With A Chemical Reaction (except Ionization) In A Disparate Zone To Form A Precursor (e.g., Transport Processes) Patents (Class 117/99)
  • Publication number: 20090178611
    Abstract: The present invention is related to the field of semiconductor processing equipment and methods and provides, in particular, methods and equipment for the sustained, high-volume production of Group III-V compound semiconductor material suitable for fabrication of optic and electronic components, for use as substrates for epitaxial deposition, for wafers and so forth. In preferred embodiments, these methods are optimized for producing Group III-N (nitrogen) compound semiconductor wafers and specifically for producing GaN wafers. Specifically, the method includes reacting an amount of a gaseous Group III precursor as one reactant with an amount of a gaseous Group V component as another reactant in a reaction chamber under conditions sufficient to provide sustained high volume manufacture of the semiconductor material on one or more substrates, with the gaseous Group III precursor continuously provided at a mass flow of 50 g Group III element/hour for at least 48 hours.
    Type: Application
    Filed: November 15, 2007
    Publication date: July 16, 2009
    Applicant: S.O.I. TEC Silicon on Insulator Technologies S.A.
    Inventors: Chantal Arena, Christiaan Werkhoven
  • Patent number: 7556688
    Abstract: A method for growing bulk GaN and AlGaN single crystal boules, preferably using a modified HVPE process, is provided. The single crystal boules typically have a volume in excess of 4 cubic centimeters with a minimum dimension of approximately 1 centimeter. If desired, the bulk material can be doped during growth to achieve n-, i-, or p-type conductivity. In order to have growth cycles of sufficient duration, preferably an extended Ga source is used in which a portion of the Ga source is maintained at a relatively high temperature while most of the Ga source is maintained at a temperature close to, and just above, the melting temperature of Ga. To grow large boules of AlGaN, preferably multiple Al sources are used, the Al sources being sequentially activated to avoid Al source depletion and excessive degradation.
    Type: Grant
    Filed: May 20, 2005
    Date of Patent: July 7, 2009
    Assignee: Freiberger Compound Materials GmbH
    Inventors: Yuri V. Melnik, Vitali Soukhoveev, Vladimir Ivantsov, Katie Tsvetkov, Vladimir A. Dmitriev
  • Publication number: 20090167139
    Abstract: According to the present invention, a phosphorus-doped diamond film allowing a significantly reduced electron emission voltage, a method for producing the same, and a diamond electron source using the same, such diamond electron source exerting stable and excellent electron emission characteristics, which can be used for a cold cathode surface structure operable with low voltage, are provided. Also, a method for producing a phosphorus-doped diamond film, comprising growing a diamond film on a diamond substrate by a microwave CVD method in an atmosphere containing gases (methane and hydrogen) and phosphorus with the use of tertiary butyl phosphorus as a source of addition of phosphorous, such diamond film containing phosphorus at a concentration of 1015 cm?3 or more, having a resistivity of 107 ?cm or less, and allowing a voltage for initiation of electron emission to be 30 V or less, and a diamond electron source using the same are provided.
    Type: Application
    Filed: August 28, 2006
    Publication date: July 2, 2009
    Applicant: NATIONAL INSTITUTE OF ADV INDUSTRIAL SCI AND TECH
    Inventors: Takatoshi Yamada, Shinichi Shikata
  • Patent number: 7501023
    Abstract: A method and apparatus for growing low defect, optically transparent, colorless, crack-free, substantially flat, single crystal Group III nitride epitaxial layers with a thickness of at least 10 microns is provided. These layers can be grown on large area substrates comprised of Si, SiC, sapphire, GaN, AlN, GaAs, AlGaN and others. In one aspect, the crack-free Group III nitride layers are grown using a modified HVPE technique. If desired, the shape and the stress of Group III nitride layers can be controlled, thus allowing concave, convex and flat layers to be controllably grown. After the growth of the Group III nitride layer is complete, the substrate can be removed and the freestanding Group III nitride layer used as a seed for the growth of a boule of Group III nitride material. The boule can be sliced into individual wafers for use in the fabrication of a variety of semiconductor structures (e.g., HEMTs, LEDs, etc.).
    Type: Grant
    Filed: February 13, 2004
    Date of Patent: March 10, 2009
    Assignee: Technologies and Devices, International, Inc.
    Inventors: Vladimir A. Dmitriev, Yuri V. Melnik
  • Publication number: 20090056619
    Abstract: A physical vapor transport growth technique for silicon carbide is disclosed. The method includes the steps of introducing a silicon carbide powder and a silicon carbide seed crystal into a physical vapor transport growth system, separately introducing a heated silicon-halogen gas composition into the system in an amount that is less than the stoichiometric amount of the silicon carbide source powder so that the silicon carbide source powder remains the stoichiometric dominant source for crystal growth, and heating the source powder, the gas composition, and the seed crystal in a manner that encourages physical vapor transport of both the powder species and the introduced silicon-halogen species to the seed crystal to promote bulk growth on the seed crystal.
    Type: Application
    Filed: August 29, 2007
    Publication date: March 5, 2009
    Inventors: Stephan G. Mueller, Hudson M. Hobgood, Valeri F. Tsvetkov
  • Patent number: 7488385
    Abstract: The invention concerns the preparation of gallium nitride films by epitaxy with reduced defect density levels. It concerns a method for producing a gallium nitride (GaN) film by epitaxial deposition of GaN. The invention is characterized in that it comprises at least a step of epitaxial lateral overgrowth and in that it comprises a step which consists in separating part of the GaN layer from its substrate by embrittlement through direct ion implantation in the GaN substrate. The invention also concerns the films obtainable by said method as well as the optoelectronic and electronic components provided with said gallium nitride films.
    Type: Grant
    Filed: May 28, 2003
    Date of Patent: February 10, 2009
    Assignee: Lumilog
    Inventors: Hacène Lahreche, Gilles Nataf, Bernard Beaumont
  • Patent number: 7481881
    Abstract: Affords a method of manufacturing GaN crystal substrate in which enlargement of pit size in the growing of GaN crystal is inhibited to enable GaN crystal substrate with a high substrate-acquisition rate to be produced. The method of manufacturing GaN crystal substrate includes a step of growing GaN crystal (4) by a vapor growth technique onto a growth substrate (1), the GaN-crystal-substrate manufacturing method being characterized in that in the step of growing the GaN crystal (4), pits (6) that define facet planes (5F) are formed in the crystal-growth surface, and being characterized by having the pit-size increase factor of the pits (6) be 20% or less.
    Type: Grant
    Filed: January 20, 2005
    Date of Patent: January 27, 2009
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventor: Takuji Okahisa
  • Patent number: 7438761
    Abstract: A hydrogen chloride gas and an ammonia gas are introduced with a carrier gas into a reactor in which a substrate and at least an aluminum metallic material through conduits. Then, the hydrogen gas and the ammonia gas are heated by heaters, and thus, a III-V nitride film including at least Al element is epitaxially grown on the substrate by using a Hydride Vapor Phase Epitaxy method. The whole of the reactor is made of an aluminum nitride material which does not suffer from the corrosion of an aluminum chloride gas generated by the reaction of an aluminum metallic material with a hydrogen chloride gas.
    Type: Grant
    Filed: January 4, 2006
    Date of Patent: October 21, 2008
    Assignee: NGK Insulators, Ltd.
    Inventors: Tomohiko Shibata, Keiichiro Asai, Mitsuhiro Tanaka
  • Patent number: 7427555
    Abstract: Highly planar non-polar GaN films are grown by hydride vapor phase epitaxy (HVPE). The resulting films are suitable for subsequent device regrowth by a variety of growth techniques.
    Type: Grant
    Filed: July 15, 2003
    Date of Patent: September 23, 2008
    Assignees: The Regents of the University of California, The Japan Science and Technology Agency
    Inventors: Benjamin A. Haskell, Paul T. Fini, Shigemasa Matsuda, Michael D. Craven, Steven P. DenBaars, James S. Speck, Shuji Nakamura
  • Patent number: 7402206
    Abstract: A method of synthesizing or growing a compound having the general formula Mn+1AXn(16) where M is a transition metal, n is 1, 2, 3 or higher, A is an A-group element and X is carbon, nitrogen or both, which comprises the step of exposing a substrate to gaseous components and/or components vaporized from at least one solid source (13, 14, 15) whereby said components react with each other to produce the Mn+1AXn (16) compound.
    Type: Grant
    Filed: December 2, 2002
    Date of Patent: July 22, 2008
    Assignee: ABB AB
    Inventors: Peter Isberg, Jens-Petter Palmquist, Ulf Jansson, Lars Hultman, Jens Birch, Timo Seppänen
  • Patent number: 7399357
    Abstract: A method for the controlled growth of thin films by atomic layer deposition by making use of multilayers and using energetic radicals to facilitate the process is described in this invention. In this method, a first reactant is admitted into the reaction chamber volume, where there is a substrate to be coated. This first reactant then adsorbs, in a self-limiting process, onto the substrate to be coated. After removing this first reactant from the reaction chamber volume, leaving a layer coating the substrate, a second reactant is then admitted into the reaction chamber volume, which adsorbs onto this initial layer in a self-limiting process. The second reactant is then also removed from the reaction chamber volume. Following this procedure a self-limited multilayer of unreacted species remains adsorbed on the substrate to be coated. If additional chemical species are desirable, these exposures and removals could be continued. Next this multilayer is exposed to a flux of radicals.
    Type: Grant
    Filed: May 8, 2003
    Date of Patent: July 15, 2008
    Inventor: Arthur Sherman
  • Patent number: 7384481
    Abstract: Methods for forming compositions comprising a single-phase rare-earth dielectric disposed on a substrate are disclosed. In some embodiments, the method forms a semiconductor-on-insulator structure. Compositions and structures that are formed via the method provide the basis for forming high-performance devices and circuits.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: June 10, 2008
    Assignee: Translucent Photonics, Inc.
    Inventor: Petar Atanackovic
  • Patent number: 7357837
    Abstract: The method of making a GaN single crystal substrate comprises a mask layer forming step of forming on a GaAs substrate 2 a mask layer 8 having a plurality of opening windows 10 disposed separate from each other; and an epitaxial layer growing step of growing on the mask layer 8 an epitaxial layer 12 made of GaN.
    Type: Grant
    Filed: October 24, 2003
    Date of Patent: April 15, 2008
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Kensaku Motoki, Takuji Okahisa, Naoki Matsumoto
  • Publication number: 20070277731
    Abstract: Provided a method and an apparatus for growing high-quality GaN bulk single crystals without causing cracks. The method of growing GaN bulk single crystals includes providing a susceptor in a reaction chamber, providing a seed-accommodating portion having a given depth on an upper surface of the susceptor, providing GaN seeds on a bottom surface of the seed-accommodating portion so that only an upper surface of the GaN seeds is exposed, growing GaN bulk single crystals on the GaN seeds; and cooling the grown GaN bulk single crystals and separating the GaN bulk single crystals from the seed-accommodating portion.
    Type: Application
    Filed: June 1, 2007
    Publication date: December 6, 2007
    Inventor: Jal-yong Han
  • Patent number: 7250083
    Abstract: A method and an apparatus for executing efficient and cost-effective Atomic Layer Deposition (ALD) at low temperatures are presented. ALD films such as oxides and nitrides are produced at low temperatures under controllable and mild oxidizing conditions over substrates and devices that are moisture- and oxygen-sensitive. ALD films, such as oxides, nitrides, semiconductors and metals, are efficiently and cost-effectively deposited from conventional metal precursors and activated nonmetal sources. Additionally, substrate preparation methods for optimized ALD are disclosed.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: July 31, 2007
    Assignee: Sundew Technologies, LLC
    Inventor: Ofer Sneh
  • Patent number: 7147713
    Abstract: A method of forming a silicon carbon compound. A silicon source is introduced into an environment. Silicon particles are formed therefrom. One or more hydrocarbons are introduced into the environment separately from the silicon source, thereby forming one or more silicon carbon compounds. A dissociation enhancer may be introduced into the environment to minimize silicon particle size prior to it joining the hydrocarbon source.
    Type: Grant
    Filed: April 30, 2003
    Date of Patent: December 12, 2006
    Assignee: Cree, Inc.
    Inventor: Olof Claes Erik Kordina
  • Patent number: 7128785
    Abstract: The invention relates to a device and to a method for depositing especially crystalline layers from the gas phase onto especially crystalline substrates. The device comprises a heated reaction chamber with a substrate support that receives at least one substrate; one or more heated sources where a gaseous halide is formed by chemical reaction of a halogen, especially HCl, fed to the source together with a substrate gas, and a metal, for example GA, In, Al associated with the source, which is transported through a gas inlet section to a substrate supported by the substrate support; and a hydride supply for supplying a hydride, especially NH3, AsH3 or PH3 into the reaction chamber. A plurality of rotationally driven substrate supports is disposed in an annular arrangement on a substrate support carrier, the sources being disposed in the center of said substrate carrier.
    Type: Grant
    Filed: October 14, 2003
    Date of Patent: October 31, 2006
    Assignee: Aixtron AG
    Inventors: Johannes Kaeppeler, Michael Heuken, Rainer Beccard, Gerhard Karl Strauch
  • Patent number: 7094289
    Abstract: A method for manufacturing a highly-crystallized oxide powder, wherein an oxide powder is produced by ejecting a starting material powder containing at least one metal element and/or semimetal element, which will become a constituent component of the oxide, into a reaction vessel together with a carrier gas through a nozzle; and heating the starting material powder at a temperature higher than the decomposition temperature or reaction temperature thereof and not lower than (Tm/2)° C., where Tm° C. stands for a melting point of the oxide, in a state in which the starting material powder is dispersed in a gas phase at a concentration of not higher than 10 g/L. In the above method, the starting material powder may be mixed and dispersed in the carrier gas by using a dispersing machine prior to being ejected into the reaction vessel through a nozzle.
    Type: Grant
    Filed: July 30, 2003
    Date of Patent: August 22, 2006
    Assignee: Shoei Chemical Inc.
    Inventors: Yuji Akimoto, Masami Nakamura, Kazuro Nagashima
  • Patent number: 7084049
    Abstract: A manufacturing method for a buried insulating layer-type semiconductor silicon carbide substrate comprises the step of placing an SOI substrate 100, which has a surface silicon layer 130 of a predetermined thickness and a buried insulator 120, in a heating furnace 200 and of increasing the temperature of the atmosphere within heating furnace 200 while supplying a mixed gas (G1+G2) of a hydrogen gas G1 and of a hydrocarbon gas G2 into heating furnace 200, thereby, of metamorphosing surface silicon layer 130 of SOI substrate 100 into a single crystal silicon carbide thin film 140.
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: August 1, 2006
    Assignees: Osaka Prefecture, Hosiden Corporation
    Inventors: Katsutoshi Izumi, Motoi Nakao, Yoshiaki Ohbayashi, Keiji Mine, Seisaku Hirai, Fumihiko Jobe, Tomoyuki Tanaka
  • Patent number: 7033439
    Abstract: A hydrogen chloride gas and an ammonia gas are introduced with a carrier gas into a reactor in which a substrate and at least an aluminum metallic material through conduits. Then, the hydrogen gas and the ammonia gas are heated by heaters, and thus, a III–V nitride film including at least Al element is epitaxially grown on the substrate by using a Hydride Vapor Phase Epitaxy method. The whole of the reactor is made of an aluminum nitride material which does not suffer from the corrosion of an aluminum chloride gas generated by the reaction of an aluminum metallic material with a hydrogen chloride gas.
    Type: Grant
    Filed: August 13, 2001
    Date of Patent: April 25, 2006
    Assignee: NGK Insulators, Ltd.
    Inventors: Tomohiko Shibata, Keiichiro Asai, Mitsuhiro Tanaka
  • Patent number: 6972050
    Abstract: The invention relates to a method for depositing especially, crystalline layers onto especially, crystalline substrates, in a process chamber of a CVD reactor. At least one first and one second reaction gas are each led into a gas outlet area in an input area of the process chamber, by means of separate delivery lines. The gas outlet areas lie one above the other between the floor of the process chamber and the cover of the process chamber and have different heights. The first reaction gas flows out of the gas outlet area that is situated next to the process chamber floor, optionally together with a carrier gas. A carrier gas is added at least to the second reaction gas, which flows out of the gas outlet area lying further away from the process chamber floor.
    Type: Grant
    Filed: May 15, 2003
    Date of Patent: December 6, 2005
    Assignee: Aixtron AG
    Inventors: Michael Bremser, Martin Dauelsberg, Gerhard Karl Strauch
  • Patent number: 6969426
    Abstract: Method and apparatus are provided for forming metal nitride (MN), wherein M is contacted with iodine vapor or hydrogen iodide (HI) vapor to form metal iodide (MI) and then contacting MI with ammonia to form the MN in a process of reduced or no toxicity. Such method is conducted in a reactor that is maintained at a pressure below one atmosphere for enhanced uniformity of gas flow and of MN product. The MN is then deposited on a substrate, on one or more seeds or it can self-nucleate on the walls of a growth chamber, to form high purity and uniform metal nitride material. The inventive MN material finds use in semiconductor materials, in nitride electronic devices, various color emitters, high power microwave sources and numerous other electronic applications.
    Type: Grant
    Filed: February 26, 2002
    Date of Patent: November 29, 2005
    Inventors: David F. Bliss, Vladimir L. Tassev, Michael J. Suscavage, John S. Bailey
  • Patent number: 6962624
    Abstract: The invention relates to a method and a device for depositing especially, organic layers. In a heated reactor, a non-gaseous starting material that is stored in a source in the form of a container is transported from said source to a substrate by a carrier gas in gaseous form and is deposited on said substrate. The rate of production of the gaseous starting material by the source is unpredictable due to a heat input that cannot be regulated in a reproducible manner and due to cooling resulting from the carrier gas. The invention therefore provides that the preheated carrier gas washes through the starting material from bottom to top, the starting material being kept essentially isothermal in relation to the carrier gas by the heated container walls.
    Type: Grant
    Filed: March 28, 2003
    Date of Patent: November 8, 2005
    Assignee: Aixtron AG
    Inventors: Holger Jürgensen, Gerhard Karl Strauch, Markus Schwambera
  • Patent number: 6955719
    Abstract: A method for fabricating semiconductor devices with thin (e.g., submicron) and/or thick (e.g., between 1 micron and 100 microns thick) Group III nitride layers during a single epitaxial run is provided, the layers exhibiting sharp layer-to-layer interfaces. According to one aspect, an HVPE reactor is provided that includes one or more gas inlet tubes adjacent to the growth zone, thus allowing fine control of the delivery of reactive gases to the substrate surface. According to another aspect, an HVPE reactor is provided that includes at least one growth zone as well as a growth interruption zone. According to another aspect, an HVPE reactor is provided that includes extended growth sources such as slow growth rate gallium source with a reduced gallium surface area. According to another aspect, an HVPE reactor is provided that includes multiple sources of the same material, for example Mg, which can be used sequentially to prolong a growth cycle.
    Type: Grant
    Filed: July 18, 2003
    Date of Patent: October 18, 2005
    Assignee: Technologies and Devices, Inc.
    Inventors: Vladimir A. Dmitriev, Denis V. Tsvetkov, Aleksei Pechnikov, Yuri V. Melnik, Aleksandr Usikov, Oleg Kovalenkov
  • Patent number: 6821341
    Abstract: A vaporizing apparatus and method for providing a vaporized liquid precursor to a process chamber in a vapor deposition process includes a microdroplet forming device for generating microdroplets from a liquid precursor and a heated housing defining a vaporization zone having a vapor flow path from the microdroplet forming device to the process chamber. The vaporization zone receives the microdroplets and a heated carrier gas. The heated carrier gas has a temperature so as to provide the primary source of heat for vaporizing the microdroplets. The vaporized liquid precursor is then directed to the process chamber from the heated vaporization zone.
    Type: Grant
    Filed: July 18, 2001
    Date of Patent: November 23, 2004
    Assignee: Micron Technology, Inc.
    Inventor: Brian A. Vaartstra
  • Patent number: 6808803
    Abstract: Organic superlattices formed by molecular layer epitaxy (MLE), and a novel MLE method of forming organic molecular monolayers are disclosed. The method utilized covalent linkage, combined with self-cleaning layer growth, to form pi-stacked, ordered, oriented monomolecular layers for use in a variety of electronic applications.
    Type: Grant
    Filed: June 23, 2003
    Date of Patent: October 26, 2004
    Assignee: Yissum Research Development Company of the Hebrew University of Jerusalem
    Inventor: Shlomo Yitzchaik
  • Patent number: 6783849
    Abstract: Organic superlattices fromed by molecular layer epitaxy (MLE), and a novel MLE method of forming organic molecular monolayers are disclosed. The method utilized covalent linkage, combined with self-cleaning layer growth, to form pi-stacked, ordered, oritented monomolecular layers for use in a variety of electronic applications.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: August 31, 2004
    Assignee: Yissum Research Development Company of the Hebrew University of Jerusalem
    Inventor: Shlomo Yitzchaik
  • Patent number: 6773508
    Abstract: To economically and easily fabricate a single crystal silicon carbide thin film. The apparatus for fabricating a single crystal silicon carbide thin film comprises a film-formation chamber 200 adapted to receive a SOI substrate 100 for film-formation, a gas supply means 300 for supplying various gases G1 to G4 necessary to fabricate a single crystal silicon carbide thin film to the film-formation chamber 200, a gas treatment means 500 for treating argon gas as an inert gas G1, propane gas as a hydrocarbon-based gas G2, hydrogen gas as a carrier gas, and oxygen gas G4 supplied to the film-formation chamber 200, and a temperature control means 400 for controlling the temperature of the film-formation chamber 200.
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: August 10, 2004
    Assignees: Osaka Prefecture, Hosiden Corporation
    Inventors: Katsutoshi Izumi, Motoi Nakao, Yoshiaki Ohbayashi, Keiji Mine, Fumihiko Jobe
  • Patent number: 6660083
    Abstract: A method and apparatus for fabricating thin Group III nitride layers as well as Group III nitride layers that exhibit sharp layer-to-layer interfaces are provided. According to one aspect, an HVPE reactor includes one or more gas inlet tubes adjacent to the growth zone, thus allowing fine control of the delivery of reactive gases to the substrate surface. According to another aspect, an HVPE reactor includes both a growth zone and a growth interruption zone. According to another aspect, an HVPE reactor includes a slow growth rate gallium source, thus allowing thin layers to be grown. Using the slow growth rate gallium source in conjunction with a conventional gallium source allows a device structure to be fabricated during a single furnace run that includes both thick layers (i.e., utilizing the conventional gallium source) and thin layers (i.e., utilizing the slow growth rate gallium source).
    Type: Grant
    Filed: March 28, 2002
    Date of Patent: December 9, 2003
    Assignee: Technologies and Devices International, Inc.
    Inventors: Denis V. Tsvetkov, Andrey E. Nikolaev, Vladimir A. Dmitriev
  • Patent number: 6616757
    Abstract: A method for growing bulk GaN and AlGaN single crystal boules, preferably using a modified HVPE process, is provided. The single crystal boules typically have a volume in excess of 4 cubic centimeters with a minimum dimension of approximately 1 centimeter. If desired, the bulk material can be doped during growth to achieve n-, i-, or p-type conductivity. In order to have growth cycles of sufficient duration, preferably an extended Ga source is used in which a portion of the Ga source is maintained at a relatively high temperature while most of the Ga source is maintained at a temperature close to, and just above, the melting temperature of Ga. To grow large boules of AlGaN, preferably multiple Al sources are used, the Al sources being sequentially activated to avoid Al source depletion and excessive degradation.
    Type: Grant
    Filed: July 11, 2001
    Date of Patent: September 9, 2003
    Assignee: Technologies and Devices International, Inc.
    Inventors: Yuri V. Melnik, Vitali Soukhoveev, Vladimir Ivantsov, Katie Tsvetkov, Vladimir A. Dmitriev
  • Patent number: 6613143
    Abstract: A method for growing bulk GaN and AlGaN single crystal boules, preferably using a modified HVPE process, is provided. The single crystal boules typically have a volume in excess of 4 cubic centimeters with a minimum dimension of approximately 1 centimeter. If desired, the bulk material can be doped during growth to achieve n-, i-, or p-type conductivity. In order to have growth cycles of sufficient duration, preferably an extended Ga source is used in which a portion of the Ga source is maintained at a relatively high temperature while most of the Ga source is maintained at a temperature close to, and just above, the melting temperature of Ga. To grow large boules of AlGaN, preferably multiple Al sources are used, the Al sources being sequentially activated to avoid Al source depletion and excessive degradation.
    Type: Grant
    Filed: July 6, 2001
    Date of Patent: September 2, 2003
    Assignee: Technologies and Devices International, Inc.
    Inventors: Yuri V. Melnik, Vitali Soukhoveev, Vladimir Ivantsov, Katie Tsvetkov, Vladimir A. Dmitriev
  • Patent number: 6569240
    Abstract: After an underlying layer, made of a single crystal metal material, has been formed on a semiconductor layer, part or all of the underlying layer is changed into a metal oxide layer by supplying oxygen thereto from above the underlying layer. Then, a ferroelectric or high-dielectric-constant film is further formed on the metal oxide layer. Since the film made of a metal material is formed on the semiconductor layer, a silicon dioxide film or the like is not formed easily. Thus, a dielectric film, which includes an underlying layer with a high dielectric constant and has a large capacitance per unit area, can be obtained. Various defects such as interface states in the semiconductor layer can also be reduced advantageously if these process steps are performed after a thermal oxide film has been formed on the semiconductor layer.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: May 27, 2003
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Takashi Nishikawa, Kenji Iijima
  • Patent number: 6514338
    Abstract: Silicon carbide single crystal is produced by allowing a silicon raw material to continuously react with a carbon raw material to generate gas, which reaches a seed crystal substrate on which a silicon carbide single crystal grows. Preferably, the silicon raw material is continuously fed onto the carbon raw material placed in a reaction crucible, and the carbon raw material is maintained at a temperature such that carbon is allowed to react with silicon in a molten state or a gaseous state to generate the reaction gas.
    Type: Grant
    Filed: December 27, 2000
    Date of Patent: February 4, 2003
    Assignee: Showa Denko Kabushiki Kaisha
    Inventors: Masashi Shigeto, Kotaro Yano, Nobuyuki Nagato
  • Patent number: 6497764
    Abstract: A method is described for growing at least one silicon carbide (SiC) single crystal by sublimation of a SiC source material. Silicon, carbon and a SiC seed crystal are introduced into a growing chamber. Then, the SiC source material is produced from the silicon and the carbon in a synthesis step that takes place before the actual growing. The growing of the SiC single crystal is then carried out immediately after the synthesis step. The carbon used is a C powder with a mean grain diameter of greater than 10 &mgr;m.
    Type: Grant
    Filed: January 16, 2001
    Date of Patent: December 24, 2002
    Assignee: Siemens Aktiengesellschaft
    Inventors: Harald Kuhn, Rene Stein, Johannes Völkl
  • Publication number: 20020189532
    Abstract: Oxygen can be doped into a gallium nitride crystal by preparing a non-C-plane gallium nitride seed crystal, supplying material gases including gallium, nitrogen and oxygen to the non-C-plane gallium nitride seed crystal, growing a non-C-plane gallium nitride crystal on the non-C-plane gallium nitride seed crystal and allowing oxygen to infiltrating via a non-C-plane surface to the growing gallium nitride crystal.
    Type: Application
    Filed: March 18, 2002
    Publication date: December 19, 2002
    Inventors: Kensaku Motoki, Masaki Ueno
  • Patent number: 6406539
    Abstract: A process for producing a silicon carbide single crystal and a production apparatus therefor which enable, under stable conditions, continuous production of a silicon carbide single crystal which has a reduced density and dispersion of crystal defects in a growth direction, no lattice distortion, a large diameter, and constant quality. A melted or vaporized silicon material is introduced from the outside of a reaction system into a carbon material heated to a temperature equal to or higher than a temperature at which the silicon material vaporizes; and a reaction gas containing silicon gas and silicon carbide gas generated by a reaction between the carbon material and the silicon material is caused to reach a silicon carbide seed crystal substrate 5 which is held at a temperature lower than that of the carbon material, so that a silicon carbide single crystal grows on the silicon carbide seed crystal substrate.
    Type: Grant
    Filed: April 28, 2000
    Date of Patent: June 18, 2002
    Assignee: Showa Denko K.K,
    Inventors: Masashi Shigeto, Kotaro Yano, Nobuyuki Nagato
  • Patent number: 6316098
    Abstract: Organic superlattices formed by chemical vapor deposition/molecular layer epitaxy (CVD/MLE), and a novel CVD/MLE method of forming organic molecular monolayers are disclosed. The method utilized covalent linkage, combined with layer sublimation, to form p-stacked, ordered, oriented monomolecular layers for use in a variety of electronic applications.
    Type: Grant
    Filed: March 23, 1999
    Date of Patent: November 13, 2001
    Assignee: Yissum Research Development Company of the Hebrew University of Jerusalem
    Inventors: Shlomo Yitzchaik, Vladimir Burtman
  • Patent number: 6281098
    Abstract: A process for depositing polycrystalline silicon on substrates, including foreign substrates, occurs in a chamber at about atmospheric pressure, wherein a temperature gradient is formed, and both the atmospheric pressure and the temperature gradient are maintained throughout the process. Formation of a vapor barrier within the chamber that precludes exit of the constituent chemicals, which include silicon, iodine, silicon diiodide, and silicon tetraiodide. The deposition occurs beneath the vapor barrier. One embodiment of the process also includes the use of a blanketing gas that precludes the entrance of oxygen or other impurities. The process is capable of repetition without the need to reset the deposition zone conditions.
    Type: Grant
    Filed: June 15, 1999
    Date of Patent: August 28, 2001
    Assignee: Midwest Research Institute
    Inventors: Tihu Wang, Theodore F. Ciszek
  • Patent number: 6273951
    Abstract: Methods of forming a layer on a substrate using complexes of Formula I. The complexes and methods are particularly suitable for the preparation of semiconductor structures. The complexes are of the formula LyMYz (Formula I) wherein: M is a metal; each L group is independently a neutral ligand containing one or more Lewis-base donor atoms; each Y group is independently an anionic ligand; y=a nonzero integer; and z=a nonzero integer corresponding to the valence state of the metal.
    Type: Grant
    Filed: June 16, 1999
    Date of Patent: August 14, 2001
    Assignee: Micron Technology, Inc.
    Inventor: Brian A. Vaartstra
  • Patent number: 6193797
    Abstract: An apparatus comprises an Si-disposing section in which solid Si is disposed; a seed-crystal-disposing section in which a seed crystal of SiC is disposed; a synthesis vessel adapted to accommodate the Si-disposing section, the seed-crystal-disposing section, and carbon; heating means adapted to heat the Si-disposing section and the seed-crystal-disposing section; and a control section for transmitting to the heating means a command for heating the Si to an evaporation temperature of Si or higher and heating the seed crystal to a temperature higher than that of Si; wherein the Si evaporated by the heating means is adapted to reach the seed-crystal-disposing section.
    Type: Grant
    Filed: January 15, 1999
    Date of Patent: February 27, 2001
    Assignees: Sumitomo Electric Industries, Ltd.
    Inventors: Hiromu Shiomi, Shigehiro Nishino
  • Patent number: 6179913
    Abstract: A reaction assembly of a vapor-phase deposition system includes a reaction chamber leading to a gullet outlet, and a sheath leading to a sheath outlet. The gullet outlet and the sheath outlet at the distal end of the reaction assembly, the distal end including a compound nozzle. The reaction assembly generates a compound gas stream for projection from the compound nozzle towards a target substrate. The compound gas stream includes a reagent gas stream and a sheath gas stream, wherein the sheath gas stream at least partially envelopes the reagent gas stream. Methods for generating and delivering a compound gas stream, and for performing vapor-phase deposition, are also disclosed.
    Type: Grant
    Filed: April 16, 1999
    Date of Patent: January 30, 2001
    Assignees: CBL Technologies, Inc., Matsushita Electronics Corporation
    Inventors: Glenn S. Solomon, David J. Miller, Tetsuzo Ueda
  • Patent number: 6139628
    Abstract: The method of forming gallium nitride crystal comprises the following three steps: the first step of heating a silicon substrate 1 in gas atmosphere including gallium, the second step of forming the first gallium nitride 3 on the silicon substrate 1, the third step of forming the second gallium nitride 4 on the first gallium nitride 3 at the higher temperature than when the first gallium nitride 3 has been formed. The method including these three steps can produce a thick film crystal of gallium nitride having excellent flatness and crystallinity.
    Type: Grant
    Filed: April 8, 1998
    Date of Patent: October 31, 2000
    Assignee: Matsushita Electronics Corporation
    Inventors: Masaaki Yuri, Tetsuzo Ueda, Takaaki Baba
  • Patent number: 6139631
    Abstract: A crystal growth method having the steps of: preparing a growth container having a vapor generating chamber VC provided with a source material 14, a growth chamber GC provided with a seed crystal 12, and a coupling portion 18 having a cross sectional area narrower than a cross sectional area of each of the vapor generating chamber and the growth chamber, the coupling portion coupling the vapor generating chamber and the growth chamber; and vapor-phase growing a single crystal on the seed crystal by forming a temperature gradient in the growth container and by maintaining the seed crystal in the growth chamber at a growth temperature and the source material in the vapor generating chamber at a vapor supply temperature higher than the growth temperature. A crystal having a diameter larger than that of a seed crystal can be formed easily.
    Type: Grant
    Filed: August 12, 1998
    Date of Patent: October 31, 2000
    Assignee: Stanley Electric Co., Ltd.
    Inventor: Hiroyuki Kato
  • Patent number: 6080297
    Abstract: The present invention provides an electrochemical system and process for the production of very high purity hydride gases and the feed product streams including these hydride gases at constant composition over extended periods of time. The processes and apparatuses of the invention can employ a lined pressure vessel (1) within which resides an electrochemical cell including cathode (2) and anode (3) material. The hydride gas produced within the vessel exits through port (4) to a manifold which contains automatic valve (8) to allow exit of the hydride gas. The hydride gas passes through one or more filters (7). The gas finally exits the manifold through a pressure regulator (6) to the point where it is utilized in semiconductor fabrication. A source of gas (11) for mixing with the hydride gas is also included.
    Type: Grant
    Filed: June 5, 1998
    Date of Patent: June 27, 2000
    Assignee: Electron Transfer Technologies, Inc.
    Inventor: William M. Ayers
  • Patent number: 6045613
    Abstract: Bulk, low impurity silicon carbide single crystals are grown by deposition of vapor species containing silicon and vapor species containing carbon on a crystal growth interface. The silicon source vapor is provided by vaporizing liquid silicon and transporting the silicon vapor to a crystal growth crucible. The carbon vapor species are provided by either a carbon containing source gas (for example, CN) or by flowing the silicon source vapor over or through a solid carbon source, for example flowing the silicon vapor through porous graphite or a bed of graphite particles.
    Type: Grant
    Filed: October 9, 1998
    Date of Patent: April 4, 2000
    Assignee: Cree, Inc.
    Inventor: Charles Eric Hunter
  • Patent number: 6045612
    Abstract: Bulk, low impurity aluminum nitride (AlN) single crystals are grown by sublimation or similar deposition techniques at growth rates greater than 0.1 mm/hr.
    Type: Grant
    Filed: July 7, 1998
    Date of Patent: April 4, 2000
    Assignee: Cree, Inc.
    Inventor: Charles Eric Hunter
  • Patent number: 6030454
    Abstract: A method of forming a thin film ferrite material on a substrate from corresponding precursor(s), comprising liquid delivery and flash vaporization thereof to yield a precursor vapor, and transporting the precursor vapor to a chemical vapor deposition reactor for formation of the thin film ferrite material on the substrate. The invention also contemplates a device comprising a ferrite layer on a substrate, in which the ferrite layer is formed on the substrate by a process as described above.
    Type: Grant
    Filed: March 28, 1997
    Date of Patent: February 29, 2000
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Jeffrey F. Roeder, Thomas H. Baum
  • Patent number: 6001172
    Abstract: A method and apparatus for generating a dopant gas species which is a reaction product of a metal and a gas reactive therewith to form the dopant gas species. A source mass of metal is provided and contacted with the reactive gas to yield a dopant gas species. The dopant gas species may be passed to a chemical vapor deposition reactor, or flowed to an ionization chamber to generate ionic species for ion implantation.
    Type: Grant
    Filed: August 5, 1997
    Date of Patent: December 14, 1999
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Gautam Bhandari, W. Karl Olander, Michael A. Todd, Timothy Glassman
  • Patent number: 5997639
    Abstract: A semiconductor processing method of depositing a film on a substrate using an organometallic precursor, where the precursor comprises a coordination complex having a central linking atom and at least two ligands bonded thereto, at least one of the ligands including an organic species comprising a carbon atom having at least one hydrogen atom bonded thereto thereby defining a carbon-hydrogen bond of the species, includes, a) passing a feed material through a plasma generating location effective to induce the feed material into a plasma state; b) flowing the feed material from the plasma generating location, the feed material flowing from the plasma generating location comprising a gas in an activated metastable state; c) combining an organometallic precursor with the gas when the gas is in the activated metastable state to separate the organic species from the organometallic precursor coordination complex while leaving the carbon-hydrogen bond intact, the organometallic precursor being in a gaseous non-plasma
    Type: Grant
    Filed: June 30, 1998
    Date of Patent: December 7, 1999
    Assignee: Micron Technology, Inc.
    Inventor: Ravi Iyer
  • Patent number: 5985024
    Abstract: Method and apparatus for growing semiconductor grade silicon carbide boules (84). Pure silicon feedstock (36) is melted and vaporized. The vaporized silicon is reacted with a high purity carbon-containing gas (64), such as propane, and the gaseous species resulting from the reaction are deposited on a silicon carbide seed crystal (50), resulting in the growth of monocrystalline silicon carbide.
    Type: Grant
    Filed: December 11, 1997
    Date of Patent: November 16, 1999
    Assignee: Northrop Grumman Corporation
    Inventors: Vijay Balakrishna, R. Noel Thomas, Godfrey Augustine, Richard H. Hopkins, H. McDonald Hobgood