Beryllium Or Boron Containing Patents (Class 148/330)
  • Patent number: 8192562
    Abstract: An object of the preset invention is to provide a spring steel wire that: shows excellent wire drawability not only when it is used as a spring steel wire for cold-winding formed into a steel spring by applying quenching and tempering treatment after wiredrawing but also when it is used as a spring steel wire for cold-winding formed into a steel spring as it is wiredrawn; and secures a spring having an excellent fatigue characteristic after the spring steel wire is formed into the spring. The spring steel wire according to the present invention is a spring steel wire excellent in fatigue characteristic and wire drawability, wherein: the contents of C, Si, Mn, Cr, Ti, B, and other elements are specified; the contents (mass %) of B, Ti, and N satisfy the expression (1) below; the amount of solid solute B is in the range of 0.0005% to 0.0040%; the remainder in the spring steel wire is composed of Fe and unavoidable impurities; and the solid solute B concentrates at the grain boundaries of pearlite nodules, 0.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: June 5, 2012
    Assignee: Kobe Steel, Ltd.
    Inventor: Nao Yoshihara
  • Publication number: 20120134872
    Abstract: An abrasion resistant steel consisting essentially of, in weight %: 0.20-0.30% carbon, 0.40-1.25% manganese, 0.05% maximum phosphorous, 0.01% maximum sulfur, 0.20-0.60% silicon, 0.50-1.70% chromium, 0.20-2.00% nickel, 0.07-0.60% molybdenum, 0.010-0.10% titanium, 0.001-0.10% boron, 0.015-0.10% aluminum, balance iron, and incidental impurities. The steel may be melted and cast into a steel ingot or slab, hot rolled to a desired plate thickness; austenitized at 1650-1700° F.; water quenched; and tempered at 350-450° F. The resulting steel plate may have a surface hardness of at least 440 HBW, a mid-thickness hardness of at least 90% of the surface hardness, and toughness in the transverse direction at ?60° F. of at least 20 ft-lbs and at room temperature of at least 40 ft-lbs.
    Type: Application
    Filed: July 13, 2011
    Publication date: May 31, 2012
    Applicant: KENNAMETAL INC.
    Inventor: Vance Allen Moody
  • Publication number: 20120132327
    Abstract: Disclosed is a high strength steel sheet having excellent hydrogen embrittlement resistance. The steel sheet has a tensile strength of 1180 MPa or more, and satisfies the following conditions: with respect to an entire metallographic structure thereof, bainite, bainitic ferrite and tempered martensite account for 85 area % or more in total; retained austenite accounts for 1 area % or more; and fresh martensite accounts for 5 area % or less (including 0 area %).
    Type: Application
    Filed: May 28, 2010
    Publication date: May 31, 2012
    Applicants: VOESTALPINE STAHL GMBH, Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Yoichi Mukai, Kouji Kasuya, Michiharu Nakaya, Michitaka Tsunezawa, Fumio Yuse, Junichiro Kinugasa, Sandra Traint, Andreas Pichler
  • Patent number: 8182621
    Abstract: A method of manufacturing a hot-rolled thin steel sheet includes: hot-rolling a steel base material having a composition containing, as mass %, C: 0.10 to 0.20%, Si: 0.01 to 1.0%, Mn: 0.5 to 2.0%, P: 0.03% or less, S: 0.01% or less, Al: 0.01 to 0.10%, N: 0.005% or less, Ti: 0.01 to 0.15%, B: 0.0005 to 0.0050%, the balance of Fe, and unavoidable impurities at a finishing temperature of finish rolling of 820 to 880° C. to produce a hot-rolled steel sheet with a thickness of less than 6 mm; cooling the hot-rolled steel sheet to a temperature range on a surface of the hot-rolled steel sheet to 550 to 650° C. at a surface cooling rate of 15 to 50° C. per second; and coiling the hot-rolled steel sheet at the temperature range.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: May 22, 2012
    Assignee: JFE Steel Corporation
    Inventors: Nobuyuki Nakamura, Kazuhiro Seto
  • Patent number: 8177925
    Abstract: In a high-tensile steel plate according to the invention, the carbon equivalent Pcm represented in Expression (1) is from 0.180% to 0.220%, the surface hardness is a Vicker's hardness of 285 or less, the ratio of a Martensite Austenite constituent in the surface layer is not more than 10%, the ratio of a mixed structure of ferrite and bainite inside beyond the surface layer is not less than 90%, the ratio of the bainite in the mixed structure is not less than 10%, the thickness of the lath of bainite is not more than 1 ?m, the length of the lath is not more than 20 ?m, and the segregation ratio as the ratio of the Mn concentration in the center segregation part relative to the Mn concentration at a part in a depth equal to ¼ of the thickness of the plate from the surface is not more than 1.3. Pcm=C+Si/30+(Mn+Cu+Cr)/20+Ni/60+Mo/15+V/10+5B . . . (1) where the element symbols in Expression (1) represent the % by mass of the respective elements.
    Type: Grant
    Filed: March 8, 2006
    Date of Patent: May 15, 2012
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Nobuaki Takahashi, Masahiko Hamada, Shuji Okaguchi, Akihiro Yamanaka, Ichirou Seta
  • Patent number: 8168010
    Abstract: Disclosed is a low alloy steel for oil well pipes which has excellent sulfide stress cracking resistance and is suitable for casing and tubing for oil wells or gas wells. Specifically disclosed is a low alloy steel for oil well pipes containing, in mass %, 0.2-0.35% of C, 0.05-0.5% of Si, 0.05-1.0% of Mn, not more than 0.025% of P, not more than 0.01% of S, 0.005-0.10% of Al, 0.1-1.0% of Cr, 0.5-1.0% of Mo, 0.002-0.05% of Ti, 0.05-0.3% of V, 0.0001-0.005% of B, not more than 0.01% of N, not more than 0.01% of O (oxygen), 0-0.1% of Nb, 0-0.01% of Ca, 0-0.01% of Mg and 0-0.1% of Zr, and having a half-value breadth (H) and a hydrogen diffusion coefficient (D) (10?6 cm2/s) satisfying the following formula (1): 30H+D?19.5??(1).
    Type: Grant
    Filed: December 14, 2006
    Date of Patent: May 1, 2012
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Tomohiko Omura, Kenji Kibayashi
  • Patent number: 8168011
    Abstract: The invention provides wire rod excellent in drawability and steel wire made from the wire rod as starting material with high productivity at good yield and low cost. A hard steel wire rod of a specified composition is heated in a specified temperature range to conduct post-reaustenization patenting and thereby obtain a high-carbon steel wire excellent in ductility that has a pearlite structure of an area ratio of 97% or greater and the balance of non-pearlite structures including bainite, degenerate-pearlite and pro-eutectoid ferrite and whose fracture reduction of area RA satisfies Expressions (1), (2) and (3) below: RA?RAmin??(1), where RAmin=a?b×pearlite block size (?m), a=?0.0001187×TS (MPa)2+0.31814×TS (MPa)?151.32??(2) b=0.0007445×TS (MPa)?0.3753??(3).
    Type: Grant
    Filed: April 18, 2007
    Date of Patent: May 1, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Shingo Yamasaki, Seiki Nishida, Makio Kikuchi
  • Patent number: 8163108
    Abstract: This cold-rolled steel sheet includes, in terms of mass %, C: not less than 0.05% and not more than 0.095%, Cr: not less than 0.15% and not more than 2.0%, B: not less than 0.0003% and not more than 0.01%, Si: not less than 0.3% and not more than 2.0%, Mn: not less than 1.7% and not more than 2.6%, Ti: not less than 0.005% and not more than 0.14%, P: not more than 0.03%, S: not more than 0.01%, Al: not more than 0.1%, N: less than 0.005%, O: not less than 0.0005% and not more than 0.005%, and contains as the remainder, iron and unavoidable impurities, wherein the microstructure of the steel sheet includes mainly polygonal ferrite having a crystal grain size of not more than 4 ?m, and hard microstructures of bainite and martensite, the block size of the martensite is not more than 0.9 ?m, the Cr content within the martensite is 1.1 to 1.5 times the Cr content within the polygonal ferrite, and the tensile strength is at least 880 MPa.
    Type: Grant
    Filed: March 26, 2009
    Date of Patent: April 24, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Masafumi Azuma, Naoki Yoshinaga, Naoki Maruyama, Noriyuki Suzuki, Yasuharu Sakuma
  • Patent number: 8157933
    Abstract: This hot rolled steel contains, in terms of mass %, C: 0.01 to 0.1%, Si: 0.01 to 0.1%, Mn: 0.1 to 3%, P: not more than 0.1%, S: not more than 0.03%, Al: 0.001 to 1%, N: not more than 0.01%, Nb: 0.005 to 0.08%, and Ti: 0.001 to 0.2%, with a remainder being iron and unavoidable impurities, wherein a formula: [Nb]×[C]?4.34×10?3 is satisfied, a grain boundary density of solid solution C is not less than 1 atom/nm2 and not more than 4.5 atoms/nm2, and a grain size of cementite grains precipitated at grain boundaries within the steel sheet is not more than 1 ?m.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: April 17, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Tatsuo Yokoi, Kazuya Ootsuka, Yukiko Yamaguchi, Tetsuya Yamada
  • Patent number: 8142577
    Abstract: A wire rod which is mainly composed of pearlite and has an area fraction of 5% or less of a non-pearlite structure composed of pro-eutectoid ferrite, degenerate-pearlite or bainite in a section, or has an area fraction of 10% or less of a non-pearlite structure in a portion from the surface to a depth of 100 ?m.
    Type: Grant
    Filed: June 29, 2006
    Date of Patent: March 27, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Shingo Yamasaki, Arata Iso, Seiki Nishida
  • Patent number: 8128763
    Abstract: A cold-rolled steel sheet for outer panels and the like of an automobile body, a galvannealed steel sheet using the cold-rolled steel sheet, and a method for manufacturing the same are disclosed. It is an object of the present invention to provide a high strength cold-rolled steel sheet, which has superior bake hardenability, aging resistance at room temperature and secondary work embrittlement resistance, and a method for manufacturing the same. The steel sheet has a grain size of ASTM No. of 9 or more after annealing, a BH of 30 MPa or more, an AI of 30 MPa or less, and a tensile strength of 340˜390 MPa through appropriate control of solute elements in steel by addition of a small amount of Ti, addition of Al and Mo, and control of manufacturing conditions, and refinement of crystal grains after annealing.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: March 6, 2012
    Assignee: POSCO
    Inventor: Seong-Ho Han
  • Patent number: 8128762
    Abstract: Disclosed is a high-strength steel sheet which has a predetermined component composition, structurally has a ferrite matrix structure and bainitic and martensitic second phase structures, and has a ferrite fraction of from 50 to 86 percent by area, a bainite fraction of from 10 to 30 percent by area, and a martensite fraction of from 4 to 20 percent by area, relative to the entire structure, in which the bainite area fraction is larger than the martensite area fraction, the ferrite has an average grain size of 2.0 to 5.0 ?m, and the ratio of the average ferrite hardness (Hv) to the tensile strength (MPa) of the steel sheet is equal to or more than 0.25. The steel sheet excels both in TS-EL balance and TS-? balance at high strengths on the order of 590 to 780 MPa.
    Type: Grant
    Filed: July 7, 2009
    Date of Patent: March 6, 2012
    Assignee: Kobe Steel, Ltd.
    Inventor: Seiko Watanabe
  • Publication number: 20120031532
    Abstract: The present invention provides steel plate for line pipe excellent in strength and ductility and a method of production of the same. The steel plate has a steel composition containing, by mass %, C: 0.04 to 0.15%, Si: 0.05 to 0.60%, Mn: 0.80 to 1.80%, P: 0.020% or less, S: 0.010% or less, Nb: 0.01 to 0.08%, and Al: 0.003 to 0.08%, having a balance of iron and unavoidable impurities, and having a value of Ceq shown by the following formula <1> of 0.48 or less, comprised of a mixed structure of ferrite and pearlite or ferrite and pearlite partially containing bainite in which a ferrite percentage is 60 to 95%, having a yield strength of 450 MPa or more, and having an amount of hydrogen contained in the steel of 0.
    Type: Application
    Filed: October 28, 2009
    Publication date: February 9, 2012
    Inventors: Hajime Ishikawa, Ryuji Uemori, Yoshiyuki Watanabe, Nobuhiko Mamada
  • Patent number: 8110292
    Abstract: The present invention provides high strength steel plate with excellent low temperature toughness, high strength steel pipe using this as a base metal, and methods of production of the same. The steel plate of the present invention contains Mo: 0.05 to 1.00% and B: 0.0003 to 0.0100%, has a Ceq of 0.30 to 0.53, has a Pcm of 0.10 to 0.20, and has a metal structure which has an area percentage of polygonal ferrite of 20 to 90% and has a balance of a hard phase comprised of one or both of bainite and martensite. To obtain this steel plate, strain-introducing rolling is performed with a start temperature of not more than Ar3+60° C., an end temperature of Ar3 or more, and a reduction ratio of 1.5 or more, then the plate is air-cooled and then acceleratedly cooled from Ar3?100° C. to Ar3?10° C. in temperature by 10° C./s or more.
    Type: Grant
    Filed: April 4, 2009
    Date of Patent: February 7, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Taishi Fujishiro, Shinya Sakamoto, Takuya Hara, Hitoshi Asahi
  • Publication number: 20120018056
    Abstract: A thick-walled high-strength hot rolled steel sheet having excellent hydrogen induced cracking resistance which is preferably used as a raw material for a high-strength welded steel pipe of X65 grade or more and a method of manufacturing the thick-walled high-strength hot rolled steel sheet are provided. The composition of the thick-walled high-strength hot rolled steel sheet contains by mass % 0.02 to 0.08% C, 0.50 to 1.85% Mn, 0.03 to 0.10% Nb, 0.001 to 0.05% Ti, 0.0005% or less B in such a manner that (Ti+Nb/2)/C<4 is satisfied or also contains one or two kinds or more of 0.010% or less Ca, 0.02% or less REM, and Fe and unavoidable impurities as a balance. The steel sheet has the structure formed of a bainitic ferrite phase or a bainite phase. Surface layer hardness is 230HV or less in terms of Vickers hardness.
    Type: Application
    Filed: January 29, 2010
    Publication date: January 26, 2012
    Applicant: JFE STEEL CORPORATION
    Inventors: Kinya Nakagawa, Chikara Kami
  • Publication number: 20120018060
    Abstract: Provided is a method for manufacturing a high-strength galvanized steel sheet, made from a steel sheet containing Si and/or Mn, having excellent exfoliation resistance during heavy machining. When a steel sheet containing 0.01% to 0.18% C, 0.02% to 2.0% Si, 1.0% to 3.0% Mn, 0.001% to 1.0% Al, 0.005% to 0.060% P, and 0.01% or less S on a mass basis, the remainder being Fe and unavoidable impurities, is annealed and galvanized in a continuous galvanizing line, a temperature region with a furnace temperature of A° C. to B° C. (600?A?780 and 800?B?900) is performed at an atmosphere dew-point temperature of ?5° C. or higher in a heating process.
    Type: Application
    Filed: March 30, 2010
    Publication date: January 26, 2012
    Applicant: JFE Steel Corporation
    Inventors: Yusuke Fushiwaki, Yoshiharu Sugimoto, Masahiro Yoshida, Yoshitsugu Suzuki
  • Publication number: 20120014831
    Abstract: The present invention provides a wire rod with a composition at least including: C: 0.95-1.30 mass %; Si: 0.1-1.5 mass %; Mn: 0.1-1.0 mass %; Al: 0-0.1 mass %; Ti: 0-0.1 mass %; P: 0-0.02 mass %; S: 0-0.02 mass %; N: 10-50 ppm; O: 10-40 ppm; and a balance including Fe and inevitable impurities, wherein 97% or more of an area in a cross-section perpendicular to the longitudinal direction of the wire rod is occupied by a pearlite, and 0.5% or less of an area in a central area in the cross-section and 0.5% or less of an area in a first surface layer area in the cross-section are occupied by a pro-eutectoid cementite.
    Type: Application
    Filed: October 19, 2010
    Publication date: January 19, 2012
    Inventors: Shingo Yamasaki, Toshiyuki Manabe, Daisuke Hirakami, Nariyasu Muroga
  • Publication number: 20120006451
    Abstract: The invention provides a carbon steel sheet including C: 0.20% to 0.45% by mass, Si: 0.05% to 0.8% by mass, Mn: 0.85% to 2.0% by mass, P: 0.001% to 0.04% by mass, S: 0.0001% to 0.006% by mass, Al: 0.01% to 0.1% by mass, Ti: 0.005% to 0.3% by mass, B: 0.0005% to 0.01% by mass and N: 0.001% to 0.01% by mass, in which a K value that can be obtained from 3C+Mn+0.5Si is greater than or equal to 2.0; surface hardness is less than or equal to 77 on the Rockwell B Scale; and the average content of N in a zone from the surface to a depth of 100 ?m is less than or equal to 100 ppm. This carbon steel sheet is configured to be carburized in a carburization atmosphere with a carbon potential of 0.6 or less.
    Type: Application
    Filed: March 3, 2010
    Publication date: January 12, 2012
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Masayuki Abe, Kengo Takeda, Hisayoshi Yatoh
  • Publication number: 20110315279
    Abstract: The high-strength galvanized steel sheet having excellent formability has a component composition containing, on the basis of mass percent, 0.05 to 0.2% C, 0.5 to 2.5% Si, 1.5 to 3.0% Mn, 0.001 to 0.05% P, 0.0001 to 0.01% S, 0.001 to 0.1% Al, and 0.0005 to 0.01% N, the balance being Fe and incidental impurities; and the steel sheet has a microstructure including a ferritic phase and a martensitic phase including a tempered-martensitic phase, the ferritic phase having an area fraction of 30% or more relative to an entirety of the microstructure, the martensitic phase having an area fraction of 30 to 50% relative to the entirety of the microstructure, and the tempered-martensitic phase having an area fraction of 70% or more relative to an entirety of the martensitic phase.
    Type: Application
    Filed: February 19, 2010
    Publication date: December 29, 2011
    Applicant: JFE STEEL CORPORATION
    Inventors: Shinjiro Kaneko, Yoshiyasu Kawasaki, Tatsuya Nakagaito, Saiji Matsuoka
  • Patent number: 8084144
    Abstract: The present invention provides high strength thick welded steel pipe for line pipe superior in low temperature toughness, and a method of production of the same. A base material steel plate containing C: 0.010 to 0.050%, Si: 0.01 to 0.50%, Mn: 0.50 to 2.00%, Al: 0.020% or less, Ti: 0.003 to 0.030%, and Mo: 0.10 to 1.50%, having a carbon equivalent Ceq of 0.30 to 0.53, having a crack susceptability parameter Pcm of 0.10 to 0.20, satisfying formula 3, comprised an area ratio of 20% or less of polygonal ferrite and an area ratio of 80% or more of bainite, and having an effective crystal grain size of 20 ?m or less is formed into a pipe shape, then seam welded to make the effective crystal grain size of the heat affected zone 150 ?m or less: 10C+100Al+5Mo+5Ni<3.3??formula 3.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: December 27, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Takuya Hara, Hitoshi Asahi
  • Patent number: 8084143
    Abstract: High yield ratio high-strength thin steel sheet superior in weldability and ductility characterized by: being comprised of steel containing, by mass %, C: over 0.030 to less than 0.10%, Si: 0.30 to 0.80%, Mn: 1.7 to 3.2%, P: 0.001 to 0.02%, S: 0.0001 to 0.006%, Al: 0.060% or less, N: 0.0001 to 0.0070%, containing further Ti: 0.01 to 0.055%, Nb: 0.012 to 0.055%, Mo: 0.07 to 0.55%, B: 0.0005 to 0.0040%, and simultaneously satisfying 1.1 ?14×Ti(%)+20×Nb(%)+3×Mo(%)+300×B(%)?3.7, the balance comprised or iron and unavoidable impurities, and having a yield ratio of 0.64 to less than 0.92, a TS×E11/2 of 3320 or more, an YR×TS×EL1/2 of 2320 or more, and a maximum tensile strength (TS) of 780 MPa or more.
    Type: Grant
    Filed: September 30, 2004
    Date of Patent: December 27, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Naoki Yoshinaga, Shunji Hiwatashi, Yasuharu Sakuma, Atsushi Itami
  • Publication number: 20110297281
    Abstract: A high-strength hot-rolled steel sheet containing C: 0.05 to 0.15%, Si: no more than 1.50% (excluding 0%), Mn: 0.5 to 2.5%, P: no more than 0.035% (excluding 0%), S: no more than 0.01% (including 0%), Al: 0.02 to 0.15%, and Ti: 0.05 to 0.2%, which is characterized in that its metallographic structure is composed of 60 to 95 vol % of bainite and solid solution-hardened or precipitation-hardened ferrite (or ferrite and martensite) and its fracture appearance transition temperature (vTrs) is no higher than 0° C. as obtained by impact tests.
    Type: Application
    Filed: August 16, 2011
    Publication date: December 8, 2011
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventors: Motoo SATOU, Tetsuo Soshiroda
  • Patent number: 8071018
    Abstract: A high carbon hot-rolled steel sheet which is a hot-rolled spheroidizing annealed material, including 0.2 to 0.7% C, 2% or less Si, 2% or less Mn, 0.03% or less P, 0.03% or less S, 0.08% or less Sol.Al., and 0.01% or less N, by mass, which contains carbide having a particle size of smaller than 0.5 ?m in a content of 15% or less by volume to the total amount of carbide, and the difference between the maximum hardness Hv max and the minimum hardness Hv min, ?Hv (=Hv max?Hv min), in the sheet thickness direction being 10 or smaller.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: December 6, 2011
    Assignee: JFE Steel Corporation
    Inventors: Nobusuke Kariya, Norio Kanamoto, Hidekazu Ookubo, Yoshiharu Kusumoto, Takeshi Fujita
  • Patent number: 8070890
    Abstract: The present invention provides an induction-hardened hollow driving shaft that comprises, as a raw material, a steel pipe that contains, by mass %, 0.30 to 0.47% C, 0.5% or less Si, 0.3 to 2.0% Mn, 0.018% or less P, 0.015% or less S, 0.15 to 1.0% Cr, 0.001 to 0.05% Al, 0.005 to 0.05% Ti, 0.004% or less Ca, 0.01% or less N, 0.0005 to 0.005% B and 0.0050% or less O (oxygen) and the balance Fe and impurities and of which Beff defined by an equation (a) or (b) below is 0.0001 or more, wherein a prior austenite grain size number (JIS G0551) after the hardening is 9 or more. Here, in the case of Neff=N?14×Ti/47.9?0, Beff=B?10.8×(N?14×Ti/47.9)/14 . . . (a), and, in other cases, Beff=B . . . (b). According to the present invention, a hollow driving shaft that is simultaneously provided with excellent cold workability, hardenability, toughness and torsional fatigue strength and can exert stable fatigue lifetime can be obtained and can be widely utilized.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: December 6, 2011
    Assignee: Sumitomo Metal Industries, Ltd.
    Inventors: Kunio Kondo, Kouichi Kuroda
  • Publication number: 20110290383
    Abstract: A high strength cold rolled steel sheet excellent in weldability and has a TS of 440 MPa or more includes a composition including C: 0.0005 to 0.005%, Si: 0.1 to 1.0%, Mn: 1 to 2.5%, P: 0.01 to 0.2%, S: 0.015% or less, sol. Al: 0.05% or less, N: 0.007% or less, Ti: 0.01 to 0.1%, B: 0.0005 to 0.0020%, Cu: 0.05 to 0.5%, and Ni: 0.03 to 0.5% by mass with the balance Fe and incidental impurities; and a microstructure constituted by a ferrite single phase.
    Type: Application
    Filed: July 24, 2009
    Publication date: December 1, 2011
    Applicant: JFE STEEL CORPORATION
    Inventors: Hiromi Yoshida, Hayato Saito, Takeshi Yokota, Yasushi Tanaka
  • Patent number: 8062438
    Abstract: Provided is a hot-rolled thin steel sheet having a thickness of less than 6 mm and having high strength showing a tensile strength of 440 MPa or more, excellent formability, and excellent strength and toughness after heat treatment and a method of manufacturing the same. A steel base material containing 0.10 to 0.20% of C, and Si, Mn, Al, P, S, and N adjusted to suitable amount ranges, and 0.01 to 0.15% of Ti and 0.0005 to 0.0050% of B is hot rolled so as to have a finishing temperature of finish rolling of 820 to 880° C.; after the completion of the rolling, the hot-rolled thin steel sheet is cooled to a surface temperature range of 550 to 650° C. at a surface cooling rate of 15 to 50° C./s; and the hot-rolled thin steel sheet is coiled at the temperature range.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: November 22, 2011
    Assignee: JFE Steel Corporation
    Inventors: Nobuyuki Nakamura, Kazuhiro Seto
  • Patent number: 8052809
    Abstract: Disclosed are amorphous, ductile brazing foils with a composition consisting essentially of FeRestNiaCrbSicBdPe, wherein 0 atomic %?a<25 atomic %; 0 atomic %?b?15 atomic %; 1 atomic %?c?10 atomic %; 4 atomic %?d?15 atomic %; 1 atomic %?e?9 atomic %; any impurities?0.5 atomic %; rest Fe, wherein 2 atomic %?c+e?10 atomic % and 15 atomic %?c+d+e?22 atomic %, or consisting essentially of FeRestNiaCrbMofCugSicBdPe, wherein 0 atomic %?a<25 atomic %; 0 atomic %?b?15 atomic %; 1 atomic %<c?10 atomic %; 4 atomic %?d?15 atomic %; 1 atomic %?e?9 atomic %; 0 atomic %<f?3 atomic %; 0 atomic %?g?3 atomic %; any impurities?0.5 atomic %; rest Fe, wherein 2 atomic %?c+e?10 atomic % and 15 atomic %?c+d+e?22 atomic %. Also disclosed are brazed objects formed using these foils, particularly exhaust gas recirculation coolers and oil coolers, and methods for making the brazing foils and for making the brazed parts.
    Type: Grant
    Filed: June 3, 2008
    Date of Patent: November 8, 2011
    Assignee: Vacuumschmelze GmbH & Co. KG
    Inventors: Thomas Hartmann, Dieter Nuetzel
  • Patent number: 8052808
    Abstract: Disclosed is a hot rolled steel sheet which contains C, Si, Mn, Al, Ti, N, and S. The C, Ti, N, and sulfur contents satisfy the following condition (1), and the Si and Mn contents satisfy the following condition (2): [C]?{[Ti]?(48/14)×[N]?(48/32)×[S]}/4?0.01??(1) 0.20?([Si]/[Mn])?0.85??(2) in which the symbol [X] represents the content (percent by mass) of the element X, and the steel sheet has a microstructure having an area percentage of bainitic ferrite of 90% or more, an area percentage of martensite of 5% or less, and an area percentage of bainite of 5% or less, based on the area of an observed field. This steel sheet excels in properties demanded in press working, such as shape freezing ability, hole-expandability, and bendability, even though it has a high tensile strength of 980 MPa or more.
    Type: Grant
    Filed: February 26, 2008
    Date of Patent: November 8, 2011
    Assignee: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventor: Kazuya Kimijima
  • Patent number: 8052812
    Abstract: A high carbon cold-rolled steel sheet having both excellent stretch-flange formability and excellent homogeneity of hardness in the sheet thickness direction is provided by a manufacturing method having the steps of: hot-rolling a steel containing 0.2 to 0.7% C by mass at finishing temperatures of (Ar3 transformation point ?20° C.) or above to prepare a hot-rolled sheet; cooling the hot-rolled sheet to temperatures of 650° C. or below at cooling rates from 60° C./s or larger to smaller than 120° C./s; coiling the hot-rolled sheet after cooling at coiling temperatures of 600° C. or below; cold-rolling the coiled hot-rolled sheet at rolling reductions of 30% or more to prepare a cold-rolled sheet; and annealing the cold-rolled sheet at annealing temperatures from 600° C. or larger to Ac1 transformation point or lower.
    Type: Grant
    Filed: June 19, 2006
    Date of Patent: November 8, 2011
    Assignee: JFE Steel Corporation
    Inventors: Nobusuke Kariya, Norio Kanamoto, Hidekazu Ookubo, Yoshiharu Kusumoto, Takeshi Fujita
  • Patent number: 8048367
    Abstract: The present invention provides high strength thick-gauge steel plate superior in weldability and having a tensile strength of 780 MPa or more and provides a method of production of the high strength thick-gauge steel plate by omitting tempering heat treatment in the production. The high strength thick-gauge steel plate of the present invention is high strength thick-gauge steel plate containing, by mass %, C: 0.030 to 0.055%, Mn: 2.4 to 3.5%, P: 0.01% or less, S: 0.0010% or less, Al: 0.06 to 0.10%, B: 0.0005 to 0.0020%, and N: 0.0015 to 0.0060%, having a weld cracking susceptibility parameter Pcm of 0.18% to 0.24%, and comprised mainly of martensite. The method of production of high strength thick-gauge steel plate of the present invention comprises heating a steel slab or cast slab having a predetermined composition of ingredients to 950 to 1100° C., rolling it at 820° C. or more, then starting accelerated cooling from 700° C. or more by a cooling rate of 8 to 80° C.
    Type: Grant
    Filed: October 22, 2009
    Date of Patent: November 1, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Manabu Hoshino, Masaaki Fujioka, Youichi Tanaka, Masanori Minagawa
  • Patent number: 8048237
    Abstract: An ultra soft high carbon hot-rolled steel sheet has excellent workability. The steel sheet is a high carbon hot-rolled steel sheet containing 0.2 to 0.7% C, and has a structure in which mean grain size of ferrite is 20 ?m or larger, the volume percentage of ferrite grains having 10 ?m or smaller size is 20% or less, mean diameter of carbide is in a range from 0.10 ?m to smaller than 2.0 ?m, the percentage of carbide grains having 5 or more of aspect ratio is 15% or less, and the contact ratio of carbide is 20% or less.
    Type: Grant
    Filed: February 26, 2007
    Date of Patent: November 1, 2011
    Assignee: JFE Steel Corporation
    Inventors: Hideyuki Kimura, Takeshi Fujita, Nobuyuki Nakamura, Naoya Aoki, Masato Sasaki, Satoshi Ueoka, Shunji Iizuka
  • Publication number: 20110259482
    Abstract: Use of a steel alloy for well pipes of perforating units for perforation of borehole casings, with the steel alloy comprised, in mass-%, of Carbon (C) 0.12-0.25, Manganese (Mn) 0.5-2.0, Silicon (Si) 0.1-0.5, Nitrogen (N) 0.006-0.015, Sulfur (S) <0.005, Chromium (Cr) 0.1-1.5, Molybdenum (Mo), <0.3, Nickel (Ni) <1.0, Vanadium (V) <0.25, Niobium (Nb) 0.010-0.15, Titanium (Ti) 0.02-0.06, Boron (B) 0.001-0.006, Calcium (Ca) <0.0025, and iron as well as impurities resulting from smelting as remainder, wherein the steel alloy is heated at a heating rate of 1-100 K/s to an austenitizing temperature between 10 to 50° C. above its transformation temperature Ac3, and held at this austenitizing temperature between 0.
    Type: Application
    Filed: May 16, 2008
    Publication date: October 27, 2011
    Applicant: Benteler Stahl/Rohr GmbH
    Inventors: Andreas Peters, Rolf Trittel, Christopher Halfpap
  • Publication number: 20110259481
    Abstract: There is provided a high strength steel plate including, by weight: 0.03% to 0.20% C, 0.15% to 0.55% Si, 0.9% to 1.5% Mn, 0.001% to 0.05% Al, 0.030% or less P, 0.030% or less S, 0.30% or less Cr, 0.2% or less Mo, 0.6% or less Ni, 0.07% or less V, 0.04% or less Nb, 5 ppm to 50 ppm Ca, 0.005% to 0.025% Ti, 0.0020% to 0.0060% N, 0.0005% to 0.0020% B, the balance of F and unavoidable impurities. The steel plate may be formed of tempered martensite, and conditions for cooling and recrystallization controlled rolling are optimized so as to control an average grain size of a microstructure and an aspect ratio of structure grains. Accordingly, a superior high-strength steel plate that can be used for an atomic plant, for example, an atomic plant rated at IOOOMW or more by having a tensile strength of at least 650 MPa and an impact toughness of at least 200 J at ?5O ° C., and a method of manufacturing the same can be provided.
    Type: Application
    Filed: December 21, 2009
    Publication date: October 27, 2011
    Applicant: POSCO
    Inventors: Soon-Taik Hong, Sung-Ho Jang, Ki-Hyun Bang
  • Publication number: 20110253271
    Abstract: A high-strength steel plate includes the following composition: 0.18 to 0.23 mass % of C; 0.1 to 0.5 mass % of Si; 1.0 to 2.0 mass % of Mn; 0.020 mass % or less of P; 0.010 mass % or less of S; greater than 0.5 mass % and equal to or less than 3.0 mass % of Cu, 0.25 to 2.0 mass % of Ni; 0.003 to 0.10 mass % of Nb; 0.05 to 0.15 mass % of Al; 0.0003 to 0.0030 mass % of B; 0.006 mass % or less of N; and a balance composed of Fe and inevitable impurities. A weld crack sensitivity index Pcm of the high-strength steel plate is calculated by Pcm=[C]+[Si]/30+[Mn]/20+[Cu]/20+[Ni]/60+[Cr]/20+[Mo]/15+[V]/10+5[B], and is 0.39 mass % or less. The Ac3 transformation point is equal to or less than 850° C., the percentage value of a martensite structure is equal to or greater than 90%, the yield strength is equal to or greater than 1300 MPa, and the tensile strength is equal to or greater than 1400 MPa and equal to or less than 1650 MPa.
    Type: Application
    Filed: October 13, 2009
    Publication date: October 20, 2011
    Inventors: Tatsuya Kumagai, Akira Usami, Masaharu Oka
  • Patent number: 8038809
    Abstract: A high-strength hot-rolled steel sheet containing C: 0.05 to 0.15%, Si: no more than 1.50% (excluding 0%), Mn: 0.5 to 2.5%, P: no more than 0.035% (excluding 0%), S: no more than 0.01% (including 0%), Al: 0.02 to 0.15%, and Ti: 0.05 to 0.2%, which is characterized in that its metallographic structure is composed of 60 to 95 vol % of bainite and solid solution-hardened or precipitation-hardened ferrite (or ferrite and martensite) and its fracture appearance transition temperature (vTrs) is no higher than 0° C. as obtained by impact tests. (% in terms of % by weight).
    Type: Grant
    Filed: March 22, 2006
    Date of Patent: October 18, 2011
    Assignee: Kobe Steel, Ltd.
    Inventors: Motoo Satou, Tetsuo Soshiroda
  • Patent number: 8039118
    Abstract: The present invention provides high strength welded steel pipe for line pipe inexpensive in cost and superior in low temperature toughness, and a method of production of the same, produced by forming a base material steel plate containing, by mass %, C: 0.010 to 0.050%, Si: 0.01 to 0.50%, Mn: 0.50 to 2.00%, S: 0.0001 to 0.0050%, and Ti: 0.003 to 0.030%, limiting Al to 0.020% or less and Mo to less than 0.10%, having a carbon equivalent Ceq of 0.30 to 0.53 and a crack susceptibility parameter Pcm of 0.10 to 0.20, comprised of polygonal ferrite and residual bainite of an area rate of 20% or less, and having an effective crystal grain size of 20 ?m or less, into a pipe shape, then seam welding it and making the effective crystal grain size of the heat affected zone 150 ?m or less.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: October 18, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Takuya Hara, Hitoshi Asahi
  • Publication number: 20110247734
    Abstract: Decarburization-restrained steel and manufacturing method thereof are disclosed. Steel includes a boron (B)-concentrated layer formed on its surface to prevent carbon of the steel from being in contact with oxygen in atmosphere to thus restrain decarburization of the steel. The steel includes a boron-concentrated layer with a thickness of 3 mm or larger formed on the surface of the steel. The method of manufacturing decarburization-restrained steel includes cooling steel containing 0.001 wt % to 0.02 wt % of boron (B) at a cooling speed of 0.5° C./s to 25° C./s at an austenite+ferrite two-phase region.
    Type: Application
    Filed: December 28, 2009
    Publication date: October 13, 2011
    Applicant: POSCO
    Inventors: Jae-Seung Lee, Sang-Yoon Lee, Hoe-Young Jung, Byoung-Ju Park
  • Publication number: 20110247733
    Abstract: A seamless steel pipe of a low-alloy steel consisting, by mass %, of C: 0.10 to 0.20%, Si: 0.05 to 1.0%, Mn: 0.05 to 1.2%, Ni: 0.02 to 1.5%, Cr: 0.50 to 1.50%, Mo: 0.50 to 1.50%, Nb: 0.002 to 0.10%, Al: 0.005 to 0.10%, and either or both of Ti: 0.003 to 0.050% and V: 0.01 to 0.20%, the balance being Fe and impurities, the impurities containing 0.025% or less of P, 0.005% or less of S, 0.007% or less of N, and less than 0.0003% of B, wherein the tensile strength is 950 MPa or more and the yield strength is 850 MPa or more, and the Charpy absorbed energy at ?40° C. is 60 J or more. This seamless steel pipe may further contain one or more of Cu: 0.02 to 1.0%, Ca: 0.0005 to 0.0050%, and Mg: 0.0005 to 0.0050%. The present invention also provides a method for manufacturing the above-described seamless steel pipe.
    Type: Application
    Filed: April 20, 2011
    Publication date: October 13, 2011
    Applicant: SUMITOMO METAL INDUSTRIES, LTD.
    Inventors: Yuji Arai, Takashi Takano
  • Patent number: 8034199
    Abstract: This invention provides a case-hardening steel excellent in cold forgeability and low carburization distortion property that exhibits low deformation resistance and high limit compressibility when cold, namely, a case-hardening steel excellent in cold forgeability and low carburization distortion property comprising, in mass %, C: 0.07% to 0.3%, Si: 0.01% to 0.15%, Mn: 0.1% to 0.7%, P: 0.03% or less, S: 0.002% to 0.10%, Al: 0.01% to 0.08%, Cr: 0.7% to 1.5%, Ti: 0.01% to 0.15%, B: 0.0005% to 0.005%, N: 0.008% or less, and the balance of Fe and unavoidable impurities, and having a metallographic structure comprising 65% or greater of ferrite and 15% or less of bainite.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: October 11, 2011
    Assignee: Nippon Steel Corporation
    Inventors: Hajime Saitoh, Tatsuro Ochi
  • Publication number: 20110240176
    Abstract: A high-strength cold-rolled steel sheet and high-strength galvanized steel sheet has a TS of 1180 MPa or more and excellent formability including stretch flangeability and bendability. The high-strength cold-rolled steel sheet contains 0.05% to 0.3% C, 0.5% to 2.5% Si, 1.5% to 3.5% Mn, 0.001% to 0.05% P, 0.0001% to 0.01% S, 0.001% to 0.1% Al, 0.0005% to 0.01% N, and 1.5% or less Cr (including 0%) on a mass basis, the remainder being Fe and unavoidable impurities.
    Type: Application
    Filed: November 27, 2009
    Publication date: October 6, 2011
    Applicant: JFE STEEL CORPORATION
    Inventors: Shinjiro Kaneko, Yoshiyasu Kawasaki, Tatsuya Nakagaito, Saiji Matsuoka
  • Publication number: 20110239835
    Abstract: Steel for machine structure use excellent in tool lifetime in a broad range of cutting speeds regardless of continuous machining, intermittent machining, or other systems and further in various machining environments such as use of a cutting fluid or a dry, semidry, and oxygen enriched environment, having a chemical composition containing, by mass %, C: 0.01 to 1.2%, Si: 0.005 to 3.0%, Mn: 0.05 to 3.0%, P: 0.0001 to 0.2%, S: 0.0001 to 0.35%, N: 0.0005 to 0.035%, and Al: 0.05 to 1.0%, satisfying [Al %]?(27/14)×[N %]?0.05%, and having a balance of Fe and unavoidable impurities and forming an Al2O3 coating on the surface of a cutting tool by machining using a cutting tool coated on the surface contacting the machined material by metal oxides with a value of a standard free energy of formation at 1300° C. of that value of Al2O3 or more, and a machining method of the same.
    Type: Application
    Filed: May 14, 2010
    Publication date: October 6, 2011
    Inventors: Toshiharu Aiso, Hajime Saitoh, Atsushi Mizuno
  • Publication number: 20110232807
    Abstract: High yield ratio high-strength thin steel sheet superior in weldability and ductility characterized by; being comprised of steel containing, by mass %, C: over 0.030 to less than 0.10%, Si: 0.30 to 0.80%, Mn: 1.7 to 3.2%, P: 0.001 to 0.02%, S: 0.0001 to 0.006%, Al: 0.060% or less, N: 0.0001 to 0.0070%, containing further Ti: 0.01 to 0.055%, Nb: 0.012 to 0.055%, Mo: 0.07 to 0.55%, B: 0.0005 to 0.0040%, and simultaneously statisfying 1.1?4×Ti(%)+20×Nb(%)+3×Mo(%)+300×B(%)?3.7, the balance comprised of iron and unavoidable impurities, and having a yield ratio of 0.64 to less than 0.92, a TS×El of 3320 or more, an YR×TS×El1/2 of 2320 or more, and a maximum tensile strength (TS) of 780 MPa or more.
    Type: Application
    Filed: June 3, 2011
    Publication date: September 29, 2011
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Naoki Yoshinaga, Shunji Hiwatashi, Yasuharu Sakuma, Atsushi Itami
  • Patent number: 8025746
    Abstract: A casing is formed from an alloy which contains, by mass, 0.08-0.20% C, 0.05-0.45% Si, 0.10-0.30% Mn, 0.80-1.40% Ni, 1.00-1.40% Cr, 1.20-1.60% Mo, 0.10-0.30% V, 0.06-0.10% Ti, 0.0005-0.0010% B, not more than 0.01% P, not more than 0.01% S, and not more than 0.005% Al, the balance being Fe and unavoidable impurity elements. The casing has excellent high-temperature strength, high toughness and excellent weldability, and is applicable to casings used in high-temperature high-pressure steam environments.
    Type: Grant
    Filed: March 22, 2007
    Date of Patent: September 27, 2011
    Assignee: Hitachi, Ltd.
    Inventors: Hirotsugu Kawanaka, Masahiko Arai, Tateki Nakamura
  • Publication number: 20110226389
    Abstract: A pearlite rail contains, by mass %, 0.65 to 1.20% of C; 0.05 to 2.00% of Si; 0.05 to 2.00% of Mn; and the balance composed of Fe and inevitable impurities, wherein at least part of the head portion and at least part of the bottom portion has a pearlite structure, and the surface hardness of a portion of the pearlite structure is in a range of Hv320 to Hv500 and a maximum surface roughness of a portion of the pearlite structure is less than or equal to 180 ?m.
    Type: Application
    Filed: August 13, 2010
    Publication date: September 22, 2011
    Applicant: NIPPON STEEL CORPORATION
    Inventors: Masaharu Ueda, Kyohei Sonoyama, Takuya Tanahashi, Teruhisa Miyazaki, Katsuya Iwano
  • Publication number: 20110209800
    Abstract: The present disclosure relates to a high strength steel sheet having good wettability, a tensile strength of 590 MPa or more and a strength-ductility balance (TS×El) of 16,520 MPa·% or more, and a manufacturing method thereof. The high strength steel comprises, in % by weight, C: 0.03˜0.1%, Si: 0.005˜0.105%, Mn: 1.0˜3.0%, P: 0.005˜0.04%, S: 0.003% or less, N: 0.003˜0.008%, Al: 0.05˜0.4%, Mo or Cr satisfying the inequality 10?50·[Mo %]+100·[Cr %]?30, at least one of Ti: 0.005˜0.020%, V: 0.005˜0.050% and B: 0.0005˜0.0015%, and the balance of Fe and unavoidable impurities, wherein a microstructure of the steel sheet is a multi-phase structure comprising, in an area ratio of cross-sectional structure, 70% or more ferrite phase having a Vickers hardness Hv of 120˜250 and 10% or more martensite phase having a Vickers hardness Hv of 321˜555.
    Type: Application
    Filed: April 16, 2010
    Publication date: September 1, 2011
    Applicant: HYUNDAI HYSCO
    Inventors: HOON-DONG KIM, Hyun-Ho Bok, Kang-Roh Lee, Man-Been Moon
  • Publication number: 20110209803
    Abstract: A high-strength steel machined product giving excellent hardenability has a metal microstructure with excellent balance of strength and toughness and high stability of retained austenite. The product is composed of an ultra-high low-alloy TRIP steel having a metal microstructure which contains an appropriate quantity of two or more of Cr, Mo, and Ni, and an appropriate quantity of one or more of Nb, Ti, and V, and having an appropriate value of carbon equivalent; the metal microstructure has a mother-phase structure composed mainly of lathy bainitic ferrite with a small amount of granular bainitic ferrite and polygonal ferrite, and has a secondary-phase structure composed of fine retained austenite and martensite.
    Type: Application
    Filed: October 29, 2009
    Publication date: September 1, 2011
    Applicants: USUI KOKUSAI SANGYO KAISHA LIMITED, SHINSHU UNIVERSITY
    Inventors: Koh-ichi Sugimoto, Sho-hei Sato, Teruhisa Takahashi, Goro Arai
  • Publication number: 20110198002
    Abstract: A high-strength galvanized steel sheet has excellent mechanical properties such as a TS of 1200 MPa or more, an El of 13% or more, and a hole expansion ratio of 50% or more and a method for manufacturing the same. A high-strength galvanized steel sheet excellent in formability contains 0.05% to 0.5% C, 0.01% to 2.5% Si, 0.5% to 3.5% Mn, 0.003% to 0.100% P, 0.02% or less S, and 0.010% to 0.5% Al on a mass basis, the remainder being Fe and unavoidable impurities, and has a microstructure which contains 0% to 10% ferrite, 0% to 10% martensite, and 60% to 95% tempered martensite on an area basis as determined by structure observation and which further contains 5% to 20% retained austenite as determined by X-ray diffractometry.
    Type: Application
    Filed: January 28, 2009
    Publication date: August 18, 2011
    Applicant: JFE Steel Corporation
    Inventors: Tatsuya Nakagaito, Saiji Matsuoka, Yoshitsugu Suzuki, Yuki Toji
  • Patent number: 7998285
    Abstract: The invention concerns a method for making an abrasion resistant steel plate having a chemical composition comprising: 0.1%?C<0.23%; 0%?Si?2%; 0%?Al?2%; 0.5%?Si+Al?2%; 0%?Mn?2.5%; 0%?Ni?5%; 0%?Cr?5%; 0%?Mo?1%; 0%?W?2%; 0.05%?Mo+W/2?1%; 0%?Cu?1.5%; 0%?B?0.02%; 0%?Ti?0.67%; 0%?Zr?1.34%; 0.05%<Ti+Zr/2?0.67%; 0%?S?0.15%; N<0.03%, optionally 0% to 1.5% of Cu; optionally Nb, Ta and V such that Nb/2+Ta/4+V?0.5%; optionally Se, Te, Ca, Bi, Pb contents ?0.1%; the rest being iron impurities. Additionally: 0.095%?C*=C?Ti/4?Zr/8+7×N/8, Ti+Zr/2?7×N/2?0.05% and 1.05×Mn+0.54×Ni+0.50×Cr+0.3×(Mo+W/2)1/2+K>1.8, with K=1 if B?0.0005% and K=0 if B<0.0005%. After austenitization, the method consists in: cooling at a speed >0.5° C./s between a temperature between AC3 and T=800?270×C*?90×Mn?37×Ni?70×Cr?83×(Mo+W/2) and about T?50° C.; then cooling at a speed 0.1<Vr<1150×ep?1.7 between T and 100° C., (ep=plate thickness in mm); cooling down to room temperature and optionally planishing.
    Type: Grant
    Filed: June 18, 2008
    Date of Patent: August 16, 2011
    Assignee: Industeel Creusot
    Inventors: Jean Beguinot, Jean-Georges Brisson
  • Publication number: 20110186189
    Abstract: In a cold-rolled steel sheet in relation with the present invention, metallurgical structure of the steel sheet is made a mixture structure including bainite, residual austenite and tempered martensite, particularly, when the metallurgical structure is observed with a scanning electron microscope, bainite is constituted of composite structure of high temperature range forming bainite with 1 ?m or above average distance between neighboring residual austenite and/or carbide and low temperature range forming bainite with below 1 ?m average distance between neighboring residual austenite and/or carbide, and when the area ratio of the high temperature range forming bainite with respect to total metallurgical structure is made a and the total area ratio of the low temperature range forming bainite and the tempered martensite with respect to the total metallurgical structure is made b, a: 20-80%, b: 20-80%, and a+b: 70% or above are satisfied.
    Type: Application
    Filed: January 3, 2011
    Publication date: August 4, 2011
    Applicant: Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.)
    Inventor: Yuichi FUTAMURA
  • Publication number: 20110168300
    Abstract: The invention relates to a cold-rolled and annealed Dual-Phase steel sheet having a strength between 980 and 1100 MPa, and a breaking elongation greater than 9%, of which the composition comprises, the contents being expressed by weight: 0.055%?C?0.095%, 2%?Mn?2.6%, 0.005%?Si?0.35%, S?0.005%, P?0.050%, 0.1?Al?0.3%, 0.05%?Mo?0.25%, 0.2%?Cr?0.5%, it being understood that Cr+2Mo?0.6%, Ni?0.1%, 0.010?Nb?0.040%, 0.010?Ti?0.050%, 0.0005?B?0.0025%, and 0.002%?N?0.007%, the remainder of the composition consisting of iron and the inevitable impurities resulting from the smelting.
    Type: Application
    Filed: May 15, 2009
    Publication date: July 14, 2011
    Applicant: ARCELORMITTAL INVESTIGACION Y DESARROLLO SL
    Inventors: Antoine Moulin, Veronique Sardoy, Catherine Vinci, Gloria Restrepo Garces, Tom Waterschoot, Mohamed Goune