Patents Issued in February 21, 2017
  • Patent number: 9577017
    Abstract: An organic light emitting diode (“OLED”) display includes: a front display part including a plurality of front pixels disposed on a substrate, where the front pixels display an image on a front surface thereof; and a side display part including a plurality of side pixels disposed on the substrate, where the side pixels display an image on a side surface thereof, where the front display part and the side display part are configured to have different resonance structures from each other.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: February 21, 2017
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Sang Woo Kim, Nam Jin Kim, Yong-Kyu Jang
  • Patent number: 9577018
    Abstract: There are provided a display unit and an electronic apparatus that are capable of preventing color mixture in adjacent color pixels, and improving color reproducibility and chromaticity viewing angle. The display unit includes: a drive substrate having a plurality of pixels with a partition therebetween; and a first light shielding film provided on the partition.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: February 21, 2017
    Assignee: Sony Corporation
    Inventors: Eisuke Negishi, Shinichi Teraguchi, Shuji Kudo
  • Patent number: 9577019
    Abstract: An OLED display and a method of manufacturing the same are disclosed. In one aspect, the display device includes a plurality of pixels, wherein each of the pixels includes a plurality of wires including a first wire extending in a first direction and a second wire extending in a second direction crossing the first direction, the second wire having top and bottom portions opposing each other. The pixels also include a plurality of switching TFTs electrically connected to the wires, a driving TFT configured to supply a driving current, a storage capacitor electrically connected to the wires and the driving TFT, and a connecting wire electrically connecting the driving TFT to a selected one of the switching TFTs, wherein the connecting wire has top and bottom portions opposing each other, and wherein at least the top portions of the connecting wire and the second wire are formed on different layers.
    Type: Grant
    Filed: March 10, 2015
    Date of Patent: February 21, 2017
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jinsung An, Juwon Yoon, Jeongsoo Lee, Jiseon Lee, Choongyoul Im
  • Patent number: 9577020
    Abstract: An organic light-emitting display device includes a first substrate and a second substrate that face each other; an organic light-emitting device that is disposed between the first and second substrates and includes a pixel electrode separately formed in each pixel, a common electrode facing the pixel electrode, and an organic light-emitting layer disposed between the pixel electrode and the common electrode; and an electrode unit and at least one wiring unit that are disposed between the first substrate and the second substrate, the electrode unit including at least one thin-film transistor for transmitting a light-emitting signal to the pixel electrode and at least one capacitor, wherein an optical property modification layer obtained by modifying an optical property of at least one of the electrode unit and the wiring unit is formed on a surface of the at least one of the electrode unit and the wiring unit.
    Type: Grant
    Filed: May 26, 2015
    Date of Patent: February 21, 2017
    Assignee: Samsung Display Co., Ltd.
    Inventors: Len Kaplan, Valeriy Prushinskiy, Se-Ho Cheong, Won-Sik Hyun, Byoung-Seong Jeong, Jang-Seok Ma
  • Patent number: 9577021
    Abstract: The display device including a pixel circuit has a first line, a transistor, a light emitting element, and a second line. The transistor is located between the second line and an electrode of the light emitting element. Either the first line or the second line is wired in a region that overlaps a light emitting region of the light emitting element in a lamination direction of layers. The second line intersects the first line outside of the light emitting region and overlaps a non-light emitting region of the light emitting element.
    Type: Grant
    Filed: April 13, 2016
    Date of Patent: February 21, 2017
    Assignee: Sony Corporation
    Inventors: Yukihito Iida, Akitsuna Takagi, Katsuhide Uchino
  • Patent number: 9577022
    Abstract: An inductor is provided. The inductor includes first and second bonding pads on a semiconductor substrate, a lead pin on a board trace, a first bonding wire being configured to connect the first bonding pad and the lead pin, and a second bonding wire configured to connect the second bonding pad and the lead pin, the second bonding wire being connected to the first bonding wire in parallel.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: February 21, 2017
    Assignee: Samsung Electronics Co., LTD.
    Inventors: Jae Sup Lee, Seong Joong Kim
  • Patent number: 9577023
    Abstract: A method including forming a first metal wire in a first dielectric layer, the first metal wire including a first vertical side opposite from a second vertical side; and forming a second metal wire in a second dielectric layer above the first dielectric layer, the second metal wire including a third vertical side opposite from a fourth vertical side, where the first vertical side is laterally offset from the third vertical side by a first predetermined distance, and the second vertical side is laterally offset from the fourth vertical side by a second predetermined distance, where the first metal wire and the second metal wire are in direct contact with one another.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: February 21, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Edward C. Cooney, III, Dinh Dang, David A. DeMuynck, Sarah A. McTaggart, Gary L. Milo, Melissa J. Roma, Jeffrey L. Thompson, Thomas W. Weeks
  • Patent number: 9577024
    Abstract: An inductive device is formed in a circuit structure that includes alternating conductive and insulating layers. The device includes, in a plurality of the conductive layers, traces forming a respective pair of interleaved loops and at least one interconnect segment in each of the plurality of the conductive layers. In each layer among the plurality of the conductive layers, at least one loop in the respective pair is closed by jumpers to an interconnect segment formed in another layer above or below the layer.
    Type: Grant
    Filed: February 5, 2014
    Date of Patent: February 21, 2017
    Assignee: Mellanox Technologies Ltd.
    Inventors: Yossi Smeloy, Eyal Frost
  • Patent number: 9577025
    Abstract: Some features pertain to an integrated device that includes a substrate, several metal layers coupled to the substrate, several dielectric layers coupled to the substrate, and a redistribution portion coupled to one of the metal layers. The redistribution portion includes a first metal redistribution layer, an insulation layer coupled to the first metal redistribution layer, and a second metal redistribution layer coupled to the insulation layer. The first metal redistribution layer, the insulation layer, and the second metal redistribution layer are configured to operate as a capacitor in the integrated device. In some implementations, the capacitor is a metal-insulator-metal (MIM) capacitor.
    Type: Grant
    Filed: February 14, 2014
    Date of Patent: February 21, 2017
    Assignee: QUALCOMM Incorporated
    Inventors: Shiqun Gu, Ryan David Lane, Glenn David Raskin, Shree Krishna Pandey
  • Patent number: 9577026
    Abstract: According to an exemplary embodiment, a method of forming a MIM capacitor is provided. The method includes the following operations: providing a first metal layer; providing a dielectric layer over the first metal layer; providing a second metal layer over the dielectric layer; etching the second metal layer to define the metal-insulator-metal capacitor; and oxidizing a sidewall of the second metal layer. According to an exemplary embodiment, a MIM capacitor is provided. The MIM capacitor includes a first metal layer; a dielectric layer over the first metal layer; a second metal layer over the dielectric layer; and an oxidized portion in proximity to the second metal layer and made of oxidized second metal layer.
    Type: Grant
    Filed: May 27, 2014
    Date of Patent: February 21, 2017
    Assignee: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Chih-Wei Kao, Chun-Chieh Huang, Hsiao-Hui Yu, Hao-Wen Hsu, Pin-Cheng Hsu, Chia-Der Chang
  • Patent number: 9577027
    Abstract: A semiconductor device includes a substrate, a seed layer, a first patterned metal layer, a dielectric layer and a second metal layer. The seed layer is disposed on a surface of the substrate. The first patterned metal layer is disposed on the seed layer and has a first thickness. The first patterned metal layer includes a first part and a second part. The dielectric layer is disposed on the first part of the first patterned metal layer. The second metal layer is disposed on the dielectric layer and has a second thickness, where the first thickness is greater than the second thickness. The first part of the first patterned metal layer, the dielectric layer and the second metal layer form a capacitor. The first part of the first patterned metal layer is a lower electrode of the capacitor, and the second part of the first patterned metal layer is an inductor.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: February 21, 2017
    Assignee: ADVANCED SEMICONDUCTOR ENGINEERING, INC.
    Inventors: Teck-Chong Lee, Chien-Hua Chen, Yung-Shun Chang, Pao-Nan Lee
  • Patent number: 9577028
    Abstract: A capacitor in a semiconductor device may include a lower electrode, a dielectric layer including a metal oxide and disposed on the lower electrode, a first material layer including aluminum oxide (AlxOy) and disposed on the dielectric layer, a second material layer including titanium oxynitride (TixOyNz) and disposed on the first material layer, and an upper electrode disposed on the second material layer, wherein the first material layer is between the dielectric layer and the second material layer, and the dielectric layer is between the lower electrode and the first material layer.
    Type: Grant
    Filed: May 13, 2016
    Date of Patent: February 21, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dongwon Lim, Kweonjae Lee
  • Patent number: 9577029
    Abstract: A metal-insulator-metal (MIM) capacitor structure and a method for manufacturing the same. The method includes a step hereinafter. A 5-layered dual-dielectric structure is provided on a substrate. The 5-layered dual-dielectric structure includes a bottom metal layer, a first dielectric layer, an intermediate metal layer, a second dielectric layer and a top metal layer in order. The first dielectric layer and the second dielectric layer have different thicknesses.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: February 21, 2017
    Assignee: UNITED MICROELECTRONICS CORPORATION
    Inventors: Zhi-Biao Zhou, Shao-Hui Wu, Chi-Fa Ku
  • Patent number: 9577030
    Abstract: Semiconductor structures having capacitors and metal wiring integrated in a same dielectric layer are described. For example, a semiconductor structure includes a plurality of semiconductor devices disposed in or above a substrate. One or more dielectric layers are disposed above the plurality of semiconductor devices. Metal wiring is disposed in each of the dielectric layers. The metal wiring is electrically coupled to one or more of the semiconductor devices. A metal-insulator-metal (MIM) capacitor is disposed in one of the dielectric layers, adjacent to the metal wiring of the at least one of the dielectric layers. The MIM capacitor is electrically coupled to one or more of the semiconductor devices.
    Type: Grant
    Filed: May 22, 2015
    Date of Patent: February 21, 2017
    Assignee: Intel Corporation
    Inventor: Nick Lindert
  • Patent number: 9577031
    Abstract: A semiconductor structure and a method for forming the same are provided. The semiconductor structure comprises: a substrate; and a plurality of convex structures formed on a surface of the substrate and arranged in a longitudinal direction of the substrate, each convex structure having a top surface, a bottom surface located on the surface of the substrate, a first end surface and a second end surface parallel to each other, and a front side surface and a rear side surface parallel to each other, in which the rear side surface of one of two adjacent convex structures and the front side surface of the other are located on a same plane to allow the plurality of convex structures to form a zigzag structure.
    Type: Grant
    Filed: July 12, 2012
    Date of Patent: February 21, 2017
    Inventors: Yuan Li, Lei Guo
  • Patent number: 9577032
    Abstract: A groove for air ventilation is formed in a rib with a substantially rectangular ring shape which is provided so as to surround a concave portion provided in a rear surface of a semiconductor chip. The groove is provided in each side or at each corner of the rib so as to traverse the rib from the inner circumference to the outer circumference of the rib. The depth of the groove is equal to or less than the depth of the concave portion provided in the rear surface of the chip. In this way, it is possible to reliably solder a semiconductor device, in which the concave portion is provided in the rear surface of the semiconductor chip and the rib is provided in the outer circumference of the concave portion, to a base substrate, without generating a void in a drain electrode provided in the concave portion.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: February 21, 2017
    Assignee: FUJI ELECTRIC CO., LTD.
    Inventor: Kenichi Iguchi
  • Patent number: 9577033
    Abstract: A semiconductor device having a vertical drain extended MOS transistor may be formed by forming deep trench structures to define vertical drift regions of the transistor, so that each vertical drift region is bounded on at least two opposite sides by the deep trench structures. The deep trench structures are spaced so as to form RESURF regions for the drift region. Trench gates are formed in trenches in the substrate over the vertical drift regions. The body regions are located in the substrate over the vertical drift regions.
    Type: Grant
    Filed: November 18, 2015
    Date of Patent: February 21, 2017
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Marie Denison, Sameer Pendharkar, Guru Mathur
  • Patent number: 9577034
    Abstract: Methods, apparatuses and devices related to the manufacturing of compensation devices are provided. In some cases, an n/p-codoped layer is deposited for calibration purposes to minimize a net doping concentration. In other cases, alternatingly n- and p-doped layers are then deposited. In other embodiments, an n/p-codoped layer is deposited in a trench where n- and p-dopants have different diffusion behavior. To obtain different doping profiles, a heat treatment may be performed.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: February 21, 2017
    Assignee: Infineon Technologies Austria AG
    Inventors: Anton Mauder, Hans Weber, Klemens Pruegl
  • Patent number: 9577035
    Abstract: Disclosed are a structure for providing electrical isolation in a semiconductor substrate and an associated method for the structure's fabrication. The structure includes a deep trench isolation loop having a first depth disposed in the semiconductor substrate. A dielectric material is disposed in the deep trench isolation loop and one or more through silicon vias (TSVs), having a second depth, are disposed in the semiconductor substrate and within a perimeter of the deep trench isolation loop. A portion of the semiconductor substrate surrounding the deep trench isolation loop may be doped. A metallic filler may be disposed within the one or more TSVs and the metallic filler may be in direct electrical contact with the semiconductor substrate.
    Type: Grant
    Filed: July 24, 2013
    Date of Patent: February 21, 2017
    Assignee: Newport Fab, LLC
    Inventors: Paul D. Hurwitz, Edward Preisler, Hadi Jebory
  • Patent number: 9577036
    Abstract: A semiconductor device includes a semiconductor device and a semiconductor fin on the semiconductor substrate, in which the semiconductor fin has a fin isolation structure at a common boundary that is shared by the two cells. The fin isolation structure has an air gap extending from a top of the semiconductor fin to a stop layer on the semiconductor substrate. The air gap divides the semiconductor fin into two portions of the semiconductor fin. The fin isolation structure includes a dielectric cap layer capping a top of the air gap.
    Type: Grant
    Filed: November 12, 2015
    Date of Patent: February 21, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Che-Cheng Chang, Chih-Han Lin
  • Patent number: 9577037
    Abstract: A population of bright and stable nanocrystals is provided. The nanocrystals include a semiconductor core and a thick semiconductor shell and can exhibit high extinction coefficients, high quantum yields, and limited or no detectable blinking.
    Type: Grant
    Filed: December 23, 2011
    Date of Patent: February 21, 2017
    Assignee: Life Technologies Corporation
    Inventors: Eric Welch, Joseph Bartel, Eric Tulsky, Joseph Treadway, Yongfen Chen
  • Patent number: 9577038
    Abstract: A method of making a semiconductor device includes forming a nanosheet stack including a first layer and a second layer; patterning a gate stack on the nanosheet stack; forming a first spacer along a sidewall of the gate stack; removing an endwall portion of the nanosheet stack that extends beyond the first spacer such that a portion of the second layer is exposed from a sidewall of the first spacer; depositing a second spacer along a sidewall of the first spacer; recessing the substrate beneath the second spacer to form an isolation region; depositing an oxide on the gate stack and within the isolation region and partially recessing the oxide; removing a portion of the second spacer such that the portion of the second layer is exposed; and growing an epitaxial layer on the portion of the second layer that is exposed to form a source/drain over the isolation region.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: February 21, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Bruce B. Doris, Terence B. Hook, Xin Miao
  • Patent number: 9577039
    Abstract: A MOS transistor structure for matched operation in weak-inversion or sub-threshold range (e.g. input-pair of operational amplifier, comparator, and/or current-mirror) is disclosed. The transistor structure may include a well region of any impurity type in a substrate (SOI is included). The well-region can even be represented by the substrate itself. At least one transistor is located in the well region, whereby the active channel-region of the transistor is independent from lateral isolation interfaces between GOX (gate oxide) and FOX (field oxide; including STI-shallow trench isolation).
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: February 21, 2017
    Assignee: INFINEON TECHNOLOGIES AG
    Inventor: Hubert Rothleitner
  • Patent number: 9577040
    Abstract: A method of forming a source/drain region with an abrupt, vertical and conformal junction and the resulting device are disclosed. Embodiments include forming a gate electrode over and perpendicular to a semiconductor fin; forming first spacers on opposite sides of the gate electrode; forming second spacers on opposite sides of the fin; forming a cavity in the fin adjacent the first spacers, between the second spacers; partially epitaxially growing source/drain regions in each cavity; implanting a first dopant into the partially grown source/drain regions with an optional RTA thereafter; epitaxially growing a remainder of the source/drain regions in the cavities, in situ doped with a second dopant; and implanting a third dopant in the source/drain regions.
    Type: Grant
    Filed: June 22, 2016
    Date of Patent: February 21, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Peijie Feng, Jianwei Peng, Yanxiang Liu, Shesh Mani Pandey, Francis Benistant
  • Patent number: 9577041
    Abstract: A transistor device with a tuned dopant profile is fabricated by implanting one or more dopant migrating mitigating material such as carbon. The process conditions for the carbon implant are selected to achieve a desired peak location and height of the dopant profile for each dopant implant, such as boron. Different transistor devices with similar boron implants may be fabricated with different peak locations and heights for their respective dopant profiles by tailoring the carbon implant energy to effect tuned dopant profiles for the boron.
    Type: Grant
    Filed: February 25, 2016
    Date of Patent: February 21, 2017
    Assignee: Mie Fujitsu Semiconductor Limited
    Inventors: Teymur Bakhishev, Sameer Pradhan, Thomas Hoffmann, Sachin R. Sonkusale
  • Patent number: 9577042
    Abstract: The source/drain of a fully III-V semiconductor or Si-based transistor includes a bottom barrier layer that may be lattice matched to the channel, a lower layer of a wide bandgap III-V material and a top layer of a comparatively narrow bandgap III-V material, with a compositionally graded layer between the lower layer and top layer gradually transitioning from the wide bandgap material to the narrow bandgap material.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: February 21, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Steven Bentley, Rohit Galatage
  • Patent number: 9577043
    Abstract: A semiconductor device includes a buffer layer on a semiconductor substrate including first and second regions, a first channel layer on the buffer layer of the first region, a second channel layer on the buffer layer of the second region, and a spacer layer between the second channel layer and the buffer layer. The buffer layer, the first and second channel layers, and the spacer layer are formed of semiconductor materials including germanium. A germanium concentration difference between the first and second channel layers is greater than a germanium concentration difference between the buffer layer and the second channel layer. The spacer layer has a germanium concentration gradient.
    Type: Grant
    Filed: August 13, 2015
    Date of Patent: February 21, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jongryeol Yoo, Hyun Jung Lee, Sunjung Kim, Seung Hun Lee, Eunhye Choi
  • Patent number: 9577044
    Abstract: A semiconductor device includes first and second second-conductivity-type region groups containing multiple second-conductivity-type regions that are disposed on a first silicon carbide semiconductor layer of a first conductivity type, arrayed in parallel following one direction with a space between each other, and first and second electrodes disposed on the first silicon carbide semiconductor layer and forming a Schottky junction with the first silicon carbide semiconductor layer. The first electrode covers a position where a distance from adjacent first and second second-conductivity-type regions included in a first second-conductivity-type region group, and a distance from a third second-conductivity-type region included in a second second-conductivity-type region group and adjacent to the first and second second-conductivity-type regions, are equal.
    Type: Grant
    Filed: February 26, 2015
    Date of Patent: February 21, 2017
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Masao Uchida, Masashi Hayashi, Koutarou Tanaka
  • Patent number: 9577045
    Abstract: In a general aspect, a power semiconductor device can include a collector region disposed on a substrate, the collector region can include n-type silicon carbide (SiC). The power semiconductor device can also include a base region disposed on the collector region. The base region can include p-type SiC doped with gallium. The power semiconductor device can include an emitter region disposed on the base region. The emitter region can include n-type SiC carbide.
    Type: Grant
    Filed: March 27, 2015
    Date of Patent: February 21, 2017
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Andrei Konstantinov
  • Patent number: 9577046
    Abstract: A semiconductor device includes a semiconductor layer having a first surface and a second surface, a first electrode on the first surface, a second electrode on the second surface, a first semiconductor region of a first conductivity type in the semiconductor layer, a second semiconductor region of a second conductivity type in an element region of the semiconductor layer between the first semiconductor region and the first electrode, a third semiconductor region of the second conductivity type between the second semiconductor region and the first electrode, and a fourth semiconductor region of the second conductivity type in a termination region of the semiconductor layer inwardly of the first surface. A distance between the fourth semiconductor region and the second surface is greater than a distance between the second semiconductor region and the second surface.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: February 21, 2017
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoichi Hori, Tsuyoshi Oota, Hiroshi Kono, Atsuko Yamashita
  • Patent number: 9577047
    Abstract: An article includes a support substrate bonded to heterostructure epitaxial layers that include one or more electronic devices. The support substrate has a bonding surface and the heterostructure epitaxial layers have a surface with the epitaxial growth direction of the heterostructure epitaxial layers towards the surface. The surface of the heterostructure epitaxial layers is bonded at the bonding surface of the support substrate by ion exchange between the surface of the heterostructure epitaxial layers and the bonding surface of the support substrate.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: February 21, 2017
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventors: Christopher L. Chua, Qian Wang, Brent S. Krusor, JengPing Lu, Scott J. Limb
  • Patent number: 9577048
    Abstract: Heterostructure field-effect transistor (HFET) having a channel layer, a barrier layer disposed on the channel layer, and a gate, source and drain electrodes disposed on the barrier layer, respectively, and corresponding fabrication methods are disclosed. The drain electrode includes a p-type semiconductor patterned structure and a raised drain section, the drain electrode includes a Schottky contact and an ohmic contact, the Schottky contact is formed between a top surface together with a side surface of p-type semiconductor patterned structure and a bottom surface together with a side surface of raised drain section, the ohmic contact is formed between another surface of raised drain section and barrier layer, the raised drain section partially surrounding the p-type semiconductor patterned structure, and a bandgap of the channel layer is less than a bandgap of the barrier layer.
    Type: Grant
    Filed: September 24, 2015
    Date of Patent: February 21, 2017
    Assignee: EPISTAR CORPORATION
    Inventors: Ya-Yu Yang, Ping-Hao Lin
  • Patent number: 9577049
    Abstract: A semiconductor device structure is provided. The semiconductor device structure includes a substrate. The semiconductor device structure includes a semiconductor layer over the substrate. The semiconductor layer includes a transition metal chalcogenide. The semiconductor device structure includes a source electrode and a drain electrode over and connected to the semiconductor layer and spaced apart from each other by a gap. The source electrode and the drain electrode are made of graphene.
    Type: Grant
    Filed: January 6, 2016
    Date of Patent: February 21, 2017
    Assignees: Taiwan Semiconductor Manufacturing Co., Ltd., National Taiwan University
    Inventors: Shih-Yen Lin, Chong-Rong Wu, Chi-Wen Liu
  • Patent number: 9577050
    Abstract: Provided is a method for manufacturing a semiconductor device. Also provided are: a semiconductor device which can be obtained by the method; and a dispersion that can be used in the method. A method for manufacturing a semiconductor device (500a) of the present invention comprises the steps (a)-(c) described below and is characterized in that the crystal orientation of a first dopant implanted layer (52) is the same as the crystal orientation of a semiconductor layer or a base (10) that is formed of a semiconductor element. (a) A dispersion which contains doped particles is applied to a specific part of a layer or a base. (b) An unsintered dopant implanted layer is obtained by drying the applied dispersion. (c) The specific part of the layer or the base is doped with a p-type or n-type dopant by irradiating the unsintered dopant implanted layer with light, and the unsintered dopant implanted layer is sintered, thereby obtaining a dopant implanted layer that is integrated with the layer or the base.
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: February 21, 2017
    Assignee: TEIJIN LIMITED
    Inventors: Yuka Tomizawa, Yoshinori Ikeda, Tetsuya Imamura
  • Patent number: 9577051
    Abstract: A method of fabricating a semiconductor device includes forming a first set of gate electrodes over a substrate, adjacent gate electrodes of the first set of gate electrodes being separated by a first gap width. Each gate electrode of the first set of gate electrodes has a first gate width. The method further includes forming a second set of gate electrodes over the substrate, adjacent gate electrodes of the second set of gate electrodes being separated by a second gap width less than the first gap width. Each gate electrode of the second set of gate electrodes has a second gate width greater than the first gate width.
    Type: Grant
    Filed: June 20, 2014
    Date of Patent: February 21, 2017
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Lee-Wee Teo, Ming Zhu, Hui-Wen Lin, Bao-Ru Young, Harry-Hak-Lay Chuang
  • Patent number: 9577052
    Abstract: A semiconductor device includes a body including a first junction region; a pillar positioned over the body, and including a vertical channel region and a second junction region over the vertical channel region; a gate trench exposing side surfaces of the pillar; a gate dielectric layer covering the gate trench; and a gate electrode embedded in the gate trench, with the gate dielectric layer interposed therebetween. The gate electrode includes a first work function liner overlapping with the vertical channel region, and including an aluminum-containing metal nitride; a second work function liner overlapping with the second junction region, and including a silicon-containing non-metal material; and an air gap positioned between the second work function liner and the second junction region.
    Type: Grant
    Filed: March 2, 2016
    Date of Patent: February 21, 2017
    Assignee: SK Hynix Inc.
    Inventor: Tae-Kyung Oh
  • Patent number: 9577053
    Abstract: The present disclosure relates to a Zener diode including a Zener diode junction formed in a semiconductor substrate along a plane parallel to the surface of the substrate, and positioned between a an anode region having a first conductivity type and a cathode region having a second conductivity type, the cathode region extending from the surface of the substrate. A first conducting region is configured to generate a first electric field perpendicular to the plane of the Zener diode junction upon application of a first voltage to the first conducting region, and a second conducting region is configured to generate a second electric field along the plane of the Zener diode junction upon application of a second voltage to the second conducting region.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: February 21, 2017
    Assignee: STMICROELECTRONICS (ROUSSET) SAS
    Inventors: Roberto Simola, Pascal Fornara
  • Patent number: 9577054
    Abstract: A semiconductor device comprises an element region and a terminal region that surrounds the element region. The semiconductor device includes a first semiconductor region having a first conductivity type and a second semiconductor region having a second conductivity type and provided on the first semiconductor region. A third semiconductor region having the first conductivity type is provided on the second semiconductor region. A first electrode is electrically connected to the first semiconductor region. A second electrode is electrically connected to the third semiconductor region. A third and a fourth electrode are disposed in the element region. A distance from the first electrode to the third electrode is less than a distance from the first electrode to the fourth electrode.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: February 21, 2017
    Assignee: KABUSHIKI KAISHA TOSHIBA
    Inventors: Takuma Hara, Tetsuro Nozu
  • Patent number: 9577055
    Abstract: The present disclosure relates to a semiconductor device. Such a semiconductor device includes a trench metal-oxide-semiconductor (MOS) transistor having two or more electrodes in a trench formed on a substrate of the semiconductor, where a part of a shield electrode positioned at a bottom of the trench is formed to have a large thickness, and a groove is formed in a gate electrode that is stacked on the shield electrode, such that a part of the shield electrode protrudes to a surface of the semiconductor device so as to be connected with a source power. In such a manner, by minimizing a region in which the shield electrode and the gate electrode overlap, a region that decreases problematic effects, such as leakage current of gate/source or gate/drain of a trench MOS transistor, and a region where high difference of a gate electrode is generated, are removed.
    Type: Grant
    Filed: September 24, 2014
    Date of Patent: February 21, 2017
    Assignee: Magnachip Semiconductor, Ltd.
    Inventor: Jin Woo Han
  • Patent number: 9577056
    Abstract: A semiconductor component having at least one first contact structure for feeding in and/or leading away charge carriers in relation to the semiconductor component, which first contact structure has at least one contact-making point for electrically conductively connecting the first contact structure to an external terminal, and which first contact structure has at least one first-order branching point proceeding from the contact-making point, at which first-order branching point at least one first-order subsequent conduction track branches off.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: February 21, 2017
    Assignee: Fraunhofer-Gesellschaft zur Forderung der angewandten Forschung e.V.
    Inventor: Richard Reiner
  • Patent number: 9577057
    Abstract: Techniques are disclosed for forming contacts in silicon semiconductor devices. In some embodiments, a transition layer forms a non-reactive interface with the silicon semiconductor contact surface. In some such cases, a conductive material provides the contacts and the material forming a non-reactive interface with the silicon surface. In other cases, a thin semiconducting or insulating layer provides the non-reactive interface with the silicon surface and is coupled to conductive material of the contacts. The techniques can be embodied, for instance, in planar or non-planar (e.g., double-gate and tri-gate FinFETs) transistor devices.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: February 21, 2017
    Assignee: INTEL CORPORATION
    Inventors: Michael G. Haverty, Sadasivan Shankar, Tahir Ghani, Seongjun Park
  • Patent number: 9577058
    Abstract: Semiconductor devices and methods for making semiconductor devices are disclosed herein. A method configured in accordance with a particular embodiment includes forming a stack of semiconductor materials from an epitaxial substrate, where the stack of semiconductor materials defines a heterojunction, and where the stack of semiconductor materials and the epitaxial substrate further define a bulk region that includes a portion of the semiconductor stack adjacent the epitaxial substrate. The method further includes attaching the stack of semiconductor materials to a carrier, where the carrier is configured to provide a signal path to the heterojunction. The method also includes exposing the bulk region by removing the epitaxial substrate.
    Type: Grant
    Filed: July 10, 2015
    Date of Patent: February 21, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Martin F. Schubert, Vladimir Odnoblyudov, Cem Basceri, Thomas Gehrke
  • Patent number: 9577059
    Abstract: A non-volatile memory device may include a control plug formed over a substrate. A floating gate may be formed over the substrate, the floating gate surrounding the control plug and being separated from the control plug by a gap. A first charge blocking layer may be formed over sidewalls of the floating gate to fill the gap.
    Type: Grant
    Filed: October 17, 2013
    Date of Patent: February 21, 2017
    Assignee: SK Hynix Inc.
    Inventor: Sung-Kun Park
  • Patent number: 9577060
    Abstract: An embodiment includes a first nonplanar transistor including a first fin that includes first source and drain nodes, and a first channel between the first source and drain nodes; a second nonplanar transistor including a second fin that includes second source and drain nodes, and a second channel between the second source and drain nodes; a nonplanar gate on the first fin between the first source and drain nodes and on the second fin between the second source and drain nodes; and first insulation included between the gate and the first fin and second insulation between the gate and the second fin; wherein the gate mechanically resonates at a first frequency when at least one of the gate and the first fin is actuated with alternating current (AC) to produce periodic forces on the gate. Other embodiments are described herein.
    Type: Grant
    Filed: June 29, 2013
    Date of Patent: February 21, 2017
    Assignee: INTEL CORPORATION
    Inventors: Raseong Kim, Ian A. Young
  • Patent number: 9577061
    Abstract: An asymmetric high-k dielectric for reduced gate induced drain leakage in high-k MOSFETs and methods of manufacture are disclosed. The method includes performing an implant process on a high-k dielectric sidewall of a gate structure. The method further includes performing an oxygen annealing process to grow an oxide region on a drain side of the gate structure, while inhibiting oxide growth on a source side of the gate structure adjacent to a source region.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: February 21, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony I. Chou, Arvind Kumar, Chung-Hsun Lin, Shreesh Narasimha, Claude Ortolland, Jonathan T. Shaw
  • Patent number: 9577062
    Abstract: A gate conductor material stack including, from bottom to top, of a first metallic nitride, a second metallic nitride, and a conductive material portion is employed for a transistor in combination with a gate dielectric including a high dielectric constant (high-k) dielectric material. The second metallic nitride includes a nitride of an aluminum-containing metallic alloy of at least two elemental metals, and can be selected from TaAlN, TiAlN, and WAlN. The second metallic nitride can provide a function of oxygen scavenging from the high-k gate dielectric and/or prevent diffusion of atoms from the conductive material portion. The gate conductor material stack can enable a reduced inversion thickness and/or a reduced magnitude for a linear threshold voltage for p-type field effect transistors compared with a gate electrode employing a single metallic material.
    Type: Grant
    Filed: October 27, 2014
    Date of Patent: February 21, 2017
    Assignees: International Business Machines Corporation, Renesas Electronics Corporation
    Inventors: Hemanth Jagannathan, Hiroshi Sunamura
  • Patent number: 9577063
    Abstract: The present invention provides a bipolar transistor, a method for forming the bipolar transistor, a method for turning on the bipolar transistor, and a band-gap reference circuit, virtual ground reference circuit and double band-gap reference circuit with the bipolar transistor. The bipolar transistor includes: a Silicon-On-Insulator wafer; a base area, an emitter area and a collector area; a base area gate dielectric layer on a top silicon layer and atop the base area; a base area control-gate on the base area gate dielectric layer; an emitter electrode connected to the emitter area via a first contact; a collector electrode connected to the collector area via a second contact; and a base area control-gate electrode connected to the base area control-gate via a third contact.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: February 21, 2017
    Assignee: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (BEIJING) CORPORATION
    Inventors: Min-Hwa Chi, Lihying Ching, Deyuan Xiao
  • Patent number: 9577064
    Abstract: A high electron mobility transistor comprising: an epitaxial substrate comprising a semi-insulating substrate, a buffer layer and a barrier layer sequentially stacked; a first and a second current conducting electrode formed on, and in ohmic contact with, the barrier layer; a control gate and one or more field plate electrode(s) formed on, and in contact with, the barrier layer between the first and second current conducting electrodes; and an electric circuit formed for electrically connecting each field plate electrode to an electric reference potential and comprising at least a rectifying contact and/or an electric resistor, wherein the rectifying contact is formed outside the channel area of the high electron mobility transistor and is distinguished from the rectifying contact formed by the corresponding field plate electrode.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: February 21, 2017
    Assignee: SELEX ES S.P.A.
    Inventors: Marco Peroni, Paolo Romanini
  • Patent number: 9577065
    Abstract: A back end of line device and method for fabricating a transistor device include a substrate having an insulating layer formed thereon and a channel layer formed on the insulating layer. A gate structure is formed on the channel layer. Dopants are implanted into an upper portion of the channel layer on opposite sides of the gate structure to form shallow source and drain regions using a low temperature implantation process. An epitaxial layer is selectively grown on the shallow source and drain regions to form raised regions above the channel layer and against the gate structure using a low temperature plasma enhanced chemical vapor deposition process, wherein low temperature is less than about 400 degrees Celsius.
    Type: Grant
    Filed: May 8, 2015
    Date of Patent: February 21, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Wilfried E. Haensch, Bahman Hekmatshoar-Tabari, Ali Khakifirooz, Tak H. Ning, Ghavam G. Shahidi, Davood Shahrjerdi
  • Patent number: 9577066
    Abstract: One illustrative method disclosed herein includes, among other things, forming first and second fins, forming a liner layer above at least a first upper surface of the first fin and a second upper surface of the second fin, and forming an ion-containing region in the first portion of the liner layer while not forming the ion-containing region in second portion of the liner layer. The method also includes performing a liner etching process so as to remove the second portion of the liner layer while leaving at least a portion of the first portion of the liner layer positioned above the first fin, and performing at least one etching process to define a reduced-height second fin that is less than an initial first height of the first fin.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: February 21, 2017
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Fuad Al-Amoody, Jinping Liu