With Metal Next To Or Bonded To Metal Patents (Class 148/527)
  • Patent number: 6475642
    Abstract: An oxidation-resistant coating is described, formed of an alloy containing: about 40 to about 50 atom % aluminum and about 0.5 atom % to about 3 atom % tantalum; with a balance of nickel; cobalt, iron, or combinations thereof. The coating may also include chromium and a precious metal, as well as other components, such as zirconium or molybdenum. A method for applying the oxidation-resistant coating to a substrate is also described. The substrate can be formed of superalloy material, e.g., a turbine engine component. Related articles are also disclosed.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: November 5, 2002
    Assignee: General Electric Company
    Inventors: Ji-Cheng Zhao, Melvin Robert Jackson, Ramgopal Darolia
  • Patent number: 6455172
    Abstract: A method for producing a laminated metal ribbon comprises the steps of (a) vapor-depositing a third metal layer on at least one welding surface of a first metal ribbon 4 and a second metal ribbon 5 in a vacuum chamber 1, the third metal being the same as or different from a metal or an alloy of the first and second metal ribbons 4, 5; (b) pressure-welding the first metal ribbon 4 to the second metal ribbon 5; and (c) subjecting the resultant laminate 9 to a heat treatment for thermal diffusion.
    Type: Grant
    Filed: September 22, 2000
    Date of Patent: September 24, 2002
    Assignee: Hitachi Metals, Ltd.
    Inventors: Kentaro Yano, Noboru Hanai
  • Patent number: 6451185
    Abstract: Described is a method for producing a diffusion bonded sputtering target assembly which is thermally treated to precipitation harden the backing plate without compromising the diffusion bond integrity. The method includes heat treating and quenching to alloy solution and artificially age the backing plate material after diffusion bonding to a target. Thermal treatment of the diffusion bonded sputtering target assembly includes quenching by partial-immersion in a quenchant and is performed after diffusion bonding and allows for various tempers in the backing plate.
    Type: Grant
    Filed: July 9, 2001
    Date of Patent: September 17, 2002
    Assignee: Honeywell International Inc.
    Inventors: Anthony F. Beier, Janine K. Kardokus, Susan D. Strothers
  • Publication number: 20020112793
    Abstract: In a joining method for a frame of spectacles, and in more particular to a method for joining a bridge or a temple to a lens rim, a joining method for a frame of spectacles comprises deforming a joining portion of a member made of a shape memory alloy material so as to be insertable into a pipe for joining the member to a lens rim, and joining the joining portion of the member to the pipe by returning the joining portion of the member to an original shape before the deformation after the member is inserted into the pipe.
    Type: Application
    Filed: January 15, 2002
    Publication date: August 22, 2002
    Applicant: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventor: Kwang Koo Jee
  • Patent number: 6436204
    Abstract: A process for making a coated body comprising the steps of: providing a substrate comprising tungsten, carbide and cobalt, and the substrate having at least one surface with eta phase thereon; subjecting the substrate with eta phase on the surface thereof to a conversion treatment at a temperature between about 1250° C. and about 2000° C. under at least a partial vacuum for a duration sufficient as to convert at least a portion of the eta phase to fibrous tungsten carbide grains that the fibrous tungsten carbide grains are at the surface whereby the substrate surface presents a surface roughness, Ra, of greater than 12 microinches; and applying a coating to the surface of the substrate.
    Type: Grant
    Filed: November 20, 1998
    Date of Patent: August 20, 2002
    Assignee: Kennametal PC Inc.
    Inventors: Alfred S. Gates, Jr., Aharon Inspektor
  • Publication number: 20020108684
    Abstract: The invention relates to fine metallic alloy fibers and the process of making the fine metallic alloy fiber comprising the steps of forming a first and a second metallic alloy component into a composite having a physical configuration suitable for a drawing process. The composite is drawn to provide a fine composite fiber formed from the first and second metallic alloy components. A portion of one of the first and second alloy components is removed to provide a proper volumetric relationship between the first and second metallic alloy components for producing a desired metallic alloy. The fine composite fiber is heated for converting the remainder of the first and second metallic alloy components into the desired metallic alloy to provide the fine metallic alloy fiber.
    Type: Application
    Filed: August 9, 2001
    Publication date: August 15, 2002
    Applicant: USF Filtration & Separations Group, Inc.
    Inventors: Nathaniel R. Quick, Michael Liberman, Michael C. Murray
  • Patent number: 6398883
    Abstract: The present invention provides an improved structural assembly constructed of a plurality of structural members secured together. At least one of the plurality of structural members defines a first region characterized by comparatively high operational stress and a second region having a locally refined grain structure positioned such that the second region at least partially encompasses the first region to thereby enhance the strength, toughness and fatigue resistance of the at least one structural member in the first region. The present invention also provides a method for selectively improving the strength, toughness and fatigue resistance of a structural member in a region of high operational stress including the steps of casting the structural member in a pre-selected configuration. Regions of the structural member having comparatively high operational stress are identified. The structural member is secured to prevent movement.
    Type: Grant
    Filed: June 7, 2000
    Date of Patent: June 4, 2002
    Assignee: The Boeing Company
    Inventors: R. Scott Forrest, Douglas J. Waldron
  • Patent number: 6395406
    Abstract: A method for preparing an aluminum alloy-containing coating composition is described. A slurry containing a selected amount of aluminum is combined with at least one additional slurry containing a selected amount of a second metal which forms an alloy with aluminum. The resulting slurry mixture is applied to a metal substrate, and then heated to form a substantially devolatilized coating. The coating then receives a secondary heat treatment. Related compositions and articles are also described, as are processes for repairing a damaged or worn coating, utilizing the slurry.
    Type: Grant
    Filed: April 24, 2000
    Date of Patent: May 28, 2002
    Assignee: General Electric Company
    Inventor: D Sangeeta
  • Patent number: 6379480
    Abstract: The invention concerns a method for producing parts made of thin, light and rigid metal alloy essentially having the following steps: producing a core having the part shape; producing cavities in the core; producing shells made of metal alloy combined with reinforcing fibers with high modulus of elasticity; densifying the shells; and diffusion welding of the shells on the core by compression at temperature and pressure conditions for isothermal forging of the metal alloy used.
    Type: Grant
    Filed: June 15, 2000
    Date of Patent: April 30, 2002
    Assignee: Societe National d'Etude et de Construction de Moteurs d'Aviation “snecma”
    Inventors: Daniel Georges Girault, Gérard Philippe Gauthier, Ludovic Edmond Camille Molliex
  • Patent number: 6376099
    Abstract: A Cu-containing Nb3Al multifilamentary superconductive wire having a multifilamentary (superfine multi-core structure that a large number of micro-complex cores each obtained by complexing a Cu—Al alloy containing Cu in an amount of more than 0.2 at. % and at most 10 at. % in Nb are embedded in Nb, Ta, an Nb alloy or a Ta alloy as a matrix, wherein in the micro-complex cores, an A15 phase compound structure is formed by rapid heating at a temperature of 1,700° C. or more for 2 seconds or less and quenching to approximately room temperature, and further additionally heat-treated at a temperature of 650 to 900° C. This superconductive wire has high Jc in a low magnetic field, can be applied to all magnetic fields of 29 T or less, and is excellent in Jc characteristics in a high magnetic field in comparison with an Nb3Al wire.
    Type: Grant
    Filed: November 9, 2000
    Date of Patent: April 23, 2002
    Assignee: Agency of Industrial Science and Technology National Research Institute for Metals
    Inventors: Kiyoshi Inoue, Yasuo Iijima, Akihiro Kikuchi
  • Patent number: 6372062
    Abstract: A process for the production of a metal sheet having a multi-layered structure and a fine composite structure, which process comprises stacking at least two kinds of thin sheets selected from thin sheets of pure metals and thin sheets of alloys alternately so as to have multiple layers in total, integrating the stacked sheets by circumferential welding or placing the stacked sheets in a steel or stainless steel box to integrate these, and then, bonding all the layers of the integrated sheets metallically by hot rolling, and a metal sheet obtained thereby.
    Type: Grant
    Filed: January 27, 2000
    Date of Patent: April 16, 2002
    Assignee: Nippon Metal Industry Co., Ltd.
    Inventors: Sasaki Masahiro, Seiichi Takeda
  • Patent number: 6361883
    Abstract: A composite sheet steel of maraging steel has an outer layer and an inner layer, wherein the outer layer is harder than the inner layer and the inner layer is more tenacious than the outer layer. An intermediate layer is positioned between the inner layer and the outer layer, wherein the intermediate layer is thinner than the inner and the outer layers.
    Type: Grant
    Filed: September 26, 2000
    Date of Patent: March 26, 2002
    Assignee: Aktiengesellschaft der Dillinger Hüttenwerke
    Inventors: Christoph Dilg, Uwe Hofmann, Claus Just, Hans-Jürgen Rögele, Helmut Schönberger, Jürgen Vogt
  • Patent number: 6355364
    Abstract: Processes for preparing copper-INVAR-copper (CIC) for use in making chip packaging and the CIC created. One process comprises annealing a CIC section at a temperature in a range of 1475° F. to 1625° F. for a time in a range of 40 to 120 seconds. Another process includes heat treating a CIC section at a temperature in a range of 1275° F. to 1425° F. for a time in a range of 40 to 120 seconds. The above processes can be combined. The CIC section created exhibits unique electrical, physical, and mechanical properties.
    Type: Grant
    Filed: June 29, 1999
    Date of Patent: March 12, 2002
    Assignee: International Business Machines Corporation
    Inventors: Robert M. Japp, Lisa J. Jimarez, Bonnie S. McClure
  • Publication number: 20020028345
    Abstract: A process for preparing a composite metal membrane which contains a thin metal membrane with a desired thickness and a metallic membrane support with a porous structure, wherein metal membrane and membrane support consist of two different metals or metal alloys. The process is carried out by placing a precursor of the metal membrane on a non-porous precursor of the membrane support, the metal composite is then formed from the two precursors, the desired thickness of metal membrane is adjusted by mechanical working the metal composite and then the porous structure for the membrane support is produced.
    Type: Application
    Filed: August 13, 2001
    Publication date: March 7, 2002
    Inventors: Bernd Kempf, Werner Kuhn, Ernst Drost, Hans Hermann Beyer, Meike Roos, Stefan Wieland
  • Patent number: 6352600
    Abstract: One embodiment of the present process, which is particularly useful for forming bullets from two dissimilar metals and/or alloys that have been bonded together, comprises heat-treating such bullets to simultaneously harden the core and soften the jacket. The process comprises: (a) forming a core comprising a lead alloy; (b) applying a copper or a copper alloy to at least a portion of an exterior surface of the core to form a jacketed bullet; (c) heating the jacketed bullet at a pre-selected temperature for a period of time sufficient to simultaneously harden the core and stress-relieve and perhaps anneal the copper jacket. The process also can include quenching the bullet after heating, such as by immersing it in a suitable quenching fluid. The process also can include aging the bullet after quenching, where aging is continued for a period sufficient to further harden the bullet, such as for about 25 minutes or more.
    Type: Grant
    Filed: August 5, 1999
    Date of Patent: March 5, 2002
    Assignee: Blount, Inc.
    Inventor: Kenneth L. Alexander
  • Publication number: 20010052375
    Abstract: Abradable coatings for turbine engine shrouds are formed from biscuits formed of silicon-diffused powdered alloy compositions which are processed with an HF precursor to strip oxides from the coating during processing, the alloy blends comprising MCrAl(Y)n alloys in which n is 0, 1 or more.
    Type: Application
    Filed: November 18, 1998
    Publication date: December 20, 2001
    Inventors: GEORGE K. SIEVERS, EUGENE V. CLARK
  • Publication number: 20010035240
    Abstract: A method and an apparatus for carrying out the annealing step of a galvannealing process in which strips and sheets, particularly of steel, are subjected after galvanizing to an annealing step by heating the coated material and subsequently holding at final annealing temperature, wherein, during annealing, the heating step is interrupted by at least one additional holding step and, thus, a stepwise increase of the temperature over time is adjusted.
    Type: Application
    Filed: May 12, 1999
    Publication date: November 1, 2001
    Inventor: ROLF BRISBERGER
  • Patent number: 6309761
    Abstract: A process in which a steel is dipped in an aluminum-based bath wherein the composition and mean temperature of the bath and the immersion temperature of the steel are adjusted to obtain, in the immersion zone of the steel, a local bath temperature and composition resulting in an equilibrium with the solid phase designated as &thgr;≡FeAl3. Dipping is performed at a temperature higher than the temperatures normally employed in the art and a coating is obtained having at the interface with the steel an alloy layer significantly smaller in thickness than the art. The coating obtained better resists cracking and corrosion.
    Type: Grant
    Filed: February 18, 2000
    Date of Patent: October 30, 2001
    Assignee: Sollac
    Inventors: Philippe Guesdon, Jean-Pierre Godin, Eric Lesueur
  • Patent number: 6291014
    Abstract: A CVD outwardly grown platinum aluminide diffusion coating on a nickel or cobalt base superalloy substrate wherein the platinum modified aluminide diffusion coating is modified to include silicon, hafnium, and optionally zirconium and/or other active elements (e.g. Ce, La, Y, etc.) each in a concentration of about 0.01 weight % to about 8 weight % of the outer additive (Ni,Pt)(Al,Si) layer of the coating. A particular coating includes about 0.01 weight % to less than 2 weight % of each of silicon, hafnium, and zirconium in the outer additive layer, preferably with a Hf/Si ratio less than about 1 and, when Zr also is present, a Hf+Zr/Si ratio of less than about 1. A coating microstructure is provided characterized by an inner diffusion zone or region adjacent the substrate and the outer additive (Ni,Pt)(Al,Si) layer including hafnium silicide second phase particles or regions dispersed throughout the outer additive layer of the coating.
    Type: Grant
    Filed: September 7, 1999
    Date of Patent: September 18, 2001
    Assignee: Howmet Research Corporation
    Inventors: Bruce M. Warnes, Daniel L. Near, David C. Punola, William C. Basta
  • Patent number: 6287391
    Abstract: A method for manufacturing a permanent magnet by fabricating rapidly cooled alloy thin strip of amorphous composition which has good tenacity, simple working properties and an average thickness of 10 &mgr;m˜200 &mgr;m, from a molten alloy of a specific composition containing 6 at % or less of rare-earth element and 15 at %˜30 at % of boron, by means of specific rapid cooling conditions, and then subjecting this rapidly cooled alloy thin strip, after cutting or punching to a prescribed shape, to crystallization heat treatment such that the average crystal grain size thereof becomes 10 nm˜50 nm, and by layering together two or more of these thin permanent magnets and bonding and uniting the layered thin strips by means of an inorganic adhesive material or a resin, it is possible readily to provide a high-performance layered permanent magnet having a desired thickness and a prescribed shape, without using a method involving crushing and bonded magnet forming processes and without needing to car
    Type: Grant
    Filed: February 24, 1999
    Date of Patent: September 11, 2001
    Assignee: Sumitomo Special Metals Co., Ltd.
    Inventors: Hirokazu Kanekiyo, Satoshi Hirosawa
  • Patent number: 6284389
    Abstract: Composite materials are composed of a primary metallic base material, such as a titanium metallic material, metallurgically bonded to one or more secondary materials having desirable thermal conductivity properties and having a coefficient of thermal expansion (“CTE”) that generally matches the CTE of the primary metallic material. An exemplary composite material is composed of a titanium primary material metallurgically bonded to a secondary metal matrix composite material having a high thermal conductivity, such as aluminum silicon carbide. Methods for manufacturing such composite materials are disclosed.
    Type: Grant
    Filed: April 30, 1999
    Date of Patent: September 4, 2001
    Assignee: Pacific Aerospace & Electronics, Inc.
    Inventors: Herman L. Jones, Edward A. Taylor
  • Patent number: 6274015
    Abstract: Described is a method for producing a diffusion bonded sputtering assembly which is thermally treated to precipitation harden the backing plate without compromising the diffusion bond integrity. The method includes heat treating and quenching to alloy solution and artificially age the backing plate material after diffusion bonding to a target. Thermal treatment of the diffusion bonded sputtering target assembly includes quenching by partial-immersion in a quenchant and is performed after diffusion bonding and allows for various tempers in the backing plate.
    Type: Grant
    Filed: August 12, 1998
    Date of Patent: August 14, 2001
    Assignee: Honeywell International, Inc.
    Inventors: Anthony F. Beier, Janine K. Kardokus, Susan D. Strothers
  • Patent number: 6264766
    Abstract: A roughened bond coat comprises a screen that includes interwoven wires defining openings and a metallic material disposed on the screen. The screen and metallic material form a roughened bond coat possessing an uneven, undulated, and irregular surface. The metallic material may be one of a slurry and a powder, and applied by coating and spraying, respectively. A thermal barrier coating system, which is formed with and incorporates the roughened bond coat, exhibits greater adhesion of a thermal barrier coating and bond coat due to an increased interfacial surface area provided by the uneven, undulated, and irregular surface.
    Type: Grant
    Filed: November 24, 1998
    Date of Patent: July 24, 2001
    Assignee: General Electric Company
    Inventors: Ann Melinda Ritter, Melvin Robert Jackson, Curtis Alan Johnson
  • Patent number: 6248190
    Abstract: A body compatible stent is formed of multiple filaments arranged in two sets of oppositely directed helical windings interwoven with one another in a braided configuration. Each of the filaments is a composite including a central core (24) and a case (26) surrounding the core (24). The core is formed of a radiopaque and relatively ductile material, in particular gold or a gold alloy. The outer case (26) is formed of a relatively resilient material, e.g. a cobalt/chromium based alloy. Favorable mechanical characteristics of the stent are determined by the case (26), while the core (24) enables in vivo imaging of the stent. The composite filaments are formed by a drawn filled tubing process in which the core (24) is inserted into a tubular case (26) of a diameter substantially more than the intended final filament diameter. The composite filament is cold-worked in several steps to reduce its diameter, and annealed between successive cold-working steps.
    Type: Grant
    Filed: June 15, 1999
    Date of Patent: June 19, 2001
    Assignee: SciMed Life Systems, Inc.
    Inventor: Jonathan S. Stinson
  • Patent number: 6242113
    Abstract: A nickel, chromium, iron alloy for use in producing weld deposits. The alloy comprises, in weight percent, about 27 to 31.5 chromium; about 7 to 11 iron; about 0.005 to 0.05 carbon; less than about 1.0 manganese, preferably 0.30 to 0.95 manganese; about 0.60 to 0.95 niobium; less than 0.50 silicon, preferably 0.10 to 0.30 silicon; 0.01 to 0.35 titanium; 0.01 to 0.25 aluminum; less than 0.20 copper; less than 1.0 tungsten; less than 1.0 molybdenum; less than 0.12 cobalt; less than 0.10 tantalum; less than about 0.10 zirconium, preferably 0.002 to 0.10 zirconium; less than about 0.01 sulfur; less than about 0.01 boron, preferably 0.001 to 0.01 boron; less than about 0.02 phosphorous; and balance nickel and incidental impurities.
    Type: Grant
    Filed: June 10, 1999
    Date of Patent: June 5, 2001
    Assignee: Inco Alloys International, Inc.
    Inventor: Samuel D. Kiser
  • Patent number: 6221514
    Abstract: A method by which a conventional circuit trace (14) is modified with a layer (16) of high-conductivity solder alloy to yield a high-current circuit trace (12) for high-current routing on a substrate (10). The method generally entails the use of a solder composition that contains a dispersion of metal particles (18) in a solder alloy (20). The metal particles (18) are selected on the basis of having a higher electrical conductivity than the solder alloy (20), and are present in sufficient amounts so that the electrical conductivity of the solder composition is significantly higher than that of the solder alloy (20). The solder composition is deposited on a conductor (14), and then reflowed to form a conductive layer (16) on the conductor (14). The metal particles (18) remain as a discrete dispersion within the conductive layer (16) in order to suitably promote the conductivity of the layer (16).
    Type: Grant
    Filed: August 30, 1999
    Date of Patent: April 24, 2001
    Assignee: Delphi Technologies, Inc.
    Inventors: Kevin Joseph Hawes, David Jay Vess, Dwadasi Hare Rama Sarma, Bradley Howard Carter, Jerome Anthony Schneider
  • Patent number: 6214134
    Abstract: A method to produce high temperature oxidation resistant metal matrix composites by fiber diameter grading, which comprises the steps of (a) laying up an alloy/fiber preform consisting of a plurality of alternating layers of metal alloy and fibers and (b) consolidating the preform under suitable conditions, wherein the layers of fibers in the preform are graduated so that fiber density is lower nearer what will become the exposed surface of the composite and higher toward the interior of the composite. The difference in fiber density is achieved by spacing the near-surface fibers further apart than the interior fibers.
    Type: Grant
    Filed: July 24, 1995
    Date of Patent: April 10, 2001
    Assignee: The United States of America as represented by the Secretary of the Air Force
    Inventors: Daniel Eylon, Stephen W. Schwenker
  • Patent number: 6200397
    Abstract: A novel method and apparatus to apply a corrosion protection in the form of a zinc (or other sacrificial anodic material) tape to a tubular member such as pipe or coiled tubing to used as an underground or underwater pipeline or flow line is disclosed. The zinc tape is applied with sufficient heat and pressure to form a metallurgical bond between the zinc tape and underlying metal pipe. This allows the zinc tape to act simultaneously as a continuous protective metal barrier to the normal scrapes and nicks the pipe experiences during installation and as a sacrificial anode. The novel apparatus preheats the zinc tape with a nozzle containing heated gas such as nitrogen as it approaches the pipe surface. At the point of contact with the pipe surface, the nozzle continues heating the tape and pipe surface while a plurality of pressure rollers exert sufficient force on the zinc tape to form a metallurgical bond between the zinc tape and the pipe surface.
    Type: Grant
    Filed: November 8, 1999
    Date of Patent: March 13, 2001
    Inventor: John R. Allen
  • Patent number: 6190471
    Abstract: A superalloy article has a protective layer thereon, either in the form of an environmental coating or a the bond coat for a thermal barrier coating system. The protective layer has a high content of hafnium and/or zirconium to improve the adherence and properties of the protective layer. To introduce the hafnium and/or zirconium into the protective layer, the nickel-base alloy substrate, to which the protective layer is applied, is prepared with an initially elevated content of the hafnium and/or zirconium. A conventional bond coat is applied to the substrate. In an interdiffusion treatment performed during coating and/or subsequently, hafnium and/or zirconium diffuses from the substrate into the bond coat.
    Type: Grant
    Filed: May 26, 1999
    Date of Patent: February 20, 2001
    Assignee: General Electric Company
    Inventors: Ramgopal Darolia, William S. Walston
  • Patent number: 6156133
    Abstract: A method for manufacturing a product that includes a metallic basic body with at least one longitudinal duct disposed therein and with a number of transverse ducts branching off from the longitudinal duct. A covering layer lies on the outside of the basic body. The covering layer serves as a protective or adhesive layer. An enrichment layer covers walls of the longitudinal duct and of the transverse ducts and parts of the covering layer. A ceramic heat-insulating layer can also be provided on the outside.
    Type: Grant
    Filed: April 29, 1999
    Date of Patent: December 5, 2000
    Assignee: Siemens Aktiengesellschaft
    Inventors: Norbert Czech, Knut Halberstadt
  • Patent number: 6153028
    Abstract: A device and a process for producing thin steel metal bars in which an elongated metal product is brought into contact with a molten metal causing the latter to crystallize. Different materials are used for the elongated metal product and the molten metal, whereby one of the materials is a stainless steel. A temperature of the elongated metal product, a temperature of the molten metal and a dwelling time of the elongated metal product in the molten metal are set in such a way that the molten metal crystallizes on the elongated metal product so as to form a layer having a thickness of 2% to 20% of a thickness of the elongated metal product.
    Type: Grant
    Filed: February 12, 1999
    Date of Patent: November 28, 2000
    Assignee: Mannesmann AG
    Inventors: Fritz-Peter Pleschiutschnigg, Ingo Von Hagen, Markus Ring, Wolfgang Bleck, Tarek El Gammal, Paul Splinter, Peter Lorenz Hamacher, Oliver Richard Picht
  • Patent number: 6139657
    Abstract: This invention relates to the production of a useful eutectic layer formed on a zirconium alloy or a titanium alloy substrate. The layer is formed by the surface contact with a beryllium strip being held in intimate contact with the surface of the zirconium or titanium alloy substrate while the zirconium or titanium alloy and the contacting beryllium strip are heated in an inert atmosphere to a temperature which is above the eutectic melting point and is held constant at that temperature for a predetermined time. At the prescribed time, the materials are allowed to cool and the beryllium strip is "removed" from the "surface" of the zirconium or titanium alloy substrate and the newly formed zirconium-beryllium or titanium-beryllium alloy eutectic is formed in the surface of the zirconium or titanium alloy substrate.
    Type: Grant
    Filed: January 16, 1998
    Date of Patent: October 31, 2000
    Assignee: General Electric Canada Inc.
    Inventors: Ronald Stewart Barclay, Jeffry James Temple, Michael D. Gabbani
  • Patent number: 6120624
    Abstract: A preweld heat treatment for precipitation hardenable IN939 nickel base superalloy having a gamma matrix and gamma prime strengthening phase dispersed in the matrix comprises heating the nickel base superalloy at about 2120 degrees F. for a time to solution gamma prime phase followed by slow cooling to below about 1450 degrees F. at a rate of about 1 degree F./minute or less, and cooling to room temperature. The preweld heat treatment eliminates strain age cracking at base metal weld heat-affected zone upon subsequent heat treatment to develop alloy mechanical properties.
    Type: Grant
    Filed: June 30, 1998
    Date of Patent: September 19, 2000
    Assignee: Howmet Research Corporation
    Inventors: Russell G. Vogt, Michael G. Launsbach, John Corrigan
  • Patent number: 6096145
    Abstract: Lead alloy strip material (4, 6, 8) is roll bonded on one or both opposite face surfaces of a core strip material (2). The core material can be commercially pure titanium, austenitic stainless steel, low carbon steel, copper, aluminum, alloys thereof or other suitable metal that has sufficient ductility and that can provide desired attributes of stiffness and corrosion resistance to the composite. The lead alloy material is strengthened by the addition of less than approximately 1% of calcium or antimony and the core material is softened by fully annealing it prior to bonding. The several strips are reduced in thickness, preferably in approximately the same proportion, by at least 40% in the bonding pass to create a solid phase bond among the strips. The bonded composite is then rolled to final gauge and, for selected applications, is corrugated and cut to form panels (20, 22, 24) and etched to form pockets (8b) for pasting of active materials such as lead oxide for battery plates.
    Type: Grant
    Filed: August 31, 1998
    Date of Patent: August 1, 2000
    Assignee: Texas Instruments Incorporated
    Inventors: Awadh K. Pandey, Bijendra Jha
  • Patent number: 6093260
    Abstract: There is provided a surface alloyed component which comprises a base alloy with a diffusion barrier layer enriched in silicon and chromium being provided adjacent thereto. An enrichment pool layer is created adjacent said diffusion barrier and contains silicon and chromium and optionally titanium or aluminum. A reactive gas treatment may be used to generate a replenishable protective scale on the outermost surface of said component.
    Type: Grant
    Filed: April 17, 1997
    Date of Patent: July 25, 2000
    Assignee: Surface Engineered Products Corp.
    Inventors: Sabino Steven Anthony Petrone, Radhakrishna Chakravarthy Mandyam, Andrew George Wysiekierski
  • Patent number: 6083330
    Abstract: The present invention is directed to a coating process for forming a high ality, high ductility, metallurgically bonded coating on a substrate or part. The process comprises applying a coating to the substrate using an HVOF spray coating technique and subjecting the coated substrate to a stepped heat treatment for diffusing the coating into the substrate while substantially avoiding the formation of macro cracks.
    Type: Grant
    Filed: September 16, 1998
    Date of Patent: July 4, 2000
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Leonard Moskowitz
  • Patent number: 6080246
    Abstract: A high rhenium containing single crystal superalloy (30) is chromized, or coated with cobalt, before the conventional aluminising process steps to modify the surface of the high rhenium containing single crystal superalloy to prevent the formation of topologically close packed phases at the interface between the aluminide coating (32) and the rhenium containing single crystal superalloy. The invention is particularly applicable to platinum aluminide coatings, platinum aluminide-silicide coatings and aluminide-silicide coatings.
    Type: Grant
    Filed: July 14, 1997
    Date of Patent: June 27, 2000
    Assignee: Rolls-Royce, PLC
    Inventor: Rodney G. Wing
  • Patent number: 6022426
    Abstract: A controlled oxygen content copper clad laminate product and process. In accordance with one aspect of the present invention, there is provided a laminate having a first layer of oxygen-free copper joined to a second layer of oxygen-rich copper by the steps of (i) cladding the first layer to the second layer at a relatively low speed to minimize rolling friction, (ii) finish rolling the laminate to substantially increase its thickness tolerance, (iii) slitting the laminate to increase its width tolerance, (iv) profiling a groove at a selected location in the laminate, (v) finish slitting a plurality of ribbons from the laminate, (vi) tension leveling the laminate to straighten and flatten its shape, (vii) stamping the laminate into sections each of a selected configuration, (viii) cleaning laminate surfaces, and (ix) direct bonding the laminate to a substrate material such that the first layer is annealed to the second.
    Type: Grant
    Filed: January 11, 1996
    Date of Patent: February 8, 2000
    Assignee: Brush Wellman Inc.
    Inventors: Joseph P. Mennucci, Charles R. Mead
  • Patent number: 6019939
    Abstract: Aluminum brazing alloy composition is (in wt. %): Mn 0.7-1.5, Cu 0.5-1.0, Fe not more than 0.4, Si not more than 0.15, Mg up to 0.8, V and/or Cr up to 0.3, Ti up to 0.1, others up to 0.05 each, 0.15 total, balance A1 of at least commercial purity. Improved properties include: post-brazed strength and sag resistance; corrosion resistance; ability to withstand interannealing and some homogenization.
    Type: Grant
    Filed: November 28, 1995
    Date of Patent: February 1, 2000
    Assignee: Alcan International Limited
    Inventors: Alan Gray, Graeme John Marshall, Alan John Ernest Flemming
  • Patent number: 5958152
    Abstract: To provide heat-resistant alloy members that maintain the resistance to corrosion at high temperature of the chromized layer formed on Ni- or Co-base heat-resistant alloys and which yet are improved in various mechanical properties. The improved Ni- or Co-base heat-resistant alloy member having a chromized layer that is characterized by having a chromium concentration of 25-80% and a thickness of 10-100 .mu.m. This member is produced by controlling both the vapor pressure of a chromium halide being used in chromization and the temperature therefor in such a way that the chromized layer being formed is adjusted to have a chromium concentration and a thickness within the ranges specified above.
    Type: Grant
    Filed: May 23, 1997
    Date of Patent: September 28, 1999
    Assignees: Ebara Corporation, Tocalo Co., Ltd.
    Inventors: Shuhei Nakahama, Hisamichi Nagahara, Masamichi Kawasaki, Yoshio Harada
  • Patent number: 5955207
    Abstract: The face sheet is formed of a titanium alloy which includes boron that can be superplastically formed and diffusion bonded to form a structural panel. The structural panel generally includes a pair of face sheets that are disposed on and bonded to opposite sides of a metallic core. By forming at least one of the face sheets of a titanium alloy which includes boron, such as between about 0.2 weight percent and about 2 weight percent of boron, the resulting structural panel is stiffened without any corresponding increase in weight relative to structural panels formed of conventional titanium alloys. Preferably, powdered titanium diboride (TiB.sub.2) is added to a titanium alloy charge that is subsequently formed into a boron reinforced titanium alloy sheet. During the forming process, the TiB.sub.2 reacts to produce TiB reinforcements that are scattered throughout the metal matrix to increase the modulus and correspondingly stiffen the resulting face sheet.
    Type: Grant
    Filed: November 24, 1997
    Date of Patent: September 21, 1999
    Assignee: McDonnell Douglas Corporation
    Inventors: Richard J. Lederich, Raymond J. Tisler
  • Patent number: 5954895
    Abstract: A method of making a deposit on a component made of a nickel or cobalt based superalloy is described wherein a deposit material consisting of reactive powders corresponding to an intermetallic material or of a superalloy powder is deposited on the component before placing it in a chamber and subjecting it to a neutral gas at a hydrostatic pressure of up to 1.5 GPa, the chamber being provided with heater means for producing a controlled temperature of up to 1200.degree. C. at a rate of increase of from 5.degree. C. to 120.degree. C. per minute and a thermal gradient of 200.degree. C. between the ends of the component, and the temperature and pressure conditions in the chamber are selected such that the deposit material undergoes a synthesis reaction by self-propagated combustion under high pressure so as to obtain densification of the deposit and a metallurgical bonding between the deposit and the component.
    Type: Grant
    Filed: August 21, 1997
    Date of Patent: September 21, 1999
    Assignee: Societe Sochata
    Inventors: Marie-Caroline Dumez, Jean-Pierre Huchin, Rose Marie Marin-Ayral, Didier Perraud, Jean-Claude Tedenac
  • Patent number: 5951792
    Abstract: In a method for welding age-hardenable nickel-base alloys, a workpiece (5) made from an age-hardenable nickel-base alloy (1, 2) is welded with filler material of the same composition as the base material. The weld metal (3) which is formed in so doing is covered by a sealed covering layer (4) comprising a ductile material and the workpiece (5) is subjected to hot isostatic pressing (HIP).
    Type: Grant
    Filed: September 15, 1998
    Date of Patent: September 14, 1999
    Assignee: Asea Brown Boveri AG
    Inventors: Werner Balbach, Sorin Keller, Reiner Redecker
  • Patent number: 5935351
    Abstract: The present invention is a metallic composite which is resistant to erosion and corrosion at the high temperatures and pressures which are encountered in gun tubes, including projectile launchers. This composite comprises a ductile layer of rhenium or a rhenium alloy containing more than 20 percent rhenium, and a layer of a lower cost high strength material such as steel, nickel, nickel alloy, cobalt, or cobalt alloy. A solid solution of the two metals is formed between the two layers making a metallurgical bond. The metallurgical bond may be enhanced through the use of a bond promoter having solubility with both metallic layers.
    Type: Grant
    Filed: November 14, 1997
    Date of Patent: August 10, 1999
    Assignee: Ultramet
    Inventors: Andrew Sherman, Victor Arrietta
  • Patent number: 5868298
    Abstract: The present invention relates to a method for manufacturing shells, wherein a belt is attached to the outer surface of the shell by friction welding. The method is particularly favorable for welding bands to thin-walled shells. In the method, prior to the welding process, the shell is hardened and/or tempered for optimizing its properties during use and, after hardening and/or tempering, the shell receives the belt by friction welding, during which the temperature of the shell is kept at a level which does not reduce the qualities of the shell to a substantial degree.
    Type: Grant
    Filed: November 8, 1996
    Date of Patent: February 9, 1999
    Assignee: Raufoss Technology AS
    Inventors: Rolf Martin Holmen, Vegard Sande
  • Patent number: 5866271
    Abstract: A method is provided for bonding a ceramic thermal barrier coating to a nickel or cobalt based superalloy substrate for use in high temperature applications such as gas turbine engines. The method comprises roughening the superalloy substrate itself to produce a surface roughness, preferably from 100 to 350 microinches Roughness Average (RA). The roughened surface of the substrate is treated with a diffusion coating, preferably aluminide or platinum-aluminide to provide oxidation and hot corrosion resistance, while substantially preserving the micro-topography of the roughened surface. A ceramic thermal barrier coating is applied directly to the diffusion treated surface, preferably using an air plasma spray. The surface roughness, which is left substantially undisturbed by the diffusion coating treatment, is altered by the air plasma sprayed ceramic to form a series of interlocking microstructures that firmly attach the ceramic thermal barrier coating to the diffusion treated superalloy substrate.
    Type: Grant
    Filed: October 21, 1997
    Date of Patent: February 2, 1999
    Inventors: Richard J. Stueber, Frank Boorboor, Natarajan S. Palanisamy
  • Patent number: 5861069
    Abstract: A method forms an indium antimonide layer by a sequential evaporation for use as a magnetic sensing material having high electron mobility. The method includes the steps of: (a) preparing a substrate; (b) pre-heating the substrate (c) depositing an antimony layer on top of the substrate; (d) forming an indium layer on top of the antimony layer to thereby obtain a sequentially deposited layer, wherein the sequentially deposited layer includes the antimony and the indium layers; (e) providing a protection layer on top of the sequentially deposited layer; and (f) heat treating the sequentially deposited layer to force inter-diffusion of antimony and indium, thereby producing the indium antimonide layer.
    Type: Grant
    Filed: August 26, 1997
    Date of Patent: January 19, 1999
    Assignee: SKM Limited
    Inventor: Seung-Ho Lee
  • Patent number: 5830289
    Abstract: A process for enhancing the bond strength of resistance welded joints between titanium alloy articles includes a first step of resistance welding two titanium alloy articles and a second step of heat treating the resistance welded titanium alloy articles in a vacuum or inert environment at temperatures in a range of 1675.degree. F. to 1825.degree. F. for a period of 15 minutes to 4 hours. The process of the present invention is particularly useful in providing efficient joining of face sheets to a honecomb core element.
    Type: Grant
    Filed: February 1, 1996
    Date of Patent: November 3, 1998
    Assignee: Boeing North American, Inc.
    Inventor: Sami M. El-Soudani
  • Patent number: 5795412
    Abstract: A method of manufacturing a blade made of .alpha..beta. titanium including an insert of metastable .beta. titanium,according to the invention:a blade body made of .alpha..beta. titanium is made to the finished design dimensions, said blade body made of .alpha..beta. titanium including a location designed to receive said insert made of .beta. titanium:said insert made of .beta. titanium is put into solution; thenhardening treatment is performed to harden said insert made of .beta. titanium; thensaid insert made of .beta. titanium is welded to said location of said blade body made of .alpha..beta. titanium to the finished design dimensions using a welding technique having localized and controlled energy density.
    Type: Grant
    Filed: December 20, 1996
    Date of Patent: August 18, 1998
    Assignee: GEC Alsthom Electromecanique S.A.
    Inventor: Raymond Delmaire
  • Patent number: 5785775
    Abstract: An article made of a gamma titanium aluminide alloy is welded, as for example in the weld repair of surface cracks, by removing foreign matter from the area to be welded, first stress relieving the article, cooling the entire article to a welding temperature of from about 1000.degree. F. to about 1400.degree. F., welding a preselected region in an inert atmosphere at the welding temperature, and second stress relieving the article. Welding is preferably accomplished by striking an arc in the preselected region so as to locally melt the alloy in the preselected region, providing a filler metal having the same composition as the gamma titanium aluminide alloy of the article, and feeding the filler metal into the arc so that the filler metal is melted and fused with the article to form a weldment upon solidification.
    Type: Grant
    Filed: January 22, 1997
    Date of Patent: July 28, 1998
    Assignee: General Electric Company
    Inventors: Russell W. Smashey, Thomas J. Kelly, John H. Snyder, Ronald L. Sheranko