Running Length Work Patents (Class 118/718)
  • Patent number: 10815394
    Abstract: Methods produce an adhesive tape, in which a fluoropolymer web and a cross-linked silicon-adhesive-mass web are supplied to a lamination gap in the same supply direction, and the cross-linked silicon-adhesive-mass web and the fluoropolymer web are laminated together with a respective first surface. The first surface of the fluoropolymer web and the first surface of the cross-linked silicon-adhesive-mass web are activated by a plasma, wherein the plasma continuously acts on the two first surfaces under atmospheric pressure, starting before the lamination gap until entering the lamination gap, and the two activated first surfaces are pressed onto one another in the lamination gap.
    Type: Grant
    Filed: February 16, 2017
    Date of Patent: October 27, 2020
    Assignee: TESA SE
    Inventor: Marcel Hähnel
  • Patent number: 10685817
    Abstract: A film forming apparatus for forming a thin film on a flexible substrate. The film forming apparatus forms a thin film on a flexible substrate under vacuum. The film forming apparatus includes a first zone into which a first gas is introduced and a second zone into which a second gas is introduced in a vacuum chamber. Zone separators have openings through which the flexible substrate passes. The film forming apparatus includes a mechanism that reciprocates the flexible substrate between the zones. Further, the film forming apparatus includes a mechanism that supplies a raw material gas containing metal or silicon to the first zone, and a mechanism that performs sputtering of a material containing metal or silicon as a target material in the second zone.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: June 16, 2020
    Assignee: TOPPAN PRINTING CO., LTD.
    Inventor: Masato Kon
  • Patent number: 10597782
    Abstract: A device for coating one or more yarns by a vapor deposition method, the device including a treatment chamber defining a first and a second treatment zone in which at least one yarn is to be coated by performing a vapor deposition method, the first and second zones being separated by a wall and the first zone surrounding the second zone, or being superposed on the second zone; a conveyor system to transport the at least one yarn through the first and second zones; a first injector device to inject a first treatment gas phase into the first zone and a first removal device configured to remove the residual first gas phase from the first zone; and a second injector device configured to inject a second treatment gas phase into the second zone, and a second removal device configured to remove the residual second gas phase from the second zone.
    Type: Grant
    Filed: November 17, 2016
    Date of Patent: March 24, 2020
    Assignee: SAFRAN CERAMICS
    Inventors: Emilien Buet, Simon Thibaud, Adrien Delcamp, Cédric Descamps
  • Patent number: 10580624
    Abstract: The present invention provides novel plasma sources useful in the thin film coating arts and methods of using the same. More specifically, the present invention provides novel linear and two dimensional plasma sources that produce linear and two dimensional plasmas, respectively, that are useful for plasma-enhanced chemical vapor deposition. The present invention also provides methods of making thin film coatings and methods of increasing the coating efficiencies of such methods.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: March 3, 2020
    Assignees: AGC FLAT GLASS NORTH AMERICA, INC., ASAHI GLASS CO., LTD., AGC GLASS EUROPE
    Inventor: Peter Maschwitz
  • Patent number: 10570516
    Abstract: A deposition system and method includes a deposition source, a roll conveyor and at least one shield positioned at a location proximate to the deposition source.
    Type: Grant
    Filed: April 2, 2015
    Date of Patent: February 25, 2020
    Assignee: First Solar, Inc.
    Inventor: Rick C. Powell
  • Patent number: 10513790
    Abstract: A dielectric barrier discharge (DBD) plasma apparatus for synthesizing metal particles is provided. The DBD plasma apparatus includes an electrolyte vessel for receiving an electrolyte solution comprising metal ions; an electrode spaced-apart from the electrolyte vessel; a dielectric barrier interposed between the electrolyte vessel and the electrode such that, when the electrolyte solution is present in the electrolyte vessel, the dielectric barrier and an upper surface of the electrolyte solution are spaced-apart from each other and define a discharge area therebetween; and gas inlet and outlet ports in fluid communication with the discharge area such that supplying gas in the discharge area while applying an electrical potential difference between the electrode and the electrolyte solution cause a plasma to be produced onto the electrolyte solution, the plasma interacting with the metal ions and synthesizing metal particles.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: December 24, 2019
    Assignee: UNIVERSITÉ LAVAL
    Inventors: Marc-André Fortin, Mathieu Bouchard, Christian Sarra-Bournet, Stéphane Turgeon
  • Patent number: 10510458
    Abstract: A lithiated carbon phosphonitride material is made by, for example, reacting P(CN)3 with LiN(CN)2 in solution (for example, dimethoxyethane or pyridine), then drying the solution to obtain the product. The material is a thermoset that is stable to over 400° C. and exhibits up to 10?3 S·cm2 of Li+ conductivity.
    Type: Grant
    Filed: February 22, 2019
    Date of Patent: December 17, 2019
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Albert Epshteyn, Andrew P. Purdy, Brian L. Chaloux
  • Patent number: 10483093
    Abstract: The present invention provides novel plasma sources useful in the thin film coating arts and methods of using the same. More specifically, the present invention provides novel linear and two dimensional plasma sources that produce linear and two dimensional plasmas, respectively, that are useful for plasma-enhanced chemical vapor deposition. The present invention also provides methods of making thin film coatings and methods of increasing the coating efficiencies of such methods.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: November 19, 2019
    Assignees: AGC FLAT GLASS NORTH AMERICA, INC., ASAHI GLASS CO., LTD., AGC GLASS EUROPE
    Inventor: Peter Maschwitz
  • Patent number: 10438777
    Abstract: The present invention provides novel plasma sources useful in the thin film coating arts and methods of using the same. More specifically, the present invention provides novel linear and two dimensional plasma sources that produce linear and two dimensional plasmas, respectively, that are useful for plasma-enhanced chemical vapor deposition. The present invention also provides methods of making thin film coatings and methods of increasing the coating efficiencies of such methods.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: October 8, 2019
    Assignees: AGC FLAT GLASS NORTH AMERICA, INC., ASAHI GLASS CO., LTD., AGC GLASS EUROPE
    Inventor: Peter Maschwitz
  • Patent number: 10403523
    Abstract: Provided is a substrate processing apparatus including a load-lock chamber; a transfer chamber connected to the load-lock chamber; and one or more processing chambers connected to the transfer chamber. The transfer chamber includes a transfer arm that transfers a substrate between the load-lock chamber and the one or more processing chambers, the load-lock chamber includes a plurality of load-lock stations for accommodating a plurality of substrates as a matrix of m×n. According to the substrate processing apparatus, a time taken to transfer substrates may be reduced greatly, and productivity may be improved.
    Type: Grant
    Filed: July 15, 2016
    Date of Patent: September 3, 2019
    Assignee: ASM IP Holding B.V.
    Inventors: Soo Hyun Kim, Dae Youn Kim, Izumi Arai
  • Patent number: 10403880
    Abstract: An apparatus for processing battery electrodes includes: a microwave applicator cavity with slots on opposite ends to allow a continuous sheet to move through the cavity in a first direction; a processing chamber constructed of microwave-transparent material, disposed within the applicator cavity and surrounding the continuous sheet, the processing chamber having slots to allow the continuous sheet to pass through it; a microwave power supply to deliver power to the applicator cavity; a source of heated gas providing a controlled gas flow through the processing chamber in a direction opposite the first direction; and, at least one non-contacting temperature measuring device positioned to measure a surface temperature at a selected location on the continuous sheet as it passes through the processing chamber. The apparatus is particularly suited for removing polar solvents from porous electrode coatings. A related method is also disclosed.
    Type: Grant
    Filed: September 1, 2016
    Date of Patent: September 3, 2019
    Inventors: Iftikhar Ahmad, Andrew Cardin, Clayton DeCamillis, Michael Hampton, James E. Webb, Jr., Pu Zhang, William Hicks, Peter H. Aurora
  • Patent number: 10340126
    Abstract: The present invention provides novel plasma sources useful in the thin film coating arts and methods of using the same. More specifically, the present invention provides novel linear and two dimensional plasma sources that produce linear and two dimensional plasmas, respectively, that are useful for plasma-enhanced chemical vapor deposition. The present invention also provides methods of making thin film coatings and methods of increasing the coating efficiencies of such methods.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: July 2, 2019
    Assignees: AGC FLAT GLASS NORTH AMERICA, INC., ASAHI GLASS CO., LTD., AGC GLASS EUROPE
    Inventor: Peter Maschwitz
  • Patent number: 10290473
    Abstract: The present invention provides novel plasma sources useful in the thin film coating arts and methods of using the same. More specifically, the present invention provides novel linear and two dimensional plasma sources that produce linear and two dimensional plasmas, respectively, that are useful for plasma-enhanced chemical vapor deposition. The present invention also provides methods of making thin film coatings and methods of increasing the coating efficiencies of such methods.
    Type: Grant
    Filed: January 6, 2014
    Date of Patent: May 14, 2019
    Assignees: AGC FLAT GLASS NORTH AMERICA, INC., ASAHI GLASS CO., LTD., AGC GLASS EUROPE
    Inventor: Peter Maschwitz
  • Patent number: 10287671
    Abstract: A thin film deposition apparatus that can be simply applied to produce large-sized display devices on a mass scale and that improves manufacturing yield. The thin film deposition apparatus includes a deposition source that discharges a deposition material; a deposition source nozzle unit disposed at a side of the deposition source and including a plurality of deposition source nozzles arranged in a first direction; and a patterning slit sheet disposed opposite to the deposition source nozzle unit and including a plurality of patterning slits arranged in a second direction that is perpendicular to the first direction. A deposition is performed while the substrate or the thin film deposition apparatus moves relative to each other in the first direction, and the deposition source, the deposition source nozzle unit, and the patterning slit sheet are formed integrally with each other.
    Type: Grant
    Filed: May 3, 2016
    Date of Patent: May 14, 2019
    Assignee: Samsung Display Co., Ltd.
    Inventors: Hyun-Sook Park, Chang-Mog Jo, Hee-Cheol Kang, Yun-Mi Lee, Un-Cheol Sung, Yong-Sup Choi, Jong-Heon Kim, Jae-Kwang Ryu
  • Patent number: 10290471
    Abstract: A device is provided for generating plasma by microwaves for CVD coating a substrate having a vacuum container into which a reaction gas can be fed and an electrical conductor arranged therein which is connected on each of both ends thereof to a device for coupling microwaves and to a voltage source with which a difference of potential can generated between the electrical conductor and the surrounding vacuum container. The electrical conductor is electrically insulated from the devices for coupling microwaves. The electrical conductor has a rod-shaped design or a curved run. The electrical conductor is connected to the voltage source via a feedthrough filter. The device for coupling microwaves expands in a funnel shape toward the electrical conductor and is partially or completely filled by a dielectric material. The device for coupling microwaves has groove-shaped recesses running along a circumference.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: May 14, 2019
    Assignee: Muegge GmbH
    Inventors: Horst Muegge, Klaus-Martin Baumgärtner, Mathias Kaiser, Lukas Alberts
  • Patent number: 10276412
    Abstract: The invention relates to a vacuum processing system for processing a substrate (2), with an enclosure (1) for carrying the substrate (2) to be treated in a substrate plane (4), whereby the enclosure (1) comprises a first reflecting means (6) and a heating means (5) having a first plane surface (10) and an opposed second plane surface (11), the heating means (5) is configured for irradiating heating energy only via the first surface (10) and/or via the second surface (11), the first reflecting means (6) is configured for reflecting the heating energy irradiated by the heating means (5) onto the substrate plane (4), and the heating means (5) is arranged such that the first surface (10) faces towards the first reflecting means (6) and the second surface (11) faces towards the substrate plane (4).
    Type: Grant
    Filed: July 27, 2011
    Date of Patent: April 30, 2019
    Assignee: TEL SOLAR AG
    Inventors: Edwin Pink, Philipp Hotz
  • Patent number: 10266948
    Abstract: A graphene roll-to-roll coating apparatus and a graphene roll-to-roll coating method are provided on the basis of a continuous process.
    Type: Grant
    Filed: August 18, 2014
    Date of Patent: April 23, 2019
    Assignee: Graphene Square Inc.
    Inventors: Byung Hee Hong, Young Jin Kim, Jaeboong Choi, Hyeong Keun Kim, Junmo Kang, Su Kang Bae
  • Patent number: 10246776
    Abstract: A layer-forming device that enables highly efficient layer formation and has a simplified configuration includes: a substrate feeding mechanism; a plasma-generating electrode; a space-partitioning wall; and a plurality of injectors. The plasma-generating electrode faces towards a feeding pathway of the substrate, and generates plasma using a reactive gas upon a supply of electric power. The space-partitioning wall is disposed between the feeding pathway and the plasma-generating electrode. A plurality of slit-shaped through-holes, through which radicals, ions generated from the plasma, or a portion of the plasma can pass, are formed at predetermined intervals in the space-partitioning wall.
    Type: Grant
    Filed: February 21, 2014
    Date of Patent: April 2, 2019
    Assignee: MITSUI E&S MACHINERY CO., LTD
    Inventors: Yasunari Mori, Naomasa Miyatake, Nozomu Hattori
  • Patent number: 10232324
    Abstract: Embodiments of gas mixing apparatus are provided herein. In some embodiments, a gas mixing apparatus may include a container defining an interior volume, the container having a closed top and bottom and a sidewall having a circular cross section with respect to a central axis of the container passing through the top and bottom; a plurality of first inlets coupled to the container proximate the top of the container to provide a plurality of process gases to the interior volume of the container, the plurality of first inlets disposed such that a flow path of the plurality of process gases through the plurality of first inlets is substantially tangential to the sidewall of the container; and an outlet coupled to the container proximate the bottom of the container to allow the plurality of process gases to be removed from the interior volume of the container.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: March 19, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Kartik Shah, Kalyanjit Ghosh, Scott McClelland
  • Patent number: 10172189
    Abstract: An apparatus for thermal treatment of dielectric films on substrates includes: a microwave applicator cavity and microwave power source; a workpiece to be heated in the cavity, having a porous coating on a selected substrate; and, an apparatus for introducing a controlled amount of a polar species into the porous coating immediately before heating by the microwave power. The interaction of the polar species with the microwaves enhances the efficiency of the process, to shorten process time and reduce thermal budget. A related method includes: depositing a porous film on a substrate; soft baking the film to a selected state of dryness; introducing a controlled amount of a polar species into the soft baked film; and, applying microwave energy to heat the film via interaction with the polar species.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: January 1, 2019
    Assignee: APPLIED MATERIALS, INC.
    Inventor: Iftikhar Ahmad
  • Patent number: 10128091
    Abstract: A filter apparatus for arc ion evaporator used in the cathodic arc plasma deposition system according to this invention is characterized by a set of multiple straight tubes placing in parallel to one another wherein the size and/or amount of large particles, which could contaminate the plasma beam, can be controlled. The filter apparatus further comprises a set of solenoid coils which coil around the filter to generate a magnetic field to drive plasma to the targeting object or material. The filter apparatus of this present invention can reduce a number of large particles in the plasma beam and can further be designed into compacted shapes with high flexibility for adaptation in order to suit engineering demands.
    Type: Grant
    Filed: December 8, 2014
    Date of Patent: November 13, 2018
    Inventor: Surasak Surinphong
  • Patent number: 10099958
    Abstract: A process for obtaining a material including a transparent substrate coated with a stack of thin layers which are deposited by cathode sputtering, optionally assisted by a magnetic field, including at least one silver-based functional metal layer and at least two antireflective coatings, each antireflective coating including at least one dielectric layer, so that each functional metal layer is positioned between two antireflective coatings, the process includes the sequence of following stages: (a) an antireflective coating including at least one thin layer based on crystalline nickel oxide is deposited, then (b) at least one silver-based functional metal layer is deposited above and in contact with the thin layer based on crystalline nickel oxide.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: October 16, 2018
    Assignee: SAINT-GOBAIN GLASS FRANCE
    Inventors: Sophie Brossard, Florent Martin
  • Patent number: 10081866
    Abstract: An evaporation apparatus for depositing material on a substrate by a drum is described. The evaporation apparatus includes a first set of evaporation crucibles aligned in a first line a first direction for depositing evaporated material on the substrate; a first gas supply pipe extending in the first direction being arranged between at least one of the evaporation crucibles of the first set of evaporation crucibles and the drum; and a second gas supply pipe extending in the first direction for providing a gas between the first set of evaporation crucibles and the drum with openings shaped and positioned to improve the uniformity of the deposition of the material.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: September 25, 2018
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Gerd Hoffmann, Sven Schramm, Roland Trassl
  • Patent number: 10046973
    Abstract: Disclosed is an apparatus and method for manufacturing SiO, which may lower a manufacturing cost of SiO by collecting SiO continuously. The apparatus for manufacturing SiO includes a reaction unit configured to receive a SiO-making material and bring the received material into reaction by heating to generate a SiO gas; and a collecting unit configured to maintain an internal temperature lower than an internal temperature of the reaction unit, the collecting unit including a rotating member in an inner space thereof, wherein the collecting unit collects a SiO deposit by introducing the SiO gas generated by the reaction unit through an inlet formed at least at one side thereof and allowing the introduced SiO gas to be deposited to a surface of the rotating member.
    Type: Grant
    Filed: December 31, 2014
    Date of Patent: August 14, 2018
    Assignee: LG CHEM, LTD.
    Inventors: Sang-Yun Jung, Han-Nah Jeong, Cheol-Hee Park, Chee-Sung Park, Jae-Hyun Kim
  • Patent number: 10043636
    Abstract: An isolation system includes an input junction coupled to one or more RF power supplies via a match network for receiving radio frequency (RF) power. The isolation system further includes a plurality of channel paths connected to the input junction for distributing the RF power among the channel paths. The isolation system includes an output junction connected between each of the channel paths and to an electrode of a plasma chamber for receiving portions of the distributed RF power to output combined power and providing the combined RF power to the electrode. Each of the channel paths includes bottom and top capacitors for blocking a signal of the different type than that of the RF power. The isolation system avoids a risk of electrical arcing created by a voltage difference between an RF terminal and a non-RF terminal when the terminals are placed proximate to each other.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: August 7, 2018
    Assignee: Lam Research Corporation
    Inventors: Hyungjoon Kim, Sunil Kapoor, Karl Leeser, Vince Burkhart
  • Patent number: 10044046
    Abstract: Apparatuses and methods for depositing materials on both side of a web while it passes a substantially vertical direction are provided. In particular embodiments, a web does not contact any hardware components during the deposition. A web may be supported before and after the deposition chamber but not inside the deposition chamber. At such support points, the web may be exposed to different conditions (e.g., temperature) than during the deposition.
    Type: Grant
    Filed: April 14, 2014
    Date of Patent: August 7, 2018
    Assignee: Amprius, Inc.
    Inventors: Ronald J. Mosso, Ghyrn E. Loveness
  • Patent number: 10023961
    Abstract: An installation, comprising a chamber comprising two ends, a transport unit and a support unit which introduce a two-sided substrate into the chamber, a stabilized high-voltage high-frequency power supply of at least 200 kW, comprising an HF transformer comprising a primary and a secondary circuit connected to terminals, at least two electrodes being connected to the terminals of the secondary circuit, said electrodes being placed on each side of the substrate, at least one dielectric barrier placed between the at least two electrodes; a power supply regulation/control unit placed upstream of the HF transformer that is capable of increasing an active power/reactive power ratio, an introducing unit for introducing at least one reactive substance into the chamber, and an extracting unit for extracting residual substances, wherein an adjustable inductor is placed in the secondary circuit of the transformer in parallel with a circuit comprising the at least two electrodes, and the adjustable inductor enables a ph
    Type: Grant
    Filed: April 29, 2014
    Date of Patent: July 17, 2018
    Assignee: AGC Glass Europe
    Inventors: Eric Tixhon, Joseph Leclercq, Eric Michel
  • Patent number: 10011905
    Abstract: The present invention relates to a facility for the continuous vacuum deposition of a metal coating on a substrate in motion, comprising a vacuum deposition enclosure (24), at least one vapor jet deposition head (25,26) connected to an evaporator pot (9) designed to contain the coating metal in liquid form (11), through a vapor supply pipe (20) provided with a distribution valve (19), and a melting furnace (1) for said metal, said furnace being at atmospheric pressure, located below the lowest portion of the evaporator pot (9) and connected to the evaporator pot (9) by at least one automatic supply pipe (8) of the evaporator pot (9) provided with a supply pump (6) and by at least one liquid metal return pipe (8A,18) optionally provided with a valve (16,17), regulating means for the supply pump (6) further being present to regulate a determined liquid metal level in the evaporator pot (9), characterized in that it comprises, in each said supply and return pipes (8; 8A,18), a so-called heat valve area (7,13,15)
    Type: Grant
    Filed: January 12, 2012
    Date of Patent: July 3, 2018
    Assignee: Arcelormittal Investigacion Y Desarrollo SL
    Inventors: Pierre Banaszak, Didier Marneffe, Bruno Schmitz, Eric Silberberg, Luc Vanhee
  • Patent number: 9976217
    Abstract: The method of forming a thin film feeds a raw material gas causing a reversible decomposition reaction toward an upper surface of substrate placed on a placing table in a processing container; decomposes the raw material gas with a predetermined decomposing scheme thereby forming a thin film of the raw material gas on the surface of the substrate; and feeds a decomposition restraint gas having a characteristic of restraining a thermal decomposition of the raw material gas separately from the raw material gas toward a peripheral portion of the substrate when the raw material gas is fed to the substrate, thereby restraining the thermal decomposition of the raw material gas and selectively preventing the thin film from being formed in the peripheral portion of the substrate.
    Type: Grant
    Filed: October 10, 2014
    Date of Patent: May 22, 2018
    Assignee: Tokyo Electron Limited
    Inventors: Atsushi Gomi, Yasushi Mizusawa, Tatsuo Hatano, Masamichi Hara, Kaoru Yamamoto, Satoshi Taga
  • Patent number: 9938617
    Abstract: The invention relates to a process for depositing under vacuum a multilayers coating stack on a flat glass substrate and to a modular coater for the deposit of thin layers on a flat glass substrate. A gas separation zone disposed between two depositing zones of the modular coater comprises at least one gas injector in the vicinity of the convoying path for the glass substrate which passes through apertures from a depositing zone towards the other depositing zone via the separation zone. The invention allows improvement of the separation factor between the two depositing zones.
    Type: Grant
    Filed: October 18, 2011
    Date of Patent: April 10, 2018
    Assignee: AGC Glass Europe
    Inventors: Benoit Lecomte, Hugues Wiame, Tomohiro Yonemichi
  • Patent number: 9745661
    Abstract: An apparatus and method for forming a substrate web track with a repeating pattern into a reaction space of a deposition reactor by moving a first set of support rolls in relation to a second set of support rolls.
    Type: Grant
    Filed: June 27, 2013
    Date of Patent: August 29, 2017
    Assignee: Picosun Oy
    Inventors: Timo Malinen, Väinö Kilpi
  • Patent number: 9631275
    Abstract: Provided are a device for forming a layer and an atomic layer deposition (ALD) method or a method for forming a layer. The present application provides a device for forming a layer which may effectively form a desired layer by a continuous ALD, and an ALD method or a method for forming a layer by using the device for forming a layer.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: April 25, 2017
    Assignee: LG CHEM, LTD.
    Inventors: Seong Hwan Lee, Dong Ryul Kim, Jang Yeon Hwang
  • Patent number: 9571033
    Abstract: A method for controlling the internal pressure of a photovoltaic module having a front plate, rear plate, photovoltaic cells, electrical interconnection conductors, and peripheral seal, in which the conductors are in pressure contact with the cells, under the effect of a force resulting from a vacuum prevailing inside the module. The method includes: a) gradually reducing the pressure of a gas quantity around the module; b) detecting, during step a), a physical parameter representative of the actual pressing of the interconnection conductors against the cells; and c) determining a value of the internal pressure of the module on the basis of a variation in the physical parameter. The control facility comprises an enclosure for receiving the module inside a gas quantity, the enclosure including elements for: reducing the pressure of this gas quantity, detecting a physical parameter representative of the actual pressing, and determining the internal pressure of the module.
    Type: Grant
    Filed: November 21, 2013
    Date of Patent: February 14, 2017
    Assignees: “APOLLON SOLAR”, COMMISSARIAT A L'ENERGIE ATOMIQUE ET AUX ENERGIES ALTERNATIVES
    Inventors: Oleksiy Nichiporuk, Paul Lefillastre, Julien Dupuis
  • Patent number: 9562290
    Abstract: A plasma CVD apparatus capable of preventing unnecessary deposition on a supplying portion of a source gas so as to suppress generation of flakes, and thereby depositing a CVD coating excellent in quality is provided. This plasma CVD apparatus includes a vacuum chamber, a vacuum pump system for vacuuming an interior of the vacuum chamber, a deposition roller around which a substrate is wound, the deposition roller being provided in the vacuum chamber, a gas supplying portion for supplying the source gas to the interior of the vacuum chamber, and a plasma power supply for forming a plasma generating region in the vicinity of a surface of the deposition roller and thereby depositing a coating on the substrate. The gas supplying portion is provided in a plasma non-generating region positioned on the opposite side of the plasma generating region with respect to the deposition roller.
    Type: Grant
    Filed: October 27, 2011
    Date of Patent: February 7, 2017
    Assignee: Kobe Steel, Ltd.
    Inventors: Hiroshi Tamagaki, Tadao Okimoto
  • Patent number: 9558975
    Abstract: A system for transferring articles between an atmospheric pressure environment and a vacuum pressure environment. The system may include a vacuum enclosure having a wall separating the atmospheric pressure environment from the vacuum pressure environment. A transfer shaft may extend through the wall from the atmospheric pressure environment to the vacuum pressure environment. The transfer shaft may include an atmospheric transfer port disposed within the atmospheric pressure environment, a vacuum transfer port disposed within the vacuum pressure environment, and an intermediate port disposed adjacent a channel in the wall. The system may further include a movable transfer carriage disposed within the transfer shaft, the transfer carriage having an access port for providing access to an interior of the transfer carriage. The system may further include an air bearing on the transfer carriage configured to expel gas for maintaining a gap between the transfer carriage and the transfer shaft.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: January 31, 2017
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Sheri A. Durgin, Stacia L. Marcelynas, Fletcher I. Potter, Daniel L. Goodwin, Omar S. Kiyani
  • Patent number: 9539615
    Abstract: An apparatus is described for coating a flexible substrate with at least a first organic layer and a first inorganic layer. The apparatus comprises a first and a second chamber and an atmosphere decoupling slot between the first and the second chamber. A printing facility is arranged in the first chamber, for printing the flexible substrate with a mixture comprising at least one precursor for a polymer, oligomer or a polymer network and a polymerization initiator. A curing facility is arranged in the first chamber, for curing the deposited mixture, therewith forming the at least first organic layer. A vapor deposition facility is arranged in the second chamber, for depositing the at least first inorganic layer at the substrate provided with the at least first organic layer. The apparatus comprises a facility for guiding the flexible substrate along the printing facility, along the curing facility and via the atmosphere decoupling slot along the vapor deposition facility.
    Type: Grant
    Filed: September 6, 2010
    Date of Patent: January 10, 2017
    Assignees: Nederlandse Organisatie voor toegepast-natuurwetenschappelijk Onderzoek TNO, Huntsman Advanced Materials (Switzerland) GmbH
    Inventors: Edward Willem Albert Young, Erik Dekempeneer, Antonius Maria Bernardus van Mol, Herbert Lifka, Peter van de Weijer, Bernhard Sailer, Emilie Galand, Richard Frantz, Dimiter Lubomirov Kotzev, Mohammed Zoubair Cherkaoui
  • Patent number: 9540277
    Abstract: The invention relates to an apparatus for depositing thin film coatings on a substrate. The deposition apparatus is designed to keep gaseous reactant materials to be deposited apart from one another in the deposition apparatus, by one or more separation devices and/or methods, but nevertheless, to allow the chemical reactants to mix and react at or near the substrate surface, rapidly enough to create a uniform film at commercially viable deposition rates.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: January 10, 2017
    Assignee: Pilkington Group Limited
    Inventors: Douglas M. Nelson, Ian R. Williams, Michel J. Soubeyrand, David A. Strickler, Kevin D. Sanderson, Yasunori Seto, Keiko Tsuri
  • Patent number: 9537096
    Abstract: The present invention provides a method for producing an organic EL element capable of shortening the film formation time while suppressing an increase in the blur width; and an organic EL display device. The method is for producing an organic EL element by scanning vapor deposition, in which one or more vapor deposition sources each are provided with ejection orifices that face the respective openings of a limiting plate, and the ejection orifices facing the same opening are spaced from each other to give a sum of distributions.
    Type: Grant
    Filed: May 1, 2014
    Date of Patent: January 3, 2017
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Satoshi Inoue, Katsuhiro Kikuchi, Shinichi Kawato, Takashi Ochi, Yuhki Kobayashi, Masahiro Ichihara, Eiichi Matsumoto
  • Patent number: 9516760
    Abstract: A method is used to provide an electrically-conductive article. This method includes: forming an electrically-conductive pattern on first supporting side of a transparent substrate that also comprises an opposing second supporting side; and forming a dry outermost polymeric coating over at least part but not all of the electrically-conductive pattern, the dry polymeric coating having a dry thickness of less than 5 ?m, an integrated transmittance of at least 80%, and comprising a non-crosslinked thermoplastic polymer having a glass transition temperature (Tg) that is equal to or greater than 65° C.
    Type: Grant
    Filed: January 22, 2015
    Date of Patent: December 6, 2016
    Assignee: EASTMAN KODAK COMPANY
    Inventors: Marcus Stephen Bermel, Lisa Baxter Todd, Linda Mae Franklin, Thomas Henry Mourey, Christine Joanne Landry-Coltrain
  • Patent number: 9478449
    Abstract: Disclosed is a process tunnel (102) through which substrates (140) may be transported in a floating condition between two gas bearings (124, 134). To monitor the transport of the substrates through the process tunnel, the upper and lower walls (120, 130) of the tunnel are fitted with at least one substrate detection sensor (S1, . . . , S6) at a respective substrate detection sensor location, said substrate detection sensor being configured to generate a reference signal reflecting a presence of a substrate between said first and second walls near and/or at said substrate detection sensor location. Also provided is a monitoring and control unit (160) that is operably connected to the at least one substrate detection sensor (S1, . . . , S6), and that is configured to record said reference signal as a function of time and to process said reference signal.
    Type: Grant
    Filed: July 13, 2012
    Date of Patent: October 25, 2016
    Assignee: ASM INTERNATIONAL N.V.
    Inventors: Pascal Gustaaf Vermont, Wilhelmus Gerardus Van Velzen, Vladimir Ivanovich Kuznetsov, Ernst Hendrik August Granneman, Gonzalo Felipe Ramirez Troxler
  • Patent number: 9463999
    Abstract: A glass sheet has an electrically conductive film having a sheet resistance in the range of 9.5 to 14.0 ohms/square; an emissivity in the range of 0.14 to 0.17 and an absorption coefficient of greater than 1.5×103 cm?1 in the wavelength range of 400-1100 nanometers, and a surface roughness of less than 15 nanometers Root Means Square. A glass sheet of another embodiment of the invention has an electrically conductive film having a phosphorous-fluorine doped tin oxide pyrolytically deposited film on the surface of the glass sheet, wherein the ratio of phosphorous precursor to tin precursor is in the range of greater than 0-0.4. The coated glass sheets of the invention can be used in the manufacture of multi sheet insulating units, OLEDs and solar cells.
    Type: Grant
    Filed: January 8, 2013
    Date of Patent: October 11, 2016
    Assignee: PPG Industries Ohio, Inc.
    Inventors: Ashtosh Ganjoo, David R. Haskins, James W. McCamy, Gary J. Nelis, Peter Tausch
  • Patent number: 9435028
    Abstract: A system for depositing a thin film on a flexible substrate comprises a plurality of processing zones spaced apart by an isolation zone, a plasma generator for generating a plasma region proximal to a pathway along which the substrate travels, and a substrate transport mechanism for guiding the substrate back and forth between the processing zones so that the substrate is transported past and exposed to the plasma region when the system is in use.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: September 6, 2016
    Assignees: Lotus Applied Technology, LLC, Toppan Printing Co., Ltd.
    Inventor: Eric R. Dickey
  • Patent number: 9390841
    Abstract: A vapor deposition apparatus in which a deposition process is performed by moving a substrate, the vapor deposition apparatus including a supply unit that injects at least one raw material gas towards the substrate, and a blocking gas flow generation unit that is disposed corresponding to the supply unit and generates a gas-flow that blocks a flow of the raw material gas.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: July 12, 2016
    Assignee: SAMSUNG DISPLAY CO., LTD.
    Inventors: Jin-Kwang Kim, Seung-Yong Song, Myung-Soo Huh, Suk-Won Jung, Choel-Min Jang, Jae-Hyun Kim, Sung-Chul Kim
  • Patent number: 9375826
    Abstract: An abrasive article including a substrate made of a wire, abrasive particles affixed to the substrate, the abrasive particles having a first coating layer overlying the abrasive particles, and a second coating layer different than the first coating layer overlying the first coating layer. The abrasive article further including a bonding layer overlying the substrate and abrasive particles.
    Type: Grant
    Filed: September 14, 2012
    Date of Patent: June 28, 2016
    Assignees: Saint-Gobain Abrasives, Inc., Saint-Gobain Abrasifs
    Inventors: Yinggang Tian, Arup K. Khaund, John Pearlman
  • Patent number: 9359673
    Abstract: A proximity heads for dispensing reactants and purging gas to deposit a thin film by Atomic Layer Deposition (ALD) includes a plurality of sides. Extending over a portion of the substrate region and being spaced apart from the portion of the substrate region when present, the proximity head is rotatable so as to place each side in a direction of the substrate region, and is disposed in a vacuum chamber coupled to a carrier gas source to sustain a pressure for the proximity head during operation. Each side of the proximity head includes a gas conduit through which the reactant gas and the purging gas are sequentially dispensed, and at least two separate vacuum conduits on each side of the gas conduit to pull excess reactant gas, purging gas, or deposition byproducts from a reaction volume between a surface of the proximity head facing the substrate and the substrate.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: June 7, 2016
    Assignee: Lam Research Corporation
    Inventors: Hyungsuk Alexander Yoon, Mikhail Korolik, Fritz C. Redeker, John M. Boyd, Yezdi Dordi
  • Patent number: 9347563
    Abstract: The present invention relates to a gas lock for separating two gas chambers, which while taking up minimal space makes it possible to achieve the separation of gases without contact with the product/educt/transporting system. The gas lock according to the invention is distinguished in that at least one means for manipulation of the flow is present in a flow passage of the gas lock. Also, the present invention relates to a coating device which comprises a gas lock according to the invention. Also provided are possibilities for using the gas lock according to the invention.
    Type: Grant
    Filed: October 20, 2011
    Date of Patent: May 24, 2016
    Assignee: FRAUHOFER-GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V.
    Inventors: David Pocza, Stefan Reber, Martin Arnold, Norbert Schillinger
  • Patent number: 9333525
    Abstract: A processing apparatus for processing a flexible substrate, particularly a vacuum processing apparatus for processing a flexible substrate, is described. The processing apparatus includes a vacuum chamber; a processing drum within the vacuum chamber, wherein the processing drum is configured to rotate around an axis extending in a first direction; and a heating device adjacent to the processing drum, wherein the heating device is configured for spreading the substrate in the first direction or for maintaining a spread of the substrate in the first direction, and wherein the heating device has a dimension in a direction parallel to a substrate transport direction of at least 20 mm.
    Type: Grant
    Filed: January 21, 2014
    Date of Patent: May 10, 2016
    Assignee: APPLIED MATERIALS, INC.
    Inventors: Florian Ries, Andreas Sauer, Stefan Hein
  • Patent number: 9318535
    Abstract: Provided is a vapor deposition apparatus including: a plasma generator configured to change at least a portion of a first raw material gas into a radical form; a corresponding surface corresponding to the plasma generator; a reaction space between the plasma generator and the corresponding surface; and an insulating member separated from, and surrounding the plasma generator.
    Type: Grant
    Filed: July 17, 2013
    Date of Patent: April 19, 2016
    Assignee: Samsung Display Co., Ltd.
    Inventors: Suk-Won Jung, Myung-Soo Huh, Choel-Min Jang
  • Patent number: 9312153
    Abstract: A substrate processing system is provided with: a first transfer unit, which extends from a loader module to a first processing chamber for processing substrates, to transfer the substrates; and a second transfer unit, which is provided below or above the first transfer unit and extends from the loader module to a second processing chamber for processing substrates, to transfer the substrates. The first processing chamber and the second processing chamber do not overlap in the vertical direction, and are disposed at positions separated from each other in a plan view. At the same time, at least a part of the first transfer unit and at least a part of the second transfer unit overlap each other in the vertical direction.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: April 12, 2016
    Assignee: TOKYO ELECTRON LIMITED
    Inventor: Tsutomu Hiroki
  • Patent number: 9309148
    Abstract: An area S (m2) of a facing surface of each of injectors which faces a glass ribbon is set so as to satisfy: S?(0.0116×P×Cg×T)/{?×F×?(Tgla4?Tinj4)}, wherein P is an output (ton/day) of the glass ribbon; Cg is a specific heat (J/(kg·° C.)) of the glass; T is an acceptable temperature drop (° C.); ? is radiation factor; F is a surface-to-surface view factor; ? is Boltzmann's constant; Tgla is a temperature (K) of the glass ribbon represented by K=(Tin+Tout)/2 where Tin and Tout are measured values of the glass ribbon at the inlet and outlet of the injector, respectively; and Tinj is a temperature (K) of the facing surface of the injector.
    Type: Grant
    Filed: January 10, 2014
    Date of Patent: April 12, 2016
    Assignee: ASAHI GLASS COMPANY, LIMITED
    Inventors: Kuniaki Hiromatsu, Masanobu Shirai, Junichi Miyashita, Tomohiro Yonemichi, Takeo Endo