Thermopile Patents (Class 136/224)
  • Publication number: 20030082843
    Abstract: Method for manufacturing a thermopile on an electrically insulating substrate. A pattern is arranged on this substrate of parts which consist of a first conductive material, to which a second conductive material is applied, and parts which consist only of the first conductive material.
    Type: Application
    Filed: December 10, 2002
    Publication date: May 1, 2003
    Applicant: BERKIN B.V.
    Inventors: Hendrik Jan Boer, Frederik Van Der Graaf, Boudewijn Martinus
  • Patent number: 6536945
    Abstract: A heat flux measuring device for transporting through a heated chamber, the device having an array of sensors, each sensor comprising first and second surfaces bounding a region, a thermally insulating layer substantially occupying said region, and means for providing a signal which is a measure of the temperature difference across the layer. The said first surface of each sensor is in thermal contact with a heat sink and the said second surface of each sensor is exposed.
    Type: Grant
    Filed: October 1, 2001
    Date of Patent: March 25, 2003
    Assignee: United Biscuits (UK) Limited
    Inventor: Robert Mitchell Rolston
  • Patent number: 6511860
    Abstract: Method for manufacturing a thermopile on an electrically insulating substrate. A pattern is arranged on this substrate of parts which consist of a first conductive material, to which a second conductive material is applied, and parts which consist only of the first conductive material. The second material is better electrically conducting than the first and, connected as thermopile, can thereby generate a certain thermo-voltage. The second material is applied to the first, starting from a layer of the first material on the substrate, by etching stripes therein via the so-called “blind-hole etching” technique and applying the second material in these stripes.
    Type: Grant
    Filed: July 24, 2000
    Date of Patent: January 28, 2003
    Assignee: Berkin, B.V.
    Inventors: Hendrik Jan Boer, Frederik Van Der Graaf, Boudewijn Martinus
  • Publication number: 20030016116
    Abstract: A method of depositing a thin metal film using photolithography is disclosed. The method includes the deposition of a sacrificial metal layer on a substrate. Photolithography processing forms a pattern on the sacrificial metal layer that is removed prior to sputter deposition of the thin metal film.
    Type: Application
    Filed: July 23, 2001
    Publication date: January 23, 2003
    Inventor: Charles A. Blaha
  • Publication number: 20020185169
    Abstract: In a thermo pile infrared ray sensor, an opening portion is formed by etching a substrate from a second surface after an n-type poly-Si layer and a thin aluminium layer are formed so that first and second connection portions are formed by parts thereof. An infrared ray absorbent layer is formed on the substrate to cover the first connection portion with a screen print after the opening portion is formed.
    Type: Application
    Filed: June 10, 2002
    Publication date: December 12, 2002
    Inventors: Kazuaki Hamamoto, Takahiko Yoshida, Yasutoshi Suzuki, Inao Toyoda
  • Publication number: 20020139410
    Abstract: A radiation sensor which includes a thermopile for detecting radiant energy. The thermopile and a support rim for the thermopile are fabricated as an integrated unit to form a support chip. The support chip is mated to a mating chip so that the thermopile is positioned in an inner cavity region of the radiation sensor. The sensor has a window which permits the transmission of radiant energy into the enclosure such that the radiant energy impinges upon a central absorber region of the thermopile.
    Type: Application
    Filed: January 2, 2002
    Publication date: October 3, 2002
    Applicant: Endevco Corporation
    Inventors: Leslie Bruce Wilner, Andrew J. Meyer, James Tjan-Meng Suminto, Joseph Salvatore Fragala
  • Publication number: 20020069909
    Abstract: An infrared sensor is provided, which includes a substrate 12, a diaphragm 14 supported by the substrate, at least one thermocouple 17 provided with a cold junction 20 formed on the substrate and a hot junction 18 formed on the diaphragm, and an infrared-absorptive film 24 formed on the diaphragm so as to cover the hot junction of the thermocouple. The area of the infrared-absorptive film is 64% to 100% of the area of the diaphragm.
    Type: Application
    Filed: May 16, 2001
    Publication date: June 13, 2002
    Applicant: Murata Manufacturing Co., Ltd
    Inventor: Ryuichi Kubo
  • Publication number: 20020069910
    Abstract: An infrared detecting device possible to improve SN ratio, which is provided with a semiconductor substrate, a diaphragm set on the semiconductor substrate, a thermopile formed on the diaphragm by arranging a plurality of thermocouples composed of p-type polysilicon and n-type polysilicon in a row and electrically connecting them each other in series, and a heat absorption film formed on the central portion through an insulation layer, and sectional areas of the p-type and n-type polysilicons between hot and cold junctions of each of the thermocouples are made different from each other.
    Type: Application
    Filed: December 7, 2001
    Publication date: June 13, 2002
    Applicant: IHI AEROSPACE CO., LTD.
    Inventors: Shinichi Morita, Nami Shibata
  • Patent number: 6402369
    Abstract: Provided are, among other things, devices for and methods for performing thermal signature assays on a two or more samples in an array, using active/control base thermopiles, the method comprising: [a] performing a heat transfer to the two or more samples in each of a two or more containers, using at least one base thermopile in thermal communication with the two or more containers; and [b] determining a total heat transferred to the samples by the base thermopile in step [a]; and [c] sensing in real time a temperature difference between a first sample and a second sample of the two or more samples resulting from performing step [a].
    Type: Grant
    Filed: November 2, 1999
    Date of Patent: June 11, 2002
    Assignee: Sarnoff Corporation
    Inventors: David Norman Ludington, Thomas Louis Fare, Dominic Joseph Lo Iacono, Timothy James Davis, Helen Jiang Semus, Paul John Stabile, Frank Guarnieri, Russell Todd Granzow, Peter J. Zanzucchi, William Chiang
  • Patent number: 6388186
    Abstract: It is made possible to adjust the output of a thermopile-type thermoelectric sensor in such a way that a thermoelectric pattern for sensitivity adjustment is connected in series to a plurality of thermoelectric patterns constituting a thermopile short-circuited patterns for short-circuiting cold junctions of the thermoelectric pattern for sensitivity adjustment are formed, and the short-circuited patterns are selectively cut off.
    Type: Grant
    Filed: November 20, 2000
    Date of Patent: May 14, 2002
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Tadashi Nomura, Yukio Yoshino
  • Patent number: 6380605
    Abstract: A device for thermal sensing is disclosed based on only one thermopile. The cold junctions of said thermopile are coupled thermally to a first channel comprising a first substance while the hot junctions of said thermopile are coupled thermally to a second channel comprising a second substance, said first and said second channel are separated and thermally isolated one from another. Said device can further comprise a membrane to thermally and electrically isolate said thermopile and to mechanically support said thermopile. Particularly a liquid rubber, i.e. ELASTOSIL LR3003/10A, B can be used as a membrane material. Further disclosed is a method for fabricating such a device using micromachining techniques.
    Type: Grant
    Filed: December 19, 1997
    Date of Patent: April 30, 2002
    Assignee: IMEC vzw
    Inventor: Katarina Verhaegen
  • Patent number: 6348650
    Abstract: An improved thermopile infrared sensor is provided wherein thermoelectric elements are formed on a single crystalline silicon substrate containing a cavity therein. The thermopile infrared sensor contains a first dielectric film covering the cavity, a plurality of n-type polycrystalline silicon layers formed on the first dielectric film, extending radially from the vicinity of a chip center, and metal film layers formed in contact with the n-type polycrystalline silicon layers, wherein hot junctions are formed at the chip central side and cold junctions are formed at the chip peripheral side of the n-type polycrystalline silicon layers, respectively, by contacting the n-type polycrystalline silicon layer and the metal film layer, and at least one series of thermoelectric elements is formed on the first dielectric film by connecting alternately and successively, by the metal film layer, the hot junction and cold junction of the neighboring n-type polycrystalline silicon layer.
    Type: Grant
    Filed: March 24, 2000
    Date of Patent: February 19, 2002
    Assignee: Ishizuka Electronics Corporation
    Inventors: Haruyuki Endo, Takeshi Fuse, Tadashi Matsudate, Yasutaka Tanaka, Toshikazu Okada
  • Publication number: 20010045364
    Abstract: A hydrogen source system delivers a controlled fuel stream to applications, using wicking to control the contact between a mixture of NaBH4, NaOH and H2O and a hydrolyzing catalyst to create a feedback mechanism to automatically maintain a constant pressure production supply of hydrogen. A small compact device packaged for storage, the system operates in any orientation and is mobile. The system is a small portable packaged hydrogen generator for small fuel cells to power applications that are currently powered by batteries. These packaged devices have higher energy per unit mass, higher energy per unit volume, are more convenient for energy users, environmentally less harmful, and less expensive than conventional power sources.
    Type: Application
    Filed: March 30, 2001
    Publication date: November 29, 2001
    Inventors: Robert G. Hockaday, Patrick S. Turner, Marc D. DeJohn, Carlos J. Navas, Heathcliff L. Vaz, L. Luke Vazul
  • Publication number: 20010029974
    Abstract: A generally toroidal counterflow heat exchanger is the main element of a combustor that operates at a micro scale. The combustor includes a central combustion region with openings to a reactant gas channel and an exhaust gas channel. The reactant channel and exhaust channels are coiled around each other in a spiral configuration that reduces heat loss. An electric current microgenerator is similar and also includes a thermoelectric active wall composed of n-type and p-type thermoelectric elements as part of a channel wall of the microcombustor. The thermoelectric active wall includes fins configured to increase the temperature differential across the thermoelectric elements relative to the temperature difference between the thermoelectric elements and the reactant and exhaust gases. A method of monolithically fabricating such microdevices by electrodepositing multiple layers of material is also provided.
    Type: Application
    Filed: January 5, 2001
    Publication date: October 18, 2001
    Inventors: Adam L. Cohen, Paul Ronney, Uri Frodis, Lars Sitzki, Eckart Meiburg, Steffen Wussow
  • Patent number: 6300554
    Abstract: A thermoelectric sensor device is disclosed consisting of polysilicon, titanium or AlSiCu as the thermocouple of material for thermoelectric sensor device. The features of the present process are: Selecting a material such as aluminum, titanium, aluminum alloy or titanium alloy with lower thermal conductivity coefficient as thermocouple element line and making use of zigzag structure with thermocouple element line, and increasing the length of thermocouple element line. Employing front side Si bulk etching technique to etch the silicon substrate, which is under the device and empty of silicon substrate, so as to reduce the superficial measure of thermoelectric sensor module and increase the throughout of the silicon wafer. Simultaneously, fabricating a resistor to treat as a heater on the membrane for adjusting the device.
    Type: Grant
    Filed: September 9, 1999
    Date of Patent: October 9, 2001
    Assignee: Metrodyne Microsystem Corp.
    Inventors: Chen-Hsun Du, Bruce C. S. Chou, Chengkuo Lee
  • Patent number: 6046398
    Abstract: Linear arrays with up to 63 micromachined thermopile infrared detectors on silicon substrates have been constructed and tested. Each detector consists of a suspended silicon nitride membrane with 11 thermocouples of sputtered Bi--Te and Bi--Sb--Te thermoelectric elements films. At room temperature and under vacuum these detectors exhibit response times of 99 ms, zero frequency D* values of 1.4.times.10.sup.9 cmHz.sup.1/2 /W and responsivity values of 1100 V/W when viewing a 1000 K blackbody source. The only measured source of noise above 20 mHz is Johnson noise from the detector resistance. These results represent the best performance reported to date for an array of thermopile detectors. The arrays are well suited for uncooled dispersive point spectrometers. In another embodiment, also with Bi--Te and Bi--Sb--Te thermoelectric materials on micromachined silicon nitride membranes, detector arrays have been produced with D* values as high as 2.2.times.10.sup.9 cmHz.sup.1/2 /W for 83 ms response times.
    Type: Grant
    Filed: November 4, 1998
    Date of Patent: April 4, 2000
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Marc C. Foote, Eric W. Jones, Thierry Caillat
  • Patent number: 5990412
    Abstract: A thin sensor for heat flux and temperature, designed for adhesive attachment to a surface, is manufactured on a flexible insulated metallic substrate, using conductive and dielectric inks. The sensor exhibits a combination of high sensitivity for heat flux and low resistance to the flow of heat. These characteristics enable it to measure heat flux at surface boundaries with improved accuracy over conventional heat flux transducers (HFT's) because the temperature drop produced by the sensor is very small. The high sensitivity of the sensor makes it ideal for measuring heat flow through insulating materials, and well adapted to instrumenting heat flow in buildings, detecting fires at an early stage, or remotely measuring the temperature of string and web products in industrial processing.
    Type: Grant
    Filed: May 7, 1996
    Date of Patent: November 23, 1999
    Assignee: Vatell Corporation
    Inventor: James P. Terrell
  • Patent number: 5952728
    Abstract: A thermoelectric conversion module having a large capacity and a curved surface which can be secured to a corresponding curved surface of a base member is manufactured by inserting N type and P type semiconductor strips into through holes formed in a honeycomb structural body, filling spaces between walls defining the through holes and the semiconductor strips with an electrically insulating filler members made of an easily deformable material such as polyimide resin and silicone resin, cutting the honeycomb structural body into a plurality of thermoelectric conversion module main bodies each having a desired surface configuration, and providing metal electrodes on both surfaces of a thermoelectric conversion module main body such that alternate N type and P type semiconductor elements are connected in cascade.
    Type: Grant
    Filed: November 7, 1996
    Date of Patent: September 14, 1999
    Assignees: NGK Insulators, Ltd., Nissan Motor Co., Ltd.
    Inventors: Yuichiro Imanishi, Makoto Miyoshi, Tetsuo Watanabe, Keiko Kushibiki, Kazuhiko Shinohara, Masakazu Kobayashi, Kenji Furuya
  • Patent number: 5841064
    Abstract: A Peltier effect module comprising a plurality of Peltier effect elements arranged in parallel between a pair of substrates where the Peltier effect elements are connected to connection electrodes disposed on the substrates. The array of Peltier effect elements is sealed off by a hollow seal frame surrounding the Peltier effect element array with a seal formed by a bond between both end edges of the seal frame and the substrates. Because the perimeter around the Peltier effect elements is sealed using a seal frame metalically bonded at both ends to the substrates, resistance to moisture penetration is largely determined by the material from which the seal frame is made. Therefore, by appropriately selecting the seal frame materials, the Peltier effect module can be reliably protected for a long period of time against moisture penetration.
    Type: Grant
    Filed: January 24, 1997
    Date of Patent: November 24, 1998
    Assignee: Matsushita Electric Works, Ltd.
    Inventors: Nobuteru Maekawa, Katsuyoshi Shimoda, Teruaki Komatsu, Shinya Murase, Hiroaki Okada, Hiroyuki Inoue
  • Patent number: 5817188
    Abstract: A thermoelectric module is formed with a solder joint, the solder containing about 50 to 99 weight percent bismuth and about 50 to 1 weight percent antimony, between the thermoelectric elements and the connecting conductors. Also provided is a thermoelectric module having bismuth telluride elements coated with a conductive material that does not require a nickel or other diffusion barrier. Further provided are modules having conductors with a phosphorus-nickel surface. Methods of manufacturing and using such thermoelectric modules are further provided.
    Type: Grant
    Filed: September 16, 1996
    Date of Patent: October 6, 1998
    Assignee: Melcor Corporation
    Inventors: Michael Yahatz, James Harper
  • Patent number: 5770911
    Abstract: A resonant thermoelectric generator includes a thermoelectric power converter connected in series with a resonant circuit. A current generated by the thermoelectric power converter is cycled back and forth in the resonant circuit. The polarity of the thermoelectric power converter with respect to the resonant circuit is switched back and forth to correspond with the direction of the current. In a second embodiment, the thermoelectric power converter is coupled to the resonant circuit through a transformer, and its polarity is also switched to correspond with the direction of the current. In both embodiments, a negative retarding voltage that builds up in the thermoelectric power converter is eliminated by switching its polarity to always correspond with the direction of the current, so that energy is added to the resonant circuit in each cycle, and power is very efficiently converted from heat directly into electricity.
    Type: Grant
    Filed: January 30, 1996
    Date of Patent: June 23, 1998
    Inventor: Kan Cheng
  • Patent number: 5747418
    Abstract: An apparatus and method for producing electricity from heat. The present invention is a thermoelectric generator that uses materials with substantially no electrical resistance, often called superconductors, to efficiently convert heat into electrical energy without resistive losses. Preferably, an array of superconducting elements is encased within a second material with a high thermal conductivity. The second material is preferably a semiconductor. Alternatively, the superconducting material can be doped on a base semiconducting material, or the superconducting material and the semiconducting material can exist as alternating, interleaved layers of waferlike materials. A temperature gradient imposed across the boundary of the two materials establishes an electrical potential related to the magnitude of the temperature gradient. The superconducting material carries the resulting electrical current at zero resistivity, thereby eliminating resistive losses.
    Type: Grant
    Filed: October 17, 1996
    Date of Patent: May 5, 1998
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: John D. Metzger, Mohamed S. El-Genk
  • Patent number: 5734122
    Abstract: Apparatus is disclosed in which a pair of elongated solid cylindrical metal conductors mounted with their central axes mutually parallel are connected at their ends to form a closed electrical circuit path, there being heat sinks at spaced positions along their length which serve as heat transfer means setting up a temperature gradient along the lengths of the conductors. A strong electrical current flow in the conductors creates a circumferential magnetic field in the metal directed at right angles to the heat flow and this, by the Nernst Effect, produces a radial electric field gradient in the metal coupled with the transient accumulation of stored electrical energy. The apparatus disclosed serves for the experimental testing of energy conversion and storage by thermoelectric processes occurring in the metal and the ultimate utilization of the technology involved.
    Type: Grant
    Filed: August 23, 1995
    Date of Patent: March 31, 1998
    Inventor: Harold Aspden
  • Patent number: 5726380
    Abstract: A thermo-electric power generating element has the structure that two kinds of metal sheets, or foils, which form a thermocouple combination are laminated together and alternately connected at one end and the other end so as to form a plurality of thermocouples connected in series. When hot junctions are held at a high temperature, a temperature gap along the thermal flux is generated in the sheets, or foils. Electromotive force at every thermocouple derived from the temperature gap is summed up to a voltage level effective for outputting electric power through takeoff leads. This power generator is useful for converting waste heat to electric power. When the thermocouple pile is made from corrugated sheets, or foils, electric power is outputted with high efficiency.
    Type: Grant
    Filed: March 7, 1996
    Date of Patent: March 10, 1998
    Assignees: Nisshin Steel Co., Ltd., Ohara Metal Industries Co., Ltd.
    Inventors: Michio Ozutsumi, Toshihiko Takemoto, Shinsuke Ohara
  • Patent number: 5712886
    Abstract: The detection device includes at least one thermocouple (10) arranged aligned with the bottom head of the vessel of the nuclear reactor, having a first branch (9) made of a first metallic material and at least one second branch (11) made of a second metallic material, different from the first material, welded to a point on the first branch constituting a hot junction of the thermocouple (10). The first branch (9) of the thermocouple has the form of an elongate hollow section. The device furthermore includes means for analyzing the measurements taken by the thermocouples (10).
    Type: Grant
    Filed: September 6, 1996
    Date of Patent: January 27, 1998
    Assignee: Atea, Societe Atlantique de Techniques Avancees
    Inventor: Jean Baldy
  • Patent number: 5712448
    Abstract: A cooling device for lowering the temperature of a heat-dissipating device. The cooling device includes a heat-conducting substrate (composed, e.g., of diamond or another high thermal conductivity material) disposed in thermal contact with the heat-dissipating device. During operation, heat flows from the heat-dissipating device into the heat-conducting substrate, where it is spread out over a relatively large area. A thermoelectric cooling material (e.g., a Bi.sub.2 Te.sub.3 -based film or other thermoelectric material) is placed in thermal contact with the heat-conducting substrate. Application of electrical power to the thermoelectric material drives the thermoelectric material to pump heat into a second heat-conducting substrate which, in turn, is attached to a heat sink.
    Type: Grant
    Filed: February 7, 1996
    Date of Patent: January 27, 1998
    Assignee: California Institute of Technology
    Inventors: Ian W. Vandersande, Richard Ewell, Jean-Pierre Fleurial, Hylan B. Lyon
  • Patent number: 5705434
    Abstract: A thermoelectric conversion module having a large capacity and a curved surface which can be secured to a corresponding curved surface of a base member is manufactured by inserting N type and P type semiconductor strips into through holes formed in a honeycomb structural body, filling spaces between walls defining the through holes and the semiconductor strips with filler members, cutting the honeycomb structural body into a plurality of thermoelectric conversion module main bodies each having a desired surface configuration, providing metal electrodes on both surfaces of a thermoelectric conversion module main body such that alternate N type and P type semiconductor elements are connected in cascade, and removing the filler members or the honeycomb structural body and filler members.
    Type: Grant
    Filed: November 7, 1996
    Date of Patent: January 6, 1998
    Assignees: NGK Insulators, Ltd., Nissan Motor Co., Ltd.
    Inventors: Yuichiro Imanishi, Makoto Miyoshi, Tetsuo Watanabe, Keiko Kushibiki, Kazuhiko Shinohara, Masakazu Kobayashi, Kenji Furuya
  • Patent number: 5705770
    Abstract: A thermoelectric module includes a switching circuit for switching the connection between a first thermoelectric element and a second thermoelectric element between series connection and parallel connection, a voltage detecting circuit for controlling the switching circuit by detecting the voltage of the second thermoelectric element, and a storage battery circuit for storing electricity utilizing the voltages generated by the first thermoelectric element and the second thermoelectric element connected by the switching circuit. A voltage generated from an applied temperature difference is detected by the voltage detecting circuit. If there is a sufficient temperature difference, the first thermoelectric element and second thermoelectric element are connected in parallel by the switching circuit to charge the electricity in the storage battery circuit using the doubled current.
    Type: Grant
    Filed: July 18, 1995
    Date of Patent: January 6, 1998
    Assignee: Seiko Instruments Inc.
    Inventors: Kenji Ogasawara, Keisuke Tsubata
  • Patent number: 5689087
    Abstract: A highly integrated thermal sensor (10) is responsive to radiation having wavelengths within a predetermined band of wavelengths. The sensor, which may be a thermopile, is comprised of a substrate (16) comprised of at least one semiconductor material. The substrate includes at least one active region disposed within a first surface of the substrate. The sensor further includes a plurality of thermally-responsive junctions (HJ, CJ) between dissimilar materials (22, 24) that are disposed within the at least one active region, wherein at least one of the thermally-responsive junctions is a hot junction. The hot junction is thermally isolated from the substrate by being suspended from the substrate on dielectric bridges or, in another embodiment, by a thermally insulating and patterned polymer. In a backside illuminated embodiment of this invention the sensor further includes an optical cavity (26) formed within a second surface of the substrate in registration with the active region.
    Type: Grant
    Filed: October 4, 1994
    Date of Patent: November 18, 1997
    Assignee: Santa Barbara Research Center
    Inventor: Michael D. Jack
  • Patent number: 5597976
    Abstract: The invention encompasses a torus formed by heated and cooled junctions of dissimilar metals such as copper and nickel to generate a low voltage current and form an electrical path of greatly enhanced conductivity wherein a greater current flow may be induced to form a stronger magnetic field. Current at higher voltage may be incrementally removed by magnetic field arrangements to act as magnetic variable switches while at the same time the magnetic field is contained and current also flows through the torus.
    Type: Grant
    Filed: November 25, 1994
    Date of Patent: January 28, 1997
    Inventor: Jon M. Schroeder
  • Patent number: 5576512
    Abstract: A thermoelectric apparatus (10) is provided that is compatible with multiple power sources (12) each providing a different voltage. The present apparatus (10) includes a thermoelectric assembly (14) having a plurality of thermoelectric devices (18 & 20) and control circuitry (16) coupled between the thermoelectric assembly (14) and a power source (12). The control circuitry (16) can sense the voltage provided by the power source (12) and electrically configure the thermoelectric devices (18 & 20) in the thermoelectric assembly (14) between parallel and serial electrical configuration in response to the sensed voltage. The control circuitry (16) also couples the thermoelectric devices (18 & 20) to the power source (12).
    Type: Grant
    Filed: August 5, 1994
    Date of Patent: November 19, 1996
    Assignee: Marlow Industries, Inc.
    Inventor: Michael J. Doke
  • Patent number: 5563368
    Abstract: A thermoelectric conversion member formed by a thermoelectric conversion element has a split ring shaped transverse cross section. Electrodes are disposed on ring ends of the thermoelectric conversion member facing each other. A magnetic field generating unit generates a magnetic field in a direction perpendicular to the transverse cross-sectional plane of the thermoelectric conversion member. A heating unit for heating one side of an annular wall of the thermoelectric conversion member and a cooling unit provided on the opposite side of the annular wall of the thermoelectric conversion member produces a temperature gradient in a direction radially of the thermoelectric conversion member. Electric field is induced in the direction perpendicular to both directions of the magnetic field and the temperature gradient, that is in the circumferential direction of the ring of the thermoelectric conversion member under the Nernst effect, enabling an electric voltage to be taken out at the electrodes.
    Type: Grant
    Filed: September 16, 1994
    Date of Patent: October 8, 1996
    Assignees: UniNet Co., Ltd., Shikoku Research Institute Inc.
    Inventor: Sataro Yamaguchi
  • Patent number: 5554819
    Abstract: A thermoelectric generator includes a plurality of thermoelectric junctions embedded in each of a pair of thermally conductive and electrically non-conductive layers, these layers being separated by a thermally and electrically non-conductive layer. The junctions are connected to form a thermopile. An absorbent layer is provided adjacent one of the thermally conductive layers. A liquid such as water is applied to the absorbent layer, so that evaporation of the liquid from the absorbent layer enhances the temperature differential between the two thermally conductive layers.
    Type: Grant
    Filed: January 22, 1992
    Date of Patent: September 10, 1996
    Inventor: A. Baghai-Kermani
  • Patent number: 5507879
    Abstract: In a fine structure of a thermoelectric material, fine particles of a material exhibiting Seebeck effect are electrically linked in a loosely contacted state with one another without fusing, having spaces formed at clearances among the fine particles. A method of manufacturing the thermoelectric material comprises a step of compacting fine particles made of a material exhibiting Seebeck effect through a cold pressing. Also, disclosed is a sensor for quantitatively sensing a substance, which comprises a pellet of a powder thermoelectric material, where a temperature difference is generated between two points inside the piece of thermoelectric material. The sensor further includes thermocouples connected to a heater plate (6) and a cooling plate, and a controller which is electrically connected in the loop circuit of the thermocouples for detecting thermoelectric current corresponding to the temperature difference, thereby to control the heating of the heater plate.
    Type: Grant
    Filed: June 8, 1993
    Date of Patent: April 16, 1996
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Hisaaki Gyoten, Yasushi Nakagiri, Yoshiaki Yamamoto
  • Patent number: 5450869
    Abstract: A heater mechanism incorporating a thermoelectric converter for use with a self-powered, solid, liquid or gaseous fueled, heater. During operation of the heater mechanism the thermoelectric converter supplies sufficient electrical power to (a) sustain the heater in operation, (b) maintain the starter battery at full charge, and (c) provide auxiliary power to remove and transport heat to desired locations away from the heater. The converter is a highly compact design (high power output per unit volume of space) and lends itself to high volume (mass production) and automated assembly techniques to produce it inexpensively. The thermoelectric converter is made of fewer components than prior art devices. A number of components in the thermoelectric stack serve dual or even multi-functions. The thermoelectric stack components are bonded or mounted together in such a manner as to permit handling as a unit.
    Type: Grant
    Filed: March 25, 1992
    Date of Patent: September 19, 1995
    Assignee: Volvo Flygmotor AB
    Inventors: Wayne M. Brittain, Richard G. Hannah, John H. Himes, Alfred H. LaPorte, Joseph B. Moore
  • Patent number: 5441576
    Abstract: A thermoelectric heat pump which is resistant against thermal stresses incurred during thermal cycling of Thermal Cyclers or the like between cold and hot temperatures of about 0.degree. C. at a ramping rate up to about 1.degree. C. per second has improved joints between the thermoelements and electrical conductors which have low electrical resistance and which substantially reduce fractures during thermal cycling. The joints include a tin-silver-indium solder containing by weight about 95% tin, 3.5% silver, and 1.5% indium, or a tin-silver-cadmium solder containing by weight about 95.5% tin, 3.5% silver, and 1.0% cadmium. A robust nickel diffusion barrier between the joints and thermoelectric elements ends provides additional improvement against joint fracture.
    Type: Grant
    Filed: May 24, 1994
    Date of Patent: August 15, 1995
    Inventors: James L. Bierschenk, Richard A. Howarth, Norbert J. Socolowski
  • Patent number: 5429680
    Abstract: A thermoelectric heat pump including combination adherent and metal migration barrier layers intermediate the ends of the n-type and p-type semi-conductors and the metallic electrical conductors, the layers enhance the adherence to the ends of the semiconductors and prevent migration or diffusion of metal into the semiconductors.
    Type: Grant
    Filed: November 19, 1993
    Date of Patent: July 4, 1995
    Inventor: Dean F. Fuschetti
  • Patent number: 5428560
    Abstract: A simulator, in particular for simulating thermal batteries, the simulator delivering an output voltage U.sub.bat across output terminals thereof, said output voltage being a function of a current I.sub.out delivered, into a load connected to said terminals, and of an e.m.f. parameter. E.sub.g and of an internal resistance parameter R.sub.g that are determined from simulation profiles that give successive values taken by said parameters under real battery operating conditions during an active life cycle of a given battery. The simulator includes computer equipment delivering the simulation profiles in the form of e.m.f. references C.sub.Eg and internal resistance references C.sub.Rg to a battery simulation card which, in order to generate the output voltage U.sub.bat of the simulator at the output of said voltage programmable power supply feeds said power supply with a battery voltage reference C.sub.
    Type: Grant
    Filed: March 31, 1993
    Date of Patent: June 27, 1995
    Assignee: Aerospatiale Societe Nationale Industrielle
    Inventors: Serge Leon, Patrick Grain, Serge Bard
  • Patent number: 5419780
    Abstract: An apparatus and method for recovering power dissipated by a semiconductor integrated circuit includes a thermoelectric generator which converts the heat generated by the integrated circuit into electrical energy. The electrical energy is used to drive a fan or other airflow generating device to cause heated air to be moved away from the integrated circuit and cooler air to be drawn to the integrated circuit to absorb further heat from the integrated circuit. In the described embodiment, the thermoelectric generator is a Peltier cooler positioned between the integrated circuit and a heatsink. The Peltier cooler is operated in the Seebeck mode to generate power in response to the temperature differential between the integrated circuit and the heatsink.
    Type: Grant
    Filed: April 29, 1994
    Date of Patent: May 30, 1995
    Assignee: AST Research, Inc.
    Inventor: Edward D. Suski
  • Patent number: 5409547
    Abstract: A thermoelectric cooling device for a thermoelectric refrigerator is described. The device is composed of p-type and n-type semiconductor layers, a first inner heat conductor, a first outer heat conductor, a second inner heat conductor, and a second outer heat conductor. The p-type and n-type semiconductor layers are electrically connected in series via the electrodes. The p-type and n-type semiconductor layers have a specific average thickness. The average figures of merit of the p-type and n-type semiconductor layers are controlled to a particular value. The thermal conductances of the first and second, inner and outer heat conductors fall within specific ranges, respectively. The coefficient of performance defined in terms of the ratio of the quantity of absorbed heat to inputted power is at least 0.6. Also described are a process for the fabrication of a semiconductor suitable for use in the thermoelectric cooling device and also a thermoelectric refrigerator using the thermoelectric cooling device.
    Type: Grant
    Filed: September 30, 1993
    Date of Patent: April 25, 1995
    Assignee: Thermovonics Co., Ltd.
    Inventors: Hideo Watanabe, Motohiro Sakai, Fumio Hisano, Atsushi Osawa, Hirofusa Tezuka
  • Patent number: 5393350
    Abstract: A low voltage high amperage thermopile generating and electron storage unit is disclosed wherein current is formed by heating and cooling alternate junctions of dissimilar metals arranged in a circular fashion and may be enhanced with an electrical flux pump. Current may be withdrawn using an ultra fast thermopile type switch to connect to an electrical load source.
    Type: Grant
    Filed: October 8, 1993
    Date of Patent: February 28, 1995
    Inventor: Jon M. Schroeder
  • Patent number: 5393351
    Abstract: Multijunction thermal converters are formed in an integral multifilm membrane form over a through opening in a nonmagnetic, dielectric substrate. Through the use of conventional photolithographic and etching techniques, very compact, rugged and precise integrated structures are formed to include either single linear elongate heater elements, bifilar or trifilar heater elements, and multijunction thermopiles at reasonable cost. Disposition of the heater element and hot junctions of the thermopiles over a through opening in the substrate, with the cold junctions of the thermopiles disposed over the substrate thickness, enables the heating element to provide a substantially isothermal uniform heating of the thermocouple hot junctions to obtain high thermal efficiency and reduce Thompson and Peltier heating effects. Forming the essential elements into an integrated multifilm membrane also makes possible minimization of interconnections between the elements, and this results in minimized reactance.
    Type: Grant
    Filed: January 13, 1993
    Date of Patent: February 28, 1995
    Assignee: The United States of America as represented by the Secretary of Commerce
    Inventors: Joseph R. Kinard, De-xiang Huang, Donald B. Novotny
  • Patent number: 5376184
    Abstract: Heat transfer apparatus, whether in panel or tubular form, comprises bimetallic laminations, at least one of the metals being ferromagnetic. A temperature differential causes thermoelectric current circulation (in effect, a d.c. eddy-current) within each lamination which develops a magnetizing H-field. A transverse electric potential may also be used to enhance thermoelectric activity across a bimetallic junction. The ferromagnetic B-field enhancement develops in turn a circulating diamagnetic reaction current which augments the thermoelectric activity and causes an overriding thermal feedback and bistable direction-of-heat-flow operation. Control involves the priming action of an applied electric and/or magnetic field or preheating by electrical resistors in the heat sinks. Application in a thermally powered electric transformer generator is described.
    Type: Grant
    Filed: February 16, 1993
    Date of Patent: December 27, 1994
    Inventor: Harold Aspden
  • Patent number: 5288336
    Abstract: A thermopile 30 comprises a stacked assembly of bimetallic layers in which there is full conductor interface contact over the distance separating hot and cold surfaces 31, 32. The assembly may include dielectric layers forming a capacitor stack. A.C. current through the stack is matched in strength to the Seebeck-generated thermoelectric current circulating in each bimetallic layer. The resulting current snakes through the stack to cause Peltier cooling at one heat surface and heating at the other. A.C. operation at a kilocycle frequency enhances the energy conversion efficiency as does heat flow parallel with the junction interface.
    Type: Grant
    Filed: November 20, 1989
    Date of Patent: February 22, 1994
    Assignee: Dr. Harold Aspden
    Inventors: John S. Strachan, Harold Aspden
  • Patent number: 5254178
    Abstract: A thermoelectric transducer apparatus comprises a group of thermoelectric elements having N-type elements and P-type elements alternately arranged in a single line and a number of alternately arranged heat-absorbing-type and heat-liberating-type plate electrodes to electrically and serially connect said N- and P-type elements.
    Type: Grant
    Filed: October 30, 1991
    Date of Patent: October 19, 1993
    Assignee: Nippondenso Co., Ltd.
    Inventors: Kenji Yamada, Yoshitaka Tomatsu, Tatsuya Oike, Kazutoshi Nishizawa
  • Patent number: 5232516
    Abstract: Thermoelectric heat pumps using recuperative heat exchange are described. These devices use sets of thermocouples (thermoelectric couples) arranged side-by-side to form a plate. The plate is positioned in a fluid-containing vessel and heat exchanging fluid is flowed down one side of the plate and up the other side. In these devices the heat flow, and thus the driving thermal gradient on each thermoelectric couple in the device, is in a direction from one side of the plate to the other side, i.e., other than the direction of the device's working thermal gradient, which is the direction of the flow of fluid. Generally these two directions (driving gradient on the thermoelectric couples and fluid flow-working thermal gradient) are essentially orthogonal to each other.
    Type: Grant
    Filed: June 4, 1991
    Date of Patent: August 3, 1993
    Assignee: Implemed, Inc.
    Inventor: Aharon Z. Hed
  • Patent number: 5228923
    Abstract: A thermoelectric device has a cylindrical structure with a hollow central annulus member in which a fluid is pumped so that the heated fluid is pumped from the center of the structure and discharged on the outer surface of an outer annulus member or with the reversal of electrical current, the heated fluid is pumped from the outer periphery and discharged in the central tube. A plurality of thermoelectric cells are positioned in the space between the inner and outer annulus members with the cells being radially directed relative to the axis of the inner annulus member. A thermoelectric device having a similar structure may be used for the conversion of thermal energy to electrical energy when a thermal gradient is imposed between the inner member of the structure and the peripheral surface.
    Type: Grant
    Filed: December 13, 1991
    Date of Patent: July 20, 1993
    Assignee: Implemed, Inc.
    Inventor: Aharon Z. Hed
  • Patent number: 5171372
    Abstract: A thermoelectric device has hot and cold sides. The hot and cold sides include a plate of insulation material having "peanut" or rectangularly shaped tabs forming hot and cold side tab patterns. The tabs have circular or polygonal shaped pockets adjacent opposing ends of the tabs. Legs of p-type and n-type semiconductor material are attached in opposing end pockets of the tabs. Spade connectors are attached to end tabs of the cold side plate for connection to a dc source of power. The legs are vibrated into the pockets of one side (either the hot or cold side) and the tabs of the other side are positioned to opposing ends of the tabs of the other side (either the cold or hot side).
    Type: Grant
    Filed: May 2, 1991
    Date of Patent: December 15, 1992
    Assignee: Marlow Industries, Inc.
    Inventor: Leonard J. Recine, Sr.
  • Patent number: 5087312
    Abstract: Thermopile has a plurality of reference junctions and a plurality of measurement thermocouple junctions connected electrically alternately in series on a dielectric support. Each reference junction has thereover a first medium which is nonthermally responsive and each measurement junction has thereover a second medium which is thermally responsive. The first and second mediums occupy areas which are arranged in a checkerboard pattern, the reference junctions under areas occupied by said first medium each being electrically connected directly to a measurement thermocouple under an area occupied by said second medium.
    Type: Grant
    Filed: July 11, 1990
    Date of Patent: February 11, 1992
    Assignee: Boehringer Mannheim GmbH
    Inventors: Martin T. Gerber, Peter J. Hesketh
  • Patent number: 5064476
    Abstract: An improved thermoelectric device and fabrication process wherein in a first embodiment strips of conductive material are attached to corresponding strips of adhesive material and first and second patterned arrays of tabs are struck from the strips onto the adhesive strips. In a second embodiment strips of conductive material are blanked to form the first and second patterned arrays of tabs and substantially simultaneously therewith the arrays of tabs are partially returned to their strips which now serve as support frames for the tab arrays. The array of tabs have either flat rectangular surfaces or flat peanut shaped surfaces with or without round shaped pockets adjacent to each end. Round pockets are used to receive legs of thermoelectric material of any shape without orientation. The first and second patterned tab arrays are attached to plates of insulation material and the adhesive strips or the strip frames removed, as applicable, to form first and second side plates.
    Type: Grant
    Filed: September 17, 1990
    Date of Patent: November 12, 1991
    Inventor: Leonard J. Recine, Sr.