8.
    Type: Grant
    Filed: April 30, 2015
    Date of Patent: February 21, 2017
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Kazuya Uejima, Hidetatsu Nakamura, Akihito Sakakidani, Eiichirou Watanabe
  • Patent number: 9577096
    Abstract: A fin field effect transistor (finFET) device and a method of fabricating a finFET are described. The method includes forming a replacement gate stack on a substrate between inside walls of sidewall spacers, epitaxially growing a raised source drain (RSD) on the substrate adjacent to outside walls of the sidewall spacers, and forming a silicide above the RSD and along the outside walls of the sidewall spacers. The method also includes depositing and polishing a contact metal above portions of the replacement gate stack and the RSD, the contact metal contacting the silicide along the outside walls of the sidewall spacers adjacent to the portions of the replacement gate stack.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: February 21, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Effendi Leobandung, Soon-Cheon Seo, Tenko Yamashita, Chun-Chen Yeh
  • Patent number: 9577097
    Abstract: A semiconductor device having a stressor is provided. A first trench and a second trench spaced apart from each other are formed in a substrate. A channel area is defined between the first trench and the second trench. A gate dielectric layer is formed on the channel area. A gate electrode is formed on the gate dielectric layer. The stressor includes a plurality of semiconductor layers formed in the first trench and the second trench and a plurality of interlayers formed between the semiconductor layers. Sidewalls of the first trench and the second trench are v-shaped (e.g., have a < or > shape).
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: February 21, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Jaehoon Lee
  • Patent number: 9577098
    Abstract: A semiconductor device includes a gate electrode formed on a silicon substrate via a gate insulation film in correspondence to a channel region, source and drain regions of a p-type diffusion region formed in the silicon substrate at respective outer sides of sidewall insulation films of the gate electrode, and a pair of SiGe mixed crystal regions formed in the silicon substrate at respective outer sides of the sidewall insulation films in epitaxial relationship to the silicon substrate, the SiGe mixed crystal regions being defined by respective sidewall surfaces facing with each other, wherein, in each of the SiGe mixed crystal regions, the sidewall surface is defined by a plurality of facets forming respective, mutually different angles with respect to a principal surface of the silicon substrate.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: February 21, 2017
    Assignee: SOCIONEXT INC.
    Inventors: Yosuke Shimamune, Akira Katakami, Akiyoshi Hatada, Masashi Shima, Naoyoshi Tamura
  • Patent number: 9577099
    Abstract: A semiconductor structure includes a fin upon a semiconductor substrate. A clean epitaxial growth surface is provided by forming a buffer layer upon fin sidewalls and an upper surface of the fin. The buffer layer may be epitaxially grown. Diamond shaped epitaxy is grown from the buffer layer sidewalls. In some implementations, the diamond shaped epitaxy may be subsequently merged with surrounding dielectric. A dopant concentration of the surrounding dielectric may be higher than a dopant concentration of the diamond shaped epitaxy.
    Type: Grant
    Filed: March 9, 2015
    Date of Patent: February 21, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Veeraraghavan S. Basker, Eric C. T. Harley, Yue Ke, Alexander Reznicek, Henry K. Utomo
  • Patent number: 9577100
    Abstract: A semiconductor device including at least one suspended channel structure of a silicon including material, and a gate structure present on the suspended channel structure. At least one gate dielectric layer is present surrounding the suspended channel structure, and at least one gate conductor is present on the at least one gate dielectric layer. Source and drain structures may be composed of a silicon and germanium including material. The source and drain structures are in contact with the source and drain region ends of the suspended channel structure through a silicon cladding layer.
    Type: Grant
    Filed: June 16, 2014
    Date of Patent: February 21, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Kangguo Cheng, Michael P. Chudzik, Eric C. Harley, Judson R. Holt, Yue Ke, Rishikesh Krishnan, Kern Rim, Henry K. Utomo
  • Patent number: 9577101
    Abstract: A method for forming a semiconductor device includes forming a fin extending upwards from a semiconductor substrate and forming a sacrificial layer on sidewalls of a portion of the fin. The method further includes forming a spacer layer over the sacrificial layer and recessing the portion of the fin past a bottom surface of the sacrificial layer. The recessing forms a trench disposed between sidewall portions of the spacer layer. At least a portion of the sacrificial layer is removed, and a source/drain region is formed in the trench.
    Type: Grant
    Filed: March 13, 2015
    Date of Patent: February 21, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Kuo-Cheng Ching, Chi-Wen Liu
  • Patent number: 9577102
    Abstract: A method of forming a gate includes: forming a dummy gate; forming an inter layer dielectric (ILD) laterally adjacent to the dummy gate; doping a dopant into the dummy gate and the ILD, in which a surface dopant concentration of the dummy gate is lower than a surface dopant concentration of the ILD; removing the dummy gate to form a cavity after doping the dopant into the dummy gate and the ILD; and forming the gate in the cavity.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: February 21, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Ting Hsiao, Cheng-Ta Wu, Lun-Kuang Tan, Liang-Yu Yen, Ting-Chun Wang, Tsung-Han Wu, Wei-Ming You
  • Patent number: 9577103
    Abstract: A liquid crystal display with two insulating substrates. A first insulating substrate has crossing signal lines, a pixel electrode, and a drain electrode electrically connected to the pixel electrode through a contact hole. A spacer is formed on the first signal line of the first insulating substrate, and is wider at a first portion close to the first insulating substrate than at a second portion close to the second insulating substrate, and the drain electrode comprises a first portion and a second portion extending in a different direction with respect to the first portion.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: February 21, 2017
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Joong-Hyun Mun, Jang-Kun Song, Yong-Woo Choi, Bo-Sung Kim, Kwan-Wook Jung, Jung-Ho Lee, Hyo-Rak Nam
  • Patent number: 9577104
    Abstract: A COA substrate is provided including a substrate base, a first metal layer, a first insulating layer, a semiconductor layer, a second metal layer, a color resist layer, and a pixel electrode layer. The surface of the color resist layer is provided with a protrusion and a recess, and the pixel electrode is disposed on the protrusion and the recess. A plurality of protrusions and a plurality of recesses are provided, thereby increasing the display quality of a liquid crystal display device.
    Type: Grant
    Filed: November 19, 2014
    Date of Patent: February 21, 2017
    Assignee: SHENZHEN CHINA STAR OPTOELECTRONICS TECHNOLOGY CO., LTD
    Inventors: Bo Sun, XiaoLing Zou
  • Patent number: 9577105
    Abstract: A thin film transistor based on carbon nanotubes comprises a source electrode, a drain electrode, a semiconducting layer, an insulating layer and a gate electrode. The drain electrode is spaced apart from the source electrode. The semiconductor layer is electrically connected with the source electrode and the drain electrode. The gate electrode is insulated from the source electrode, the drain electrode, and the semiconductor layer by the insulating layer. The semiconductor layer includes a number of semiconductor fragments, each of the number of semiconductor fragments includes multilayer semiconductor molecular layers, and a quantity of layers of the number of semiconductor molecular layers ranges from about 1 to about 20.
    Type: Grant
    Filed: February 13, 2015
    Date of Patent: February 21, 2017
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Yuan-Hao Jin, Qun-Qing Li, Shou-Shan Fan
  • Patent number: 9577107
    Abstract: To improve crystallinity of an oxide semiconductor. To provide a crystalline oxide semiconductor film in which a crystallized region extends to the interface with a base or the vicinity of the interface, and to provide a method for forming the oxide semiconductor film. An oxide semiconductor film containing indium, gallium, and zinc is formed, and the oxide semiconductor film is irradiated with an energy beam, thereby being heated. Note that the oxide semiconductor film includes a c-axis aligned crystal region or microcrystal.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: February 21, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Akihisa Shimomura, Takahisa Ishiyama, Masaki Koyama, Erumu Kikuchi, Takuya Hirohashi, Masashi Oota
  • Patent number: 9577108
    Abstract: Disclosed is a semiconductor device with a transistor in which an oxide semiconductor is used. An insulating layer on a back channel side of the oxide semiconductor layer has capacitance of lower than or equal to 2×10?4 F/m2. For example, in the case of a top-gate transistor, a base insulating layer has capacitance of lower than or equal to 2×10?4 F/m2, whereby the adverse effect of an interface state between the substrate and the base insulating layer can be reduced. Thus, a semiconductor device where fluctuation in electrical characteristics is small and reliability is high can be manufactured.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: February 21, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yuta Endo, Toshinari Sasaki, Kosei Noda, Mizuho Sato
  • Patent number: 9577109
    Abstract: There are provided a transparent conductive film and a method for preparing the same. The transparent conductive film of the present application comprises a compound having a crystalline structure and represented by Chemical Formula 1 and thus can be applied as a technology substituting for conventional ITO conductive films.
    Type: Grant
    Filed: September 17, 2013
    Date of Patent: February 21, 2017
    Assignee: LG CHEM, LTD.
    Inventors: Dongmyung Shin, Dong-Ryul Kim, Chanyeup Chung
  • Patent number: 9577110
    Abstract: A novel semiconductor device including an oxide semiconductor is provided. In particular, a planar semiconductor device including an oxide semiconductor is provided. A semiconductor device including an oxide semiconductor and having large on-state current is provided. The semiconductor device includes an oxide insulating film, an oxide semiconductor film over the oxide insulating film, a source electrode and a drain electrode in contact with the oxide semiconductor film, a gate insulating film between the source electrode and the drain electrode, and a gate electrode overlapping the oxide semiconductor film with the gate insulating film. The oxide semiconductor film includes a first region overlapped with the gate electrode and a second region not overlapped with the gate electrode, the source electrode, and the drain electrode. The first region and the second region have different impurity element concentrations.
    Type: Grant
    Filed: December 24, 2014
    Date of Patent: February 21, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Junichi Koezuka, Masami Jintyou, Yukinori Shima, Takashi Hamochi, Yasutaka Nakazawa, Shunpei Yamazaki
  • Patent number: 9577111
    Abstract: A method of fabricating a thin film transistor including following steps is provided. Sequentially form a semiconductor layer, a metal layer and an auxiliary layer on a substrate. Perform a crystallization process to transform the semiconductor layer into an active layer after the metal layer and the auxiliary layer are disposed on the semiconductor layer. After the active layer is formed, pattern the metal layer to form a source and a drain. Form a gate insulator and a gate. The gate insulator is disposed between the gate and the source and drain.
    Type: Grant
    Filed: November 11, 2015
    Date of Patent: February 21, 2017
    Assignee: Au Optronics Corporation
    Inventor: Jia-Hong Ye
  • Patent number: 9577112
    Abstract: To improve electric characteristics of a semiconductor device including an oxide semiconductor. Alternatively, to improve reliability of a semiconductor device including an oxide semiconductor. In a transistor including a first oxide film, an oxide semiconductor film, a pair of electrodes in contact with the oxide semiconductor film, and a second oxide film in contact with the oxide semiconductor film and the pair of electrodes, oxygen is added to the first oxide film and the second oxide film in contact with the oxide semiconductor film and the pair of electrodes, so that oxygen vacancies are reduced. The oxygen is diffused to the oxide semiconductor film by heat treatment or the like; thus, oxygen vacancies in the oxide semiconductor film are reduced.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: February 21, 2017
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 9577113
    Abstract: A semiconductor device includes a substrate; a gate electrode provided on the substrate; a first insulating layer formed on the gate electrode; an island-shaped oxide semiconductor layer formed on the first insulating layer; a source electrode electrically connected to the oxide semiconductor layer; and a drain electrode electrically connected to the oxide semiconductor layer, wherein the first insulating layer has a recess in the surface, wherein the oxide semiconductor layer is formed on a bottom surface and side walls of said recess and on an upper face of the first insulating layer, and wherein at least one of the source electrode and the drain electrode is disposed on a portion of the oxide semiconductor layer over the side walls of said recess, and is not formed on a portion of the oxide semiconductor layer over the upper face of the first insulating layer.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: February 21, 2017
    Assignee: SHARP KABUSHIKI KAISHA
    Inventor: Yuhichi Saitoh
  • Patent number: 9577114
    Abstract: A transistor, a display device, and associated methods, the transistor including a substrate; an active layer pattern disposed on the substrate, the active layer pattern including silicon and graphene; a gate insulating layer disposed on the active layer pattern; a gate electrode disposed on the gate insulating layer; an insulating interlayer covering the active layer pattern and the gate electrode; and a source electrode and a drain electrode in contact with the active layer pattern.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: February 21, 2017
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Jin-Woo Lee, Moo-Jin Kim
  • Patent number: 9577115
    Abstract: A semiconductor device has an isolation layer pattern, a plurality of gate structures, and a first insulation layer pattern. The isolation layer pattern is formed on a substrate and has a recess thereon. The gate structures are spaced apart from each other on the substrate and the isolation layer pattern. The first insulation layer pattern is formed on the substrate and covers the gate structures and an inner wall of the recess. The first insulation layer pattern has a first air gap therein.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: February 21, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Byung-Kyu Cho, Chang-Hyun Lee, Young-Woo Park
  • Patent number: 9577116
    Abstract: The present disclosure relates to a Zener diode including a cathode region having a first conductivity type, formed on a surface of a semiconductor substrate having a second conductivity type. The Zener diode includes an anode region having the second conductivity type, formed beneath the cathode region. One or more trench isolations isolate the cathode and anode regions from a remainder of the substrate. A first conducting region is configured to, when subjected to an adequate voltage, generate a first electric field perpendicular to an interface between the cathode and anode regions. A second conducting region is configured to, when subjected to an adequate voltage, generate a second electric field parallel to the interface between the cathode and anode regions.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: February 21, 2017
    Assignee: STMICROELECTRONICS (ROUSSET) SAS
    Inventors: Roberto Simola, Pascal Fornara
  • Patent number: 9577117
    Abstract: A semiconductor chip, which includes an n-type substrate, over which an n-type epitaxial layer having trenches introduced into the epitaxial layer and filled with p-type semiconductor is situated, the trenches each having a heavily doped p-type region on their upper side, the n+-type substrate being situated in such a manner, that an alternating sequence of n-type regions having a first width and p-type regions having a second width is present; a first metallic layer, which is provided on the front side of the semiconductor chip, forms an ohmic contact with the heavily doped p-type regions and is used as an anode electrode; a second metallic layer, which is provided on the back side of the semiconductor chip, constitutes an ohmic contact and is used as a cathode electrode; a dielectric layer provided, in each instance, between an n-type region and an adjacent p-type region, as well as p-type layers provided between the n-type regions and the first metallic layer.
    Type: Grant
    Filed: February 6, 2013
    Date of Patent: February 21, 2017
    Assignee: ROBERT BOSCH GMBH
    Inventors: Ning Qu, Alfred Goerlach