Coating Composition Applied Forms Oxide Coating Patents (Class 148/284)
  • Patent number: 7850791
    Abstract: Alloys containing aluminium are characterised by an outstanding oxidation resistance at high temperatures, that is based on, inter alia, the formation of a thick and slow-growing aluminium oxide layer on material surfaces. If the formation of the aluminium oxide layer reduces the aluminium content of the alloy so far that a critical aluminium concentration is not reached, no other protective aluminium oxide layer can be formed. This leads disadvantageously to a very rapid breakaway oxidation, and the destruction of the component. This effect is stronger at temperatures above 800° C. due to the fact that, often at this point, metastable Al2O3 modifications, especially ?- or ?-Al2O3, are formed instead of ?-Al2O3 that is generally formed at high temperatures. The above-mentioned oxide modifications are disadvantageously characterised by significantly higher growth rates.
    Type: Grant
    Filed: November 20, 2004
    Date of Patent: December 14, 2010
    Assignee: Forschungszentrum Julich GmbH
    Inventor: Willem J. Quadakkers
  • Patent number: 7850790
    Abstract: Methods of passivating a metal surface are described, the methods comprising the steps of exposing the metal surface to a silicon-containing passivation material, evacuating the metal surface, exposing the treated surface to a gas composition, having a concentration of reactive gas that is greater than an intended reactive gas concentration of gas to be transported by the metal surface, evacuating the metal surface to remove substantially all of the gas composition to enable maintenance of an increased shelf-life, low concentration reactive gas at an intended concentration, and exposing the metal surface to the reactive gas at the intended reactive gas concentration. Manufactured products, high stability fluids, and methods of making same are also described.
    Type: Grant
    Filed: April 1, 2009
    Date of Patent: December 14, 2010
    Assignee: American Air Liquide, Inc.
    Inventors: Tracey Jacksier, Robert Benesch, Malik Haouchine
  • Patent number: 7837806
    Abstract: Articles of manufacture and methods of making and using same concern a container having an internal space and a passivated internal metal surface. The container contains a composition of an acid gas and a balance gas contained within the internal space and in contact with the passivated internal metal surface. The stability of the acid gas concentration over time is enhanced.
    Type: Grant
    Filed: January 13, 2009
    Date of Patent: November 23, 2010
    Assignee: American Air Liquide, Inc.
    Inventors: Robert Benesch, Malik Haouchine, Tracey Jacksier
  • Patent number: 7832550
    Abstract: Methods of passivating a metal surface are described, the methods comprising the steps of exposing the metal surface to a silicon-containing passivation material, evacuating the metal surface, exposing the treated surface to a gas composition, having a concentration of reactive gas that is greater than an intended reactive gas concentration of gas to be transported by the metal surface, evacuating the metal surface to remove substantially all of the gas composition to enable maintenance of an increased shelf-life, low concentration reactive gas at an intended concentration, and exposing the metal surface to the reactive gas at the intended reactive gas concentration. Manufactured products, high stability fluids, and methods of making same are also described.
    Type: Grant
    Filed: April 25, 2005
    Date of Patent: November 16, 2010
    Assignee: American Air Liquide, Inc.
    Inventors: Tracey Jacksier, Robert Benesch, Malik Haouchine
  • Publication number: 20100282370
    Abstract: Shape Memory Alloy tube is protected from damage during drawing, caused by galling-type interaction between the tube and high-carbon dies, by forming an oxide surface layer. This invention protects the tube internal diameter from oxidation while allowing the tube outside diameter to be oxidised, by using an oxygen getter located within the tube during the oxidation step. The method yields a higher quality internal diameter and improves productivity.
    Type: Application
    Filed: September 26, 2008
    Publication date: November 11, 2010
    Applicant: JOHNSON TATTHEY PUBLIC LIMITED COMPANY
    Inventors: Edwin Alfred Crombie, III, William Andrew Hochella
  • Patent number: 7828911
    Abstract: A method for producing coloured layers on zinc, aluminium, magnesium or alloy surfaces. The surfaces are brought into contact with an aqueous treatment solution which is devoid of chrome, said solution containing, in total, 3-35 g/l persulfate ions and/or peroxodisulfate ions and not more than 10 g/l ammonia or ammonium ions, it has a pH value in the region of between 10-12 and a temperature in the range of between 30-80 ° C. The surfaces are brought into contact with the treatment solution for a period in the region of 0.5-5 minutes and optionally, they are covered with a coating based on organic polymers. The invention further relates to metal parts treated according to said method.
    Type: Grant
    Filed: May 4, 2006
    Date of Patent: November 9, 2010
    Assignee: Henkel AG & Co. KGaA
    Inventors: Pavel Gentschev, Matthias Schweinsberg, Marco Bastian, Ulrich Jueptner
  • Publication number: 20100275875
    Abstract: A sliding component for an internal combustion engine includes a component main body made of titanium or a titanium alloy, a surface hardened layer provided on a surface of the component main body, a diamond-like carbon film provided on the surface hardened layer, and a titanium layer provided between the surface hardened layer and the diamond-like carbon film.
    Type: Application
    Filed: December 15, 2009
    Publication date: November 4, 2010
    Applicant: Yamaha Hatsudoki Kabushi Kaisha
    Inventor: Kosuke Doi
  • Patent number: 7811392
    Abstract: It is an object of the present invention to efficiently suppress radionuclide deposition on a reactor component of nuclear power plant. Radionuclide deposition on the surface of a metallic reactor component of nuclear power plant is suppressed by forming a ferrite film on the component, wherein the film is formed, after decontamination for removing radionuclides contaminants from the component surface is completed and before the plant is started up, by contacting a treatment solution which mixes a first agent containing the iron (II) ions, a second agent for oxidizing the iron (II) ions into the iron (III) ions and a third agent for adjusting pH level of a solution to 5.5 to 9.0 in this order with the reactor component surface.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: October 12, 2010
    Assignee: Hitachi-GE Nuclear Energy, Ltd.
    Inventors: Hideyuki Hosokawa, Makoto Nagase, Kazushige Ishida, Youichi Wada, Naoshi Usui, Motohiro Aizawa, Motomasa Fuse
  • Publication number: 20100243109
    Abstract: The invention relates to a method for producing corrosion-resistant surfaces of nitrated or nitrocarburated steel components, the surfaces having roughness heights (Rz) of Rz?1.5 ?m. The method comprises the following steps: oxidation of the surfaces of the nitrated or nitrocarburated components in a first oxidation step; carrying out at least a second oxidation of the component surfaces in an immediately subsequent oxidation step; polishing the component surface in a final method step, directly after the final oxidation.
    Type: Application
    Filed: October 29, 2008
    Publication date: September 30, 2010
    Applicant: Durferrit GmbH
    Inventor: Ulrich Baudis
  • Patent number: 7799150
    Abstract: Methods of passivating a metal surface are described, the methods comprising the steps of i) exposing the metal surface to a silicon-containing passivation material; ii) evacuating the metal surface; iii) exposing the treated surface to a gas composition having a concentration of reactive gas that is greater than an intended reactive gas concentration of gas to be transported by the metal surface; iv) evacuating the metal surface to remove substantially all of the gas composition to enable maintenance of an increased shelf-life, low concentration reactive gas at an intended concentration; and v) exposing the metal surface to the reactive gas at the intended reactive gas concentration. Manufactured products, high stability fluids, and methods of making same are also described.
    Type: Grant
    Filed: January 11, 2007
    Date of Patent: September 21, 2010
    Assignee: American Air Liquide, Inc.
    Inventors: Tracey Jacksier, Robert Benesch
  • Publication number: 20100218855
    Abstract: Metals for use in glass-making furnaces and which are susceptible to oxidation at furnace operating temperatures, especially iridium or molybdenum, are protected by applying at least (200) microns thickness of a coating formed of metal oxide particles in a metal oxide matrix. Oxidation, measured by weight loss, is significantly reduced.
    Type: Application
    Filed: October 5, 2007
    Publication date: September 2, 2010
    Inventors: Duncan Roy Coupland, Rachel Emma Hill, Roger Charles Wilkinson
  • Publication number: 20100193082
    Abstract: The method of surface treatment, as applied onto a metal base material, of the present invention includes a reduction treatment step of reduction-treating the oxide film formed on the metal base material and an oxidation treatment step of oxidation-treating the oxide film having been subjected to the reduction treatment.
    Type: Application
    Filed: July 10, 2008
    Publication date: August 5, 2010
    Inventors: Hajime Hasegawa, Yusuke Watanabe
  • Publication number: 20100193104
    Abstract: A novel method of manufacturing a transition metal oxide having a spinel structure is provided. A mixture of powdery metals of metal elements constituting the transition metal oxide is heated in an oxidizing atmosphere to generate the transition metal oxide.
    Type: Application
    Filed: January 27, 2010
    Publication date: August 5, 2010
    Applicant: NGK Insulators, Ltd.
    Inventors: Takashi RYU, Toshiyuki Nakamura, Makoto Ohmori
  • Patent number: 7754995
    Abstract: A plasma processing apparatus comprising at least a plasma processing chamber for plasma-processing an object; object-holding means for disposing the object in the plasma processing chamber; and plasma-generating means for generating a plasma in the plasma processing chamber. The inner wall of the plasma processing chamber is at least partially covered with an oxide film based on a pre-treating plasma. A plasma processing apparatus and a plasma processing method effectively prevent the spluttering and the etching of the inner wall of the plasma processing chamber while suppressing contamination to the object.
    Type: Grant
    Filed: November 20, 2003
    Date of Patent: July 13, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Toshihisa Nozawa, Masaru Sasaki, Masaji Inoue
  • Patent number: 7736445
    Abstract: A surface treatment method for solder joint employs alkali buffer solution dipping the solder joint and the alkali buffer solution reacts with the solder joint thus yielding a passive layer. As the resultant passive layer forms on the surface of the solder joint, thereby prevents further corrosion and dissolution during aqueous cleaning or water dipping thereafter. In addition, the passive layer ensures a good appearance with maximum protection of the solder joint and also provides a sound reliability and a high testability of a finished electronic product equipped with the solder joint.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: June 15, 2010
    Assignee: SAE Magnetics (H.K.) Ltd.
    Inventors: Ichiro Yagi, DeFeng Lu, XiaoGang Yang, DeYu He
  • Patent number: 7736446
    Abstract: A method for manufacturing a lanthanum oxide compound on a substrate includes: setting the number of H2O molecule, the number of CO molecule and the number of CO2 molecule to one-half or less, one-fifth or less and one-tenth or less per one lanthanum atom, respectively, the H2O molecule, the CO molecule and the CO2 molecule being originated from an H2O gas component, a CO gas component and a CO2 gas component in an atmosphere under manufacture; and supplying a metal raw material containing at least one selected from the group consisting of lanthanum, aluminum, titanium, zirconium and hafnium and an oxygen raw material gas simultaneously for the substrate under the condition that the number of O2 molecule are set to 20 or more per one lanthanum atom, thereby manufacturing the lanthanum oxide compound on the substrate.
    Type: Grant
    Filed: March 19, 2008
    Date of Patent: June 15, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Akira Takashima, Koichi Muraoka
  • Publication number: 20100086794
    Abstract: An alloy having from about 5 to about 15 wt % Ta, from 0 to about 5 wt % Nb, from about 0.5 to about 15 wt % Zr, and the balance Ti is disclosed. The alloy is particularly intended for medical devices, such as implants for the body.
    Type: Application
    Filed: September 23, 2009
    Publication date: April 8, 2010
    Inventor: Susanne Norgren
  • Publication number: 20100079918
    Abstract: A method of manufacturing a magnetoresistive element includes forming a metal layer on a first ferromagnetic layer, oxidizing the metal layer to form an oxide layer in which unoxidized metal is remained and a magnetic conduction column penetrating the oxide layer in a thickness direction and including at least a part of constituent elements of the first ferromagnetic layer, annealing a resultant structure at a higher temperature than a temperature at which the oxide layer is formed to convert at least a part of a periphery of the magnetic conduction column into a magnetic oxide including a part of constituent elements of the oxide layer and at least a part of constituent elements of the magnetic conduction column, and forming a second ferromagnetic layer.
    Type: Application
    Filed: September 18, 2009
    Publication date: April 1, 2010
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Hiromi Fuke, Susumu Hashimoto, Masayuki Takagishi, Hitoshi Iwasaki
  • Patent number: 7687007
    Abstract: Method for manufacturing a mold tool (1), devised for forming a structured nanoscale pattern on an object (24) and having a layer (16) which is anti-adhesive with regard to the object (24). A stamp blank (2) is provided with a structured pattern (4) on a surface (8). The patterned surface (8) is coated with a layer (6) of a metal, which has a stable oxidation number and can form a mechanically stable oxide film. The metal layer (6) is oxidized for forming of an oxide film (10). The oxide film (10) is exposed to a reagent comprising molecule chains (18), each of which has a linkage group (20) which bonds to the oxide film (10) by chemical bonding, wherein the molecule chains (18) either at the outset comprise at least a group (22) comprising fluorine, or in a subsequent step is provided with at least one such group (22).
    Type: Grant
    Filed: June 16, 2003
    Date of Patent: March 30, 2010
    Assignee: Obducat AB
    Inventors: Torbjörn Ling, Lars Montelius, Matthias Keil, Marc Beck
  • Publication number: 20100068510
    Abstract: The invention comprises semifinished products with a structured surface, the semifinished product comprising an oxidized and subsequently re-reduced surface containing at least one refractory metal, and also a process for their production and their use for producing high-capacitance components.
    Type: Application
    Filed: August 10, 2007
    Publication date: March 18, 2010
    Applicant: H.C. STARCK GMBH
    Inventors: Melanie Stenzel, Andreas Scharf, Helmut Haas, Holger Brumm, Timo Langetepe, Christoph Schnitter
  • Publication number: 20100061836
    Abstract: A process for producing a component of a gas turbine having a substrate with a metallic layer is provided. The metallic layer is a MCrAlX layer which is treated at temperatures elevated above the operating temperature, by at least 50° C., so that the oxidation and corrosion behavior are improved. In particular a MCrAlX of the type, NiCoCrAlX is used.
    Type: Application
    Filed: September 6, 2007
    Publication date: March 11, 2010
    Inventor: Werner Stamm
  • Publication number: 20090314390
    Abstract: An alloy casting having a protective layer disposed on a surface of the casting is provided. The protective layer is resistant to liquid metal attack, and wherein the protective layer includes an oxide of an element present in the alloy. A method of forming a protective layer on a surface of the alloy casting is also provided. The method includes disposing the alloy in a mold, and oxidizing an element of the alloy to form a protective layer on the surface of the casting.
    Type: Application
    Filed: June 24, 2008
    Publication date: December 24, 2009
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Michael Frances Xavier Gigliotti, JR., Stephen Francis Rutkowski, Shyh-Chin Huang, Roger John Petterson, Luana Emiliana Iorio, Andrew John Elliott
  • Publication number: 20090308498
    Abstract: A method using a continuous annealing furnace where a cooling method of a cooling zone including part or all of the temperature range of the steel sheet of 600 to 250° C. following the heating for recrystallization is one or more of gas cooling, effusion cooling, and cooling pipe cooling, or a joint cold rolled steel sheet/hot dip galvanized steel sheet facility having such a continuous annealing furnace, to continuously anneal cold rolled steel sheet to produce high strength cold rolled steel sheet, characterized by exposing the steel sheet surface to an iron-oxidizing atmosphere in the steel sheet temperature range to make the surface oxidize, pickling the sheet at the outlet side of the annealing furnace, then iron- or Ni-plating the sheet to 1 to 50 mg/m2.
    Type: Application
    Filed: January 9, 2008
    Publication date: December 17, 2009
    Inventors: Kenichiro Matsumura, Kohji Yanaba, Yuuki Yasuda
  • Publication number: 20090298683
    Abstract: The invention relates to the production of a material comprising a mixture of noble metal nanoparticles and rare-earth oxide nanoparticles. The process comprises the following successive steps: a) production of a metal alloy comprising at least one noble metal chosen from the group comprising the elements Ru, Rh, Ir, Ag, Au, Pd, Pt, Ni and Cu and at least one rare earth chosen from the group comprising the elements La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y and Sc, said alloy containing a crystalline phase the rare earth content of which is greater than 10 at % and the noble metal content of which is between 25 and 75 at %; and b) oxidation, in an oxidizing atmosphere, of the metal alloy obtained during step a). The subject of the invention is also a composite comprising a mixture of noble metal nanoparticles and rare-earth oxide nanoparticles and to the use of such a composite, in particular for catalysis.
    Type: Application
    Filed: December 15, 2006
    Publication date: December 3, 2009
    Inventors: Marc-Charles Lomello-Tafin, Jean-Luc Rousset, Jean-Michel Moreau, Abdelouahed Ait Chaou, Franck Morfin
  • Publication number: 20090236014
    Abstract: A process for treating a non-ferrous metal component, comprising placing the component into a process chamber at an elevated temperature, biasing the component to have a potential capable of attracting ions, introducing oxygen into the chamber at a pressure such that a glow discharge comprising oxygen ions is generated, the process chamber additionally comprising a glow discharge ionization enhancing means, and activating the glow discharge ionization enhancing means thereby increasing charged species density of the glow discharge, the oxygen ions flowing towards the component and colliding the surface thereof at least some of which diffuse into the component.
    Type: Application
    Filed: March 24, 2008
    Publication date: September 24, 2009
    Inventors: Junia Cristina Wilson, Elliott Ashley Spain, Jonathan Housden, Allan Matthews, Adrian Leyland
  • Publication number: 20090107586
    Abstract: A method for manufacturing a lanthanum oxide compound on a substrate includes: setting the number of H2O molecule, the number of CO molecule and the number of CO2 molecule to one-half or less, one-fifth or less and one-tenth or less per one lanthanum atom, respectively, the H2O molecule, the CO molecule and the CO2 molecule being originated from an H2O gas component, a CO gas component and a CO2 gas component in an atmosphere under manufacture; and supplying a metal raw material containing at least one selected from the group consisting of lanthanum, aluminum, titanium, zirconium and hafnium and an oxygen raw material gas simultaneously for the substrate under the condition that the number of O2 molecule are set to 20 or more per one lanthanum atom, thereby manufacturing the lanthanum oxide compound on the substrate.
    Type: Application
    Filed: March 19, 2008
    Publication date: April 30, 2009
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Akira TAKASHIMA, Koichi Muraoka
  • Patent number: 7520940
    Abstract: A method of forming an oxide layer on a powder metal part includes subjecting the powder metal part to a steam oxidation process. An oxide layer is formed on the powder metal part. The oxide layer has a thickness greater than 7 microns.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: April 21, 2009
    Assignee: Caterpillar Inc.
    Inventors: Hyung Kyu Yoon, Thomas E. Clements, Daniel Patrick Vertenten, David Anthony Cusac
  • Patent number: 7488392
    Abstract: A stainless steel comprising at least 20 weight % of chromium and at least 1.0 weight % of manganese is adapted to support an overcoating having a thickness from 1 to 10 microns of a spinel of the formula MnxCr3?xO4 wherein x is from 0.5 to 2. Preferably the overcoating is on chromia and has stability against chemical reaction at temperatures at least 25° C. higher than the uncoated chromia.
    Type: Grant
    Filed: December 8, 2005
    Date of Patent: February 10, 2009
    Assignee: Nova Chemicals (International) S.A.
    Inventors: Leslie Wilfred Benum, Michael C. Oballa, Sabino Steven Anthony Petrone
  • Publication number: 20080268347
    Abstract: An active material for a non-aqueous electrolyte secondary battery including a lithium-containing transition metal oxide containing nickel and manganese and having a closest-packed structure of oxygen, wherein an atomic ratio MLi/MT between the number of moles of lithium MLi and the number of moles of transition metal Mt contained in the lithium-containing transition metal oxide is greater than 1.0; the lithium-containing transition metal oxide has a crystal structure attributed to a hexagonal system, and the X-ray diffraction image of the crystal structure has a peak P003 attributed to the (003) plane and a peak P104 attributed to the (104) plane; an integrated intensity ratio I003/I104 between the peak P003 and the peak P104 varies reversibly within a range from 0.7 to 1.5 in association with absorption and desorption of lithium by the lithium-containing transition metal oxide; and the integrated intensity ratio varies linearly and continuously.
    Type: Application
    Filed: March 28, 2008
    Publication date: October 30, 2008
    Inventors: Tsutomu Ohzuku, Hiroshi Yoshizawa, Kensuke Nakura
  • Publication number: 20080245446
    Abstract: Alloys containing aluminium are characterised by an outstanding oxidation resistance at high temperatures, that is based on, inter alia, the formation of a thick and slow-growing aluminium oxide layer on material surfaces. If the formation of the aluminium oxide layer reduces the aluminium content of the alloy so far that a critical aluminium concentration is not reached, no other protective aluminium oxide layer can be formed. This leads disadvantageously to a very rapid breakaway oxidation, and the destruction of the component. This effect is stronger at temperatures above 800° C. due to the fact that, often at this point, metastable Al203 modifications, especially ?- or ?-Al203, are formed instead of ?-Al203 that is generally formed at high temperatures. The above-mentioned oxide modifications are disadvantageously characterised by significantly higher growth rates.
    Type: Application
    Filed: November 20, 2004
    Publication date: October 9, 2008
    Applicant: Forschungszentrum Jülich GMBH
    Inventor: Willem J. Quadakkers
  • Publication number: 20080210343
    Abstract: A process for treating the working surfaces of equipment used in the production and processing of polycarbonate is disclosed. The thermal treatment in an oxidative atmosphere results in resin and molded articles having improved optical quality.
    Type: Application
    Filed: October 25, 2007
    Publication date: September 4, 2008
    Inventors: Wolfgang Ebert, Rainer Mellis, Alexander Meyer, Bert Ruytinx, Alexander Karbach, Detlef Michalski-Vollmer
  • Publication number: 20080194063
    Abstract: A method of producing a metal article intended for at least partially coating with a substance, which includes a metal solder, a plastic, a glass, or a ceramic. The metal article itself may include, in particular, connecting, supporting, or conducting components for an electronic component. The metal article has macroscopically smooth surface portions and a plurality of multiply curved nanopores in the region of at least one surface portion.
    Type: Application
    Filed: April 22, 2008
    Publication date: August 14, 2008
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Edmund Riedl, Wolfgang Schober
  • Patent number: 7311787
    Abstract: The invention relates to a method for darkening a superficial layer of a workpiece which contains zinc by anodic oxidation. The workpiece is oxidized in a soaking bath containing an aqueous solution comprised of a hydroxide and of a nitrate. The anodic oxidation may be carried out in an aqueous solution containing NH.sub.4 NO.sub.3 or NaNO.sub.3, and having a pH value ranging from 8 to 14, at a dipping bath temperature (T) ranging from 15 to 45.degree. C., and with a current density (i) ranging from 3.times.10.sup.?4 to 0.5 A/cm.sup.2. The workpiece is placed in the soaking bath at the beginning of the anodic oxidation after the voltage has already been applied.
    Type: Grant
    Filed: May 25, 2004
    Date of Patent: December 25, 2007
    Assignee: Ewald Dorken AG
    Inventors: Thomas Kruse, Peter Meisterjahn
  • Patent number: 7284461
    Abstract: Colored razor blades are provided. Methods for manufacturing such blades are also provided, including methods involving subjecting a blade material to a hardening process; and, during the hardening process, oxidizing the blade material to form an oxide layer on the blade material. The method also includes quenching the blade material, after the oxidizing step, to initiate martensitic transformation of the blade material, and forming the hardened blade material into a razor blade, the oxide layer providing the razor blade with a colored surface.
    Type: Grant
    Filed: December 16, 2004
    Date of Patent: October 23, 2007
    Assignee: The Gillette Company
    Inventors: Kenneth J. Skrobis, Alfred Porcaro, Ronald J. Swanson, Eric Liu
  • Patent number: 7276129
    Abstract: Surface treating methods of a titanium part may include the steps of determining an effective thickness of a hard oxide film to be formed on a surface of the titanium part, determining an effective surface roughness of the hard oxide film, and oxidation treating the surface of the titanium part under a desired treating temperature and a desired treating time such that both of the determined effective thickness and effective surface roughness are satisfied.
    Type: Grant
    Filed: November 18, 2003
    Date of Patent: October 2, 2007
    Assignee: Aisan Kogyo Kabushiki Kaisha
    Inventors: Tadayoshi Tominaga, Naoki Komoto, Teruhisa Ushio
  • Patent number: 7270718
    Abstract: The invention provides a method for manufacturing a soft magnetic powder material covered by oxide layers at surfaces of the powder, by using a soft magnetic alloy powder containing a soft magnetic powder material and a second element such as Si having an oxidizing reactivity higher than iron, and heating the soft magnetic alloy powder in an atmosphere of a weak oxidizing gas by mixing a weak oxidizing gas in an inert gas, and oxidizing selectively the second element at surface layers of the powder while restraining an oxidation of iron to form thin oxide layers with high electrical resistance.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: September 18, 2007
    Assignee: DENSO Corporation
    Inventors: Yoshiaki Nishijima, Yurio Nomura, Kouichi Yamaguchi, Yuuichi Ishikawa, Hidekazu Hayama
  • Patent number: 7208055
    Abstract: An article of titanium or a titanium-based alloy, or of zirconium or a zirconium-based alloy is case hardened by heat treatment for at least 12 hours at one or more temperatures in the range of 850° C. to 900° C. and at a pressure in the order of atmospheric pressure in an oxygen diffusion atmosphere. The oxygen diffusion atmosphere comprises a carrier gas such as argon which does not react chemically with the article the said temperature range and molecular oxygen. The concentration of oxygen as the oxygen diffusion atmosphere is in the range of 10 volumes per million to 400 volumes per million.
    Type: Grant
    Filed: July 14, 2003
    Date of Patent: April 24, 2007
    Assignee: The BOC Group, plc
    Inventors: Paul Francis Stratton, John B. Boodey
  • Patent number: 7077919
    Abstract: Disclosed herein is an insulating material between adjacent metal layers of a soft magnetic core, and a process for forming this insulating material. The insulating material is composed of the native metal oxides of the metallic core material.
    Type: Grant
    Filed: June 5, 2003
    Date of Patent: July 18, 2006
    Assignee: Magnetic Metals Corporation
    Inventors: Richard Wood, Richard Lathlaen, William C. Beckham
  • Patent number: 7005056
    Abstract: A method for inhibiting corrosion, e.g., pitting corrosion, of alloys is provided. Particularly, the method comprises contacting at least a portion of a surface of the alloy with an aqueous solution comprising a salt of one or more rare earth elements selected from the group consisting of yttrium, gadolinium, cerium, europium, terbium, samarium, neodymium, praseodymium, lanthanum, holmium, ytterbium, dysprosium and erbium; and establishing a voltage differential between an anode comprising the alloy and a cathode in the solution at an effective level and for a sufficient period of time wherein a rare earth element oxide-containing coating is formed on the surface of the alloy to inhibit corrosion thereof.
    Type: Grant
    Filed: October 2, 2001
    Date of Patent: February 28, 2006
    Assignee: The Johns Hopkins University
    Inventors: Rengaswamy Srinivasan, Hassan M. Saffarian, Stuart A. Fogel
  • Patent number: 6946201
    Abstract: A chromium(VI)-free, chromium(III)-containing and substantially coherent conversion layer on zinc or zinc alloys presenting, even in the absence of further components such as silicate, cerium, aluminum and borate, a corrosion protection of approx. 100 to 1000 h in the salt spray test according to DIN 50021 SS or ASTM B 117-73 until first attack according to DIN 50961 Chapter 10; being clear, transparent and substantially colorless and presenting multi colored iridescence; having a layer thickness of approx. 100 nm to 1000 nm; and being hard, adhering well and being resistant to wiping.
    Type: Grant
    Filed: July 13, 2001
    Date of Patent: September 20, 2005
    Assignee: SurTec International GmbH
    Inventors: Patricia Preikschat, Rolf Jansen, Peter Hulser
  • Patent number: 6881452
    Abstract: A thermal barrier coating system having an improved life as a result of a preoxidation treatment applied to a single phase platinum aluminide bond coat. After coating the substrate to form a diffusion platinum aluminum bond coat, the surface finish of the bond coat was grit blasted with an inert grit of preselected size at a preselected pressure to achieve a predetermined surface finish. After the grit blasting, but before application of the ceramic top coat of yttria-stabilized zirconia (YSZ), the coating was preoxidized to form a thin alumina scale by heat treating the diffusion platinum aluminide bond coat at an elevated temperature at a preselected partial pressure of oxygen.
    Type: Grant
    Filed: July 6, 2001
    Date of Patent: April 19, 2005
    Assignee: General Electric Company
    Inventor: Irene Spitsberg
  • Patent number: 6878217
    Abstract: The chemical conversion film containing, at least as the constituent components thereof, (a) at least one of the metals selected from molybdenum, zirconium, vanadium, and tungsten; (b) a rare earth metal constituting the magnet; and (c) oxygen, which is formed on the surface of a rare earth metal-based permanent magnet according to the present invention, contains a composite metal oxide provided on the surface of the R-rich phase having a lower oxidation-reduction potential through a preferential reaction of the metallic ions that are present in the form of complex ions or oxide ions, such as of molybdenum, contained in the treatment solution, with the rare earth metals that elute from the magnet. Thus formed composite metal oxide reduces the difference in corrosion potential as to realize a uniform surface potential, and effectively suppresses the corrosion based on potential difference.
    Type: Grant
    Filed: October 8, 2002
    Date of Patent: April 12, 2005
    Assignee: Neomax Co. Ltd.
    Inventors: Atsushi Kikugawa, Fumiaki Kikui
  • Patent number: 6841009
    Abstract: Disclosed is a reaction vessel used for oxidizing and decomposing equipment suitable for processing with supercritical water, and methods of manufacturing the reaction vessel. The reaction vessel comprises an oxide film containing a platinum group metal oxide for example having a fine crystalline structure, and a high corrosion resistance in both oxidizing and reducing atmosphere. The film is formed on a surface of the vessel by performing a pyrolysis reaction in an atmosphere containing water vapor. The oxide film is comprised of at least one platinum group metal oxide selected from Ir, Ru or Rh oxide, and at least one oxide of a metal selected from Ti and Ta.
    Type: Grant
    Filed: March 7, 2003
    Date of Patent: January 11, 2005
    Assignee: Furuyametal Co., Ltd.
    Inventors: Takahito Furuya, Takayuki Shimamune
  • Patent number: 6800153
    Abstract: The diamter of &bgr;-titanium alloy wire is reduced by cold wire-drawing and the &bgr;-titanium alloy wire is subjected to heat treatment. The heat treatment comprises the first aging process for precipitation strengthening and the second aging process for removing processing strain. &bgr;-titanium alloy wire is heat-treated under the supply of tension at the second aging process.
    Type: Grant
    Filed: April 11, 2002
    Date of Patent: October 5, 2004
    Assignees: Terumo Corporation, Tokusen Kogyo Co., Ltd.
    Inventors: Naoki Ishii, Takashi Kaneko, Shin Sumimoto, Hideki Yamamoto, Ichiro Nagao
  • Patent number: 6773515
    Abstract: A method for forming an NiCr seed layer based bottom spin valve sensor element having a synthetic antiferromagnet pinned (SyAP) layer and a capping layer comprising either a single specularly reflecting nano-oxide layer (NOL) or a bi-layer comprising a non-metallic layer and a specularly reflecting nano-oxide layer and the sensor element so formed. The method of producing these sensor elements provides elements having higher GMR ratios and lower resistances than elements of the prior art.
    Type: Grant
    Filed: January 16, 2002
    Date of Patent: August 10, 2004
    Assignee: Headway Technologies, Inc.
    Inventors: Min Li, Simon H. Liao, Masashi Sano, Kiyoshi Noguchi, Kochan Ju, Cheng T. Horng
  • Patent number: 6752878
    Abstract: A method for treating a micro-roughened metal surface to improve bonding between the metal surface and a polymer material. The method involves post-treating the micro-roughened conversion coated metal surface with an aqueous wetting agent composition after having formed the micro-roughened conversion coated metal surface with an adhesion promotion composition. The method can be employed in the circuit board industry to improve bonding between layers in multilayer circuit boards.
    Type: Grant
    Filed: September 19, 2001
    Date of Patent: June 22, 2004
    Assignee: Shipley Company, L.L.C.
    Inventors: Joseph R. Montano, Wade Sonnenberg, Mark J. Kapeckas
  • Patent number: 6752881
    Abstract: In a metalliferous storage material for hydrogen a metal oxide is provided in or on the surface of the metalliferous materialas a catalyst for the hydrogenation or dehydrogenation of the metalliferous storage material.
    Type: Grant
    Filed: September 25, 2001
    Date of Patent: June 22, 2004
    Assignee: GKSS-Forschungszentrum Geesthacht GmbH
    Inventors: Thomas Klassen, Rüdiger Bormann, Wolfgang Oelerich, Volker Güther, Andreas Otto
  • Patent number: 6746547
    Abstract: The invention features and methods and compositions for oxide production on a Copper substrate, e.g., a Copper or Copper alloy substrate, to provide for improved adhesion of Copper substrate to polymeric material, e.g., such as used in manufacture of printed circuit boards. The oxide-producing compositions of the invention, which may be either acidic or ammoniacal, comprise 1) a source of Cu++ (Cupric) ions; 2) a source of a primary electrolyte that is non-interactive with Copper ions; 3) a Cuprous ligand, e.g., a halide ion, preferably chloride, which also serves as a secondary electrolyte; and 4) an optional organic. Acidic oxide-producing compositions comprise a strong acid as the primary electrolyte. The primary electrolyte of ammoniacal oxide-producing compositions is a non-interactive, ammonium salt of acid, which provides a highly soluble Cupric ammonium salt. The secondary electrolyte of the oxide-producing compositions is selected so as to be compatible with the primary electrolyte.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: June 8, 2004
    Assignee: RD Chemical Company
    Inventors: Joseph Cole, Rudolf P. Sedlak
  • Publication number: 20040099345
    Abstract: The present invention relates to a method of treating a component which is intended for a facility for producing or preparing glass melts and has surfaces which are made of noble metal and come into contact with glass melts during operation.
    Type: Application
    Filed: January 30, 2003
    Publication date: May 27, 2004
    Inventors: Erhard Dick, Erich Fischer, Roland Fuchs, Markus Riedl, Michael Oechsle, Gerhard Reber, Thomas Udo
  • Patent number: 6723176
    Abstract: In a method of producing on the surface of a component which consists of a titanium alloy or an intermetallic phase on the basis of titanium, a protective layer (according to the formula Ti5,0−xAgx+yAl3,0−yO2), a mixture of Ti powder and TiO2 powder, which has been sintered, is applied to the surfaces of the component or, if the titanium alloy includes 40-60 at % Al, a coating of silver is applied to the component and the component is then heat treated at 500 to 900° C. to form the protective layer on its surfaces.
    Type: Grant
    Filed: April 12, 2002
    Date of Patent: April 20, 2004
    Assignee: Forschungs zentrum Jülich GmbH
    Inventors: Willem Quadakkers, Vladimir Shemet, Lorenz Singheiser