Showerhead-type Patents (Class 156/345.34)
  • Patent number: 6942753
    Abstract: Embodiments of a gas distribution plate for distributing gas in a processing chamber are provided. In one embodiment, a gas distribution plate includes a diffuser plate having a plurality of gas passages passing between an upstream side and a downstream side of the diffuser plate. At least one of the gas passages includes a first hole and a second hole coupled by an orifice hole. The first hole extends from the upstream side of the diffuser plate while the second hole extends from the downstream side. The orifice hole has a diameter less than the respective diameters of the first and second holes.
    Type: Grant
    Filed: April 16, 2003
    Date of Patent: September 13, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Soo Young Choi, Quanyuan Shang, Robert I. Greene, Li Hou
  • Patent number: 6932871
    Abstract: A multi-station deposition apparatus capable of simultaneous processing multiple substrates using a plurality of stations, where a gas curtain separates the stations. The apparatus further comprises a multi-station platen that supports a plurality of wafers and rotates the wafers into specific deposition positions at which deposition gases are supplied to the wafers. The deposition gases may be supplied to the wafer through single zone or multi-zone gas dispensing nozzles.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: August 23, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Mei Chang, Lawrence C. Lei, Walter B. Glenn
  • Patent number: 6923885
    Abstract: A plasma processing apparatus having a sample bench located in a vacuum chamber, a structure disposed at a position opposed to a sample placed on the sample bench and facing a plasma generated in the vacuum chamber, and at least one through-hole disposed in the structure through which a gas flows into the vacuum chamber. An optical transmitter is mounted on a back of the at least one through-hole through which light from the sample passes, which light is detected by way of the optical transmitter.
    Type: Grant
    Filed: December 11, 2003
    Date of Patent: August 2, 2005
    Assignee: Hitachi, Ltd.
    Inventors: Toshio Masuda, Tatehito Usui, Mitsuru Suehiro, Hiroshi Kanekiyo, Hideyuki Yamamoto, Kazue Takahashi, Hiromichi Enami
  • Patent number: 6921437
    Abstract: The present invention provides a gas distribution apparatus useful in semiconductor manufacturing. The gas distribution apparatus comprises a unitary member and a gas distribution network formed within the unitary member for uniformly delivering a gas into a process region. The gas distribution network is formed of an inlet passage extending upwardly through the upper surface of the unitary member for connecting to a gas source, a plurality of first passages converged at a junction and connected with the inlet passage at the junction, a plurality of second passages connected with the plurality of first passages, and a plurality of outlet passages connected with the plurality of second passages for delivering the gas into a processing region. The first passages extend radially and outwardly from the junction to the periphery surface of the unitary member, and the second passages are non-perpendicular to the first passages and extend outwardly from the first passages to the periphery surface.
    Type: Grant
    Filed: May 26, 2004
    Date of Patent: July 26, 2005
    Assignee: Aviza Technology, Inc.
    Inventors: Jay Brian DeDontney, Jack Chihchieh Yao
  • Patent number: 6915760
    Abstract: The present invention provides a plasma processing apparatus having an electrode plate arranging therein, an upper electrode to which a dielectric member or a cavity portion is provided, a dimension or a dielectric constant of which is determined in such a manner that resonance is generated at a frequency of high-frequency power supplied to the center of the back side and an electric field orthogonal to the electrode plate is generated, and a susceptor as a lower electrode so as to be opposed to each other, in order to reduce unevenness of an electric field distribution on the surface of the electrode in a plasma processing using a high-density plasma capable of coping with further refinement.
    Type: Grant
    Filed: October 18, 2002
    Date of Patent: July 12, 2005
    Assignee: Tokyo Electron Limited
    Inventors: Shinji Himori, Toshiki Takahashi, Takumi Komatsu
  • Patent number: 6911092
    Abstract: An apparatus and method for atomic layer deposition with improved efficiency of both chemical dose and purge is presented. The apparatus includes an integrated equipment and procedure for chamber maintenance.
    Type: Grant
    Filed: January 17, 2003
    Date of Patent: June 28, 2005
    Assignee: Sundew Technologies, LLC
    Inventor: Ofer Sneh
  • Patent number: 6910441
    Abstract: Plasma processing equipment includes a process, a cover covering the top of the process chamber, a wafer chuck disposed in the process chamber, a pressure regulating system including a pressure regulating plate situated at the bottom surface of the cover, and an elevating mechanism for adjusting the position of the pressure regulating plate, and a measuring device including at least one visual display for use in calibrating the pressure regulating system.
    Type: Grant
    Filed: May 28, 2003
    Date of Patent: June 28, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Dong-Jun Jang
  • Patent number: 6899764
    Abstract: A chemical vapor deposition reactor having a process chamber accommodating a substrate holder for wafers, a first gas flow of reactive gases to process the wafers and a crown-shaped gas-collector surrounding the substrate-holder, wherein said reactor further comprises: a base plate and a cover plate disposed respectively beneath and above the substrate-holder, an outer ring surrounding the gas-collector and touching both the base plate and the cover-plate, and a second flow of non-reactive gases propagating in spaces outside the process chamber limited by the base and cover plates and the outer ring, and said second flow acting as a counter-flow for preventing the first reactive gas flow to exit from the process chamber but through the gas-collector.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: May 31, 2005
    Assignee: Aixtron AG
    Inventor: Peter Frijlink
  • Patent number: 6899786
    Abstract: A processing device in which maintenance can be easily carried out and a burden on a worker can be reduced, and a method of maintaining the device are provided. An upper electrode unit 106 structuring a ceiling portion of a processing chamber 102 of an etching device 100 is structured from a lower assembly 128 at a processing chamber 102 side including an upper electrode 130, and an upper assembly 126 at a power supply side including an electro-body 144. A lock mechanism 156 is released, and after the upper assembly 126 is independently raised and removed by a lift mechanism 164, maintenance of the upper assembly 126 and/or the lower assembly 128 is carried out. The lock mechanism 156 is locked, and after the upper and lower assemblies 126, 128 are integrally raised and removed by the lift mechanism 164, maintenance of an interior of the processing chamber 102 is carried out.
    Type: Grant
    Filed: May 16, 2001
    Date of Patent: May 31, 2005
    Assignee: Tokyo Electron Limited
    Inventors: Shigeru Senzaki, Toshiki Sasaki, Tadashi Aoto, Nobuyuki Nagayama, Kouji Mitsuhashi
  • Patent number: 6894245
    Abstract: A plasma reactor for processing a semiconductor workpiece, includes a reactor chamber having a chamber wall and containing a workpiece support for holding the semiconductor support, the electrode comprising a portion of the chamber wall, an RF power generator for supplying power at a frequency of the generator to the overhead electrode and capable of maintaining a plasma within the chamber at a desired plasma ion density level. The overhead electrode has a capacitance such that the overhead electrode and the plasma formed in the chamber at the desired plasma ion density resonate together at an electrode-plasma resonant frequency, the frequency of the generator being at least near the electrode-plasma resonant frequency. The reactor further includes a set of MERIE magnets surrounding the plasma process area overlying the wafer surface that produce a slowly circulating magnetic field which stirs the plasma to improve plasma ion density distribution uniformity.
    Type: Grant
    Filed: October 22, 2001
    Date of Patent: May 17, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Daniel J. Hoffman, Yan Ye, Dan Katz, Douglas A. Buchberger, Jr., Xiaoye Zhao, Kang-Lie Chiang, Robert B. Hagen, Matthew L. Miller
  • Patent number: 6884298
    Abstract: A coating and developing treatment system for performing coating and developing treatment. A coating treatment unit is configured to form a resist film on a substrate. A developing treatment unit is configured to develop the substrate. A heating/cooling unit includes a heat plate configured to continuously heat and a cooling plate configured to continuously cool in one casing the substrate on which the resist film has been formed by the coating treatment unit. A gas nozzle is configured to supply a treatment gas to the resist film formed on the substrate to form a protective film on a surface of the resist film. The gas nozzle is disposed on a cooling plate side in the heating/cooling unit. The gas nozzle is configured to move to a position above the substrate on the cooling plate during cooling at the cooling plate, to supply the treatment gas.
    Type: Grant
    Filed: December 4, 2002
    Date of Patent: April 26, 2005
    Assignee: Tokyo Electron Limited
    Inventors: Junichi Kitano, Yuji Matsuyama, Takahiro Kitano, Hidetami Yaegashi
  • Patent number: 6884296
    Abstract: Reactors having gas distributors for depositing materials onto micro-device workpieces, systems that include such reactors, and methods for depositing materials onto micro-device workpieces are disclosed herein. In one embodiment, a reactor for depositing material on a micro-device workpiece includes a reaction chamber and a gas distributor in the reaction chamber. The gas distributor includes a first gas conduit having a first injector and a second gas conduit having a second injector. The first injector projects a first gas flow along a first vector and the second injector projects a second gas flow along a second vector that intersects the first vector in an external mixing zone facing the workpiece. In another embodiment, the mixing zone is an external mixing recess on a surface of the gas distributor that faces the workpiece.
    Type: Grant
    Filed: August 23, 2002
    Date of Patent: April 26, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Cem Basceri, Gurtej S. Sandhu
  • Patent number: 6872259
    Abstract: A method of and apparatus for providing tunable gas injection in a plasma processing system (10, 10?). The apparatus includes a gas injection manifold (50) having a pressurizable plenum (150) and an array of adjustable nozzle units (250), or an array of non-adjustable nozzles (502, 602), through which gas from the plenum can flow into the interior region (40) of a plasma reactor chamber (14) capable of containing a plasma (41). The adjustable nozzle units include a nozzle plug (160) arranged within a nozzle bore (166). A variety of different nozzle units are disclosed. The nozzle plugs are axially translatable to adjust the flow of gas therethrough. In one embodiment, the nozzle plugs are attached to a plug plate (154), which is displacable relative to an injection plate (124) via displacement actuators (170) connecting the two plates. The displacement actuators are controlled by a displacement actuator control unit (180), which is in electronic communication with a plasma processing system control unit (80).
    Type: Grant
    Filed: September 23, 2002
    Date of Patent: March 29, 2005
    Assignee: Tokyo Electron Limited
    Inventor: Eric J. Strang
  • Patent number: 6872258
    Abstract: A shower head for adjusting distribution of a reactant gas in a process region of a semiconductor manufacturing reaction chamber, wherein a top plate has a gas port for introducing the reactant gas into the reaction chamber; a face plate, having through holes, disposed opposite the process region; a first baffle plate, having through holes, disposed between the top plate and the face plate and capable of moving up or down, wherein the first baffle plate has a top surface that defines a first gap for forming a first lateral flow passage; a second baffle plate, having through holes, disposed between the first baffle plate and the face plate and capable of moving up or down, wherein the second baffle plate has a top surface that defines a second gap for forming a second lateral flow passage; and a gap controller for determining widths of the first and second gaps.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: March 29, 2005
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-chul Park, Dong-hyun Kim, O-ik Kwon, Hye-jin Jo
  • Patent number: 6852168
    Abstract: A thin film deposition reactor including a reactor block on which a wafer is placed, a shower head plate for uniformly maintaining a predetermined pressure by covering the reactor block, a wafer block installed in the reactor block, on which the wafer is to be seated; an exhausting portion connected to the reactor block for exhausting a gas from the reactor block; a first connection line in communication with the shower head plate, through which a first reaction gas and/or inert gas flow, a second connection line in communication with the shower head plate, through which a second reaction gas and/or inert gas flow, and a diffusion plate mounted on a lower surface of the shower head plate.
    Type: Grant
    Filed: May 3, 2001
    Date of Patent: February 8, 2005
    Assignee: IPS Ltd.
    Inventor: Young-Hoon Park
  • Patent number: 6849133
    Abstract: The invention includes a method of forming a layer on a semiconductor substrate that is provided within a reaction chamber. The chamber has at least two inlet ports that terminate in openings. A first material is flowed into the reaction chamber through the opening of a first of the inlet ports. At least a portion of the first material is deposited onto the substrate. The reaction chamber is purged by flowing an inert material into the reaction chamber through the opening of a second of the inlet ports. The inert material passes from the opening and through a distribution head that is positioned within the reaction chamber between the first and second openings. A second material can then be flowed into the chamber through an opening in a third inlet port and deposited onto the substrate. The invention also includes a chemical vapor deposition apparatus.
    Type: Grant
    Filed: November 6, 2003
    Date of Patent: February 1, 2005
    Assignee: Micron Technology, Inc.
    Inventors: Philip H. Campbell, Craig M. Carpenter, Ross S. Dando, Kevin T. Hamer
  • Patent number: 6843882
    Abstract: A system for processing substrates comprises a plurality of process chambers. Each process chamber includes an inlet gas distribution member connected to an inlet gas line to distribute gas from the inlet gas line into the process chamber, and a gas outlet. The inlet gas distribution member has an inlet gas distribution member impedance to a gas flow through the inlet gas distribution member into the process chamber. The plurality of process chambers are substantially identical. A source gas delivery line is connected to the inlet gas lines of the plurality of process chambers to supply a gas flow to be divided into the inlet gas lines. A plurality of tunable upstream gas restrictors are each disposed in one of the inlet gas lines connected to the inlet gas distribution members of the process chambers and are configured to adjust a flow rate into the corresponding process chamber.
    Type: Grant
    Filed: October 2, 2002
    Date of Patent: January 18, 2005
    Assignee: Applied Materials, Inc.
    Inventors: Karthik Janakiraman, Victor Wang, Vikash Banthia, Teresa Winson, Nitin Ingle
  • Patent number: 6841942
    Abstract: The invention relates to a plasma source whose plasma is ignited by an electric voltage. To be able to carry out the ignition at relatively low voltages, a plate (5) provided with holes (13, 14) is provided beneath a plasma volume (17), which is disposed above a wall (21) of a plasma chamber (3). Through this plate (5) an ignition volume (16) is formed beneath the plasma volume (17) with a higher pressure than in the plasma volume (17), in which the plasma ignites first. The ignition is subsequently propagated through the holes of the plate (5) into the plasma volume (17).
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: January 11, 2005
    Assignee: Leybold Optics GmbH
    Inventors: Rudolf Beckmann, Markus Fuhr, Walter Zultzke, Werner Weinrich
  • Patent number: 6828246
    Abstract: A gas delivering device inside a gaseous reaction chamber capable of increasing gas flow in areas having a deficient supply of gas by forming additional holes in corresponding positions. Because a gas-delivering panel design having asymmetrical holes is employed, gas flow rate within the reactions chamber can be roughly balanced. Hence, a homogeneous stream of gaseous reactants can be maintained above the surface of a reacting wafer.
    Type: Grant
    Filed: May 20, 2002
    Date of Patent: December 7, 2004
    Assignee: Winbond Electronics Corp.
    Inventors: An-Chun Tu, Wen-Fa Tai
  • Publication number: 20040231799
    Abstract: A plasma enhanced atomic layer deposition (PEALD) apparatus and a method of forming a conductive thin film using the same are disclosed. According to the present invention of a PEALD apparatus and a method, a process gas inlet lube and a process gas outlet tube are installed symmetrically and concentrically with respect to a substrate, thereby allowing the process gas to flow uniformly, evenly and smoothly over the substrate, thereby forming a thin film uniformly over the substrate. A uniquely designed showerhead assembly provides not only reduces the volume of the reactor space, but also allows the process gases to flow uniformly, evenly and smoothly throughout the reation space area and reduces the volume of the reaction space, and the smaller volume makes it easier and fast to change the process gases for sequential and repeated process operation.
    Type: Application
    Filed: February 6, 2004
    Publication date: November 25, 2004
    Inventors: Chun Soo Lee, Min Sub Oh, Hyung Sang Park
  • Patent number: 6821347
    Abstract: Reactors for vapor deposition of materials onto a microelectronic workpiece, systems that include such reactors, and methods for depositing materials onto microelectronic workpieces. In one embodiment, a reactor for vapor deposition of a material comprises a reaction chamber and a gas distributor. The reaction chamber can include an inlet and an outlet. The gas distributor is positioned in the reaction chamber. The gas distributor has a compartment coupled to the inlet to receive a gas flow and a distributor plate including a first surface facing the compartment, a second surface facing the reaction chamber, and a plurality of passageways. The passageways extend through the distributor plate from the first surface to the second surface. Additionally, at least one of the passageways has at least a partially occluded flow path through the plate.
    Type: Grant
    Filed: July 8, 2002
    Date of Patent: November 23, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Craig M. Carpenter, Allen P. Mardian, Ross S. Dando, Kimberly R. Tschepen, Garo J. Derderian
  • Patent number: 6818097
    Abstract: A plasma etching electrode for dry etching devices for production of semiconductor devices. The plasma etching electrode is prevented from contamination with impurities, provides good thermal and electrical conductance and heat resistance at the joint between the electrode plate and pedestal (or supporting ring), and hence improves etching characteristics and silicon wafer yield. The highly heat-resistant plasma etching electrode includes an electrode plate of silicon which is supported by and uniformly joined to a pedestal by an adhesive. The pedestal is made of graphite. The adhesive includes an epoxy resin containing polycarbodiimide resin and carbon powder. A dry etching device including the electrode is also described.
    Type: Grant
    Filed: July 22, 2002
    Date of Patent: November 16, 2004
    Assignee: Nisshinbo Industries, Inc.
    Inventors: Akira Yamaguchi, Hideshi Tomita
  • Patent number: 6815653
    Abstract: A method and apparatus for detecting material accretion and peeling in a system such as a plasma process chamber, including multiple optical sensors which are provided in the chamber above a gas distribution plate or other surface inside the chamber. The optical sensors are connected to a central process controller that is capable of terminating operation of the chamber and may be equipped with an alarm. In the event that the optical sensors detect asymmetries in brightness or light reflection among various portions or regions of the gas distribution plate or other surface, which asymmetries may indicate the formation of a material coating on the plate or dislodging of contaminant particles from the plate, a signal is sent to the process controller, which may be adapted to terminate the plasma process, alert operating personnel, or both.
    Type: Grant
    Filed: April 15, 2002
    Date of Patent: November 9, 2004
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd
    Inventors: Jenq-Yann Tsay, Jeng-Chiang Chuang, Chih-Pen Yen, Yung-Mao Hsu
  • Patent number: 6811651
    Abstract: A method and system for controlling the temperatures of at least one gas in a plasma processing environment prior to the at least one gas entering a process chamber. This temperature control may vary at different spatial regions of a showerhead assembly (either an individual gas species or mixed gas species). According to one embodiment, an in-line heat exchanger alters (i.e., increases or decreases) the temperature of passing gas species (either high- or low-density) prior to entering a process chamber, temperature change of the gases is measured by determining a temperature of the gas both upon entrance into the in-line heat exchanger assembly and upon exit.
    Type: Grant
    Filed: June 19, 2002
    Date of Patent: November 2, 2004
    Assignee: Tokyo Electron Limited
    Inventor: Maolin Long
  • Patent number: 6800139
    Abstract: A film deposition apparatus (2) forms a PZT film at a high deposition rate under a low temperature by using a single showerhead (50) throughout the deposition process. Process gases including a raw material gas and an oxidant gas are introduced into a process chamber (4) in which a wafer (W) is accommodated. The process chamber (4) is maintained at a predetermined vacuum during the film depositing process. A gas injection surface (57) of the shower head (50) from which the process gases are injected is divided into an inner zone (84) covering a center portion of the wafer (W) and an outer zone (86) surrounding the inner zone (84). The raw material gas is separately injected from the inner zone (84) and the outer zone (86), and the oxidant gas is separately injected from the inner zone (84) and the-outer zone (86).
    Type: Grant
    Filed: July 16, 2001
    Date of Patent: October 5, 2004
    Assignee: Tokyo Electron Limited
    Inventors: Hiroshi Shinriki, Kenji Matsumoto
  • Patent number: 6793733
    Abstract: A gas distribution showerhead for use in a semiconductor fabrication process features a face plate having gas outlet ports in the form of elongated slots or channels. The use of elongated gas outlet ports in accordance with embodiments of the present invention substantially reduces the incidence of undesirable spotting and streaking of deposited material where the showerhead is closely spaced from the wafer. A showerhead featuring a face plate having a tapered profile to reduce edge thickness of deposited material at close face plate-to-wafer spacings is also disclosed.
    Type: Grant
    Filed: January 25, 2002
    Date of Patent: September 21, 2004
    Assignee: Applied Materials Inc.
    Inventors: Karthik Janakiraman, Nitin Ingle, Zheng Yuan, Steven Gianoulakis
  • Patent number: 6786997
    Abstract: A chemical vapor reaction processing apparatus including a reaction chamber; a power source; a source of a reactive film forming gas; a device for inputting the reactive film forming gas into the chamber; a pair of electrodes connected to the power source, at least a portion of the pair of electrodes being provided in the reaction chamber; a power source for supplying a first electric power into the reaction chamber through the pair of electrodes to generate a plasma of the reactive film forming gas in the chamber for providing a plasma CVD deposition of the reactive film forming gas on a surface; a source of a reactive cleaning gas; a device for inputting the reactive cleaning gas into the chamber where the power source supplies a second electric power into the reaction chamber through the pair of electrodes to generate a plasma of the reactive cleaning gas in the chamber so that an inner wall of the chamber is cleaned by the plasma.
    Type: Grant
    Filed: June 17, 1996
    Date of Patent: September 7, 2004
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Shunpei Yamazaki
  • Patent number: 6786175
    Abstract: An electrode assembly of a semiconductor processing chamber wherein heat transfer between a backing plate and a showerhead electrode is improved by an electrostatic clamping arrangement, which includes a compliant material in contact with a surface of the showerhead electrode. The showerhead electrode is removably attached to the backing plate by a mechanical clamping arrangement which engages an outer periphery of the showerhead electrode. The electrostatic clamping arrangement is coextensive with the showerhead electrode to improve thermal conduction between the backing plate and the showerhead electrode.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: September 7, 2004
    Assignee: Lam Research Corporation
    Inventors: Rajinder Dhindsa, Eric Lenz
  • Patent number: 6782843
    Abstract: A plasma processing system is provided, having processor integral cooling passages for reducing an operating temperature thereof during processing of a wafer by the system. Cooling medium inlets and outlets are connected to the cooling passages to permit circulation of a cooling medium through the cooling passages. The baffle plate comprises a generally planar, apertured, gas distribution central portion surrounded by a flange into both of which the cooling passages may extend. Further, the baffle plate may have a non-apertured plate overlying and covering apertures in a central portion of the baffle plate.
    Type: Grant
    Filed: April 1, 2003
    Date of Patent: August 31, 2004
    Assignee: Axcelis Technologies, Inc.
    Inventors: David W. Kinnard, Daniel B. Richardson
  • Patent number: 6772827
    Abstract: A gas inlet manifold for a plasma chamber having a perforated gas distribution plate suspended by a side wall comprising one or more sheets. The sheets preferably provide flexibility to alleviate stress in the gas distribution plate due to thermal expansion and contraction. In another aspect, the side wall provides thermal isolation between the gas distribution plate and other components of the chamber.
    Type: Grant
    Filed: August 3, 2001
    Date of Patent: August 10, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Ernst Keller, Quanyuan Shang
  • Patent number: 6770144
    Abstract: There is disclosed a high throughput multideposition SACVD reactor that enables the rapid thermal deposition of dielectric materials such as Si3N4, SiO2, and SiON and non-dielectric materials such as polysilicon onto a semiconductor substrate in the same chamber according to the desired sequence. Such a reactor has a processing chamber which is well adapted to single semiconductor wafer processing. The processing chamber includes an improved susceptor to support the wafer and a specific gas distribution system adapted to supply the different gases used in the deposition process and for cleaning. The improved susceptor consists of a standard carbon plate coated with a polysilicon film to protect it against said cleaning gases when they are aggressive to carbon. The present invention also encompasses a method of fabricating said improved susceptor.
    Type: Grant
    Filed: July 12, 2001
    Date of Patent: August 3, 2004
    Assignee: International Business Machines Corporation
    Inventors: Patrick Raffin, Fabrice Delarue, Jean Marc Waechter, Christophe Balsan, Joel Journe
  • Patent number: 6767429
    Abstract: In a plasma CVD apparatus for applying a film deposition process to a semiconductor wafer (W), a wafer placement stage (3) is provided at a center of a vacuum chamber (2). The placement stage (3) is mounted to a side wall (63) via a support part (6). An exhaust port (9) having a diameter equal to or smaller than a diameter of the placement stage (3) is provided under the placement stage (3). A center axis (C1) of the exhaust port (9) is displaced from a center axis of the placement stage (3) in a direction opposite to an extending direction of the support part (6), thereby achieving an efficient exhaust.
    Type: Grant
    Filed: November 9, 2001
    Date of Patent: July 27, 2004
    Assignee: Tokyo Electron Limited
    Inventor: Hideaki Amano
  • Patent number: 6764658
    Abstract: A plasma generator includes several plasma sources distributed in an array for plasma treatment of surfaces. Each plasma source includes first and second conductive electrodes. Each second electrode has a gas passage defined therein, and one of the first electrodes is situated within the gas passage in spaced relation from the second electrode, with each gas passage thereby constituting the free space for plasma generation between each pair of first and second electrodes. An insulating layer is interposed between the first and second electrodes to facilitate plasma formation via dielectric barrier discharge (DBD) in the gas passages between the first and second electrodes. The first electrodes may be provided in a monolithic structure wherein they all protrude from a common bed, and similarly the second electrodes may be monolithically formed by defining the gas passages within a common second electrode member.
    Type: Grant
    Filed: January 8, 2002
    Date of Patent: July 20, 2004
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: Ferencz S. Denes, Sorin O. Manolache, Noah Hershkowitz
  • Patent number: 6758938
    Abstract: An apparatus and method for delivering ozone to a workpiece. In one embodiment, fluid is sprayed onto a workpiece placed in an ozone-rich environment. Alternatively, ozone is mixed with the fluid prior to spraying the fluid onto the workpiece. When spraying the fluid, the invention pulses the fluid at desired rates to create a substantially uniform layer of ozone-rich fluid on the workpiece. In another embodiment, the workpiece is also slowly rotated during at least a portion of the time the layer of ozone-rich fluid is applied to the workpiece.
    Type: Grant
    Filed: August 31, 1999
    Date of Patent: July 6, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Kevin J. Torek, Jonathan C. Morgan, Paul A. Morgan
  • Publication number: 20040127067
    Abstract: A showerhead diffuser apparatus for a CVD process has a first channel region having first plural independent radially-concentric channels and individual gas supply ports from a first side of the apparatus to individual ones of the first channels, a second channel region having second plural independent radially-concentric channels and a pattern of diffusion passages from the second channels to a second side of the apparatus, and a transition region between the first channel region and the second channel region having at least one transition gas passage for communicating gas from each first channel in the first region to a corresponding second channel in the second region. The showerhead apparatus has a vacuum seal interface for mounting the showerhead apparatus to a CVD reactor chamber such that the first side and supply ports face away from the reactor, chamber and the second side and the patterns of diffusion passages from the second channels open into the reactor chamber.
    Type: Application
    Filed: September 4, 2003
    Publication date: July 1, 2004
    Inventor: Scott William Dunham
  • Publication number: 20040103844
    Abstract: A gas distributing system and a method of operating the distributing system is provided. After setting a few control valve parameters, the gas distributing system automatically adjusts the distribution of plasma gas inside a wafer processing chamber during a dry etching or a film deposition process so that uniform single wafer is produced. First, a main gas conduit is redirected into two separate gas conduit inside a gas separator. One conduit connects with a gas nozzle near the central region of an upper electrode panel distributor and the other conduit connects with a gas nozzle near the peripheral region of the upper electrode panel distributor. An O-ring between the central region and the peripheral region prevents any mixing of gas from the nozzles in these two regions. Gas distribution inside the reaction chamber can be changed to meet the need of different processing conditions by adjusting the flow control valves mounted on the two conduits.
    Type: Application
    Filed: July 17, 2003
    Publication date: June 3, 2004
    Inventors: Chung-Yen Chou, Yu-Chung Tien
  • Publication number: 20040079484
    Abstract: A gas injection system (10) is provided for a processing reactor and a method is provided for reducing transport of particulate material onto a substrate (12) during process gas start-up. The system (10) includes a two-way valve (40) having an inlet (42) connected to a mass flow controller (30), and first and second outlets (44, 46). The system (10) includes a principle gas feed line (50) connecting the first outlet (44) of the valve (40) to an inject plate (24) within a vacuum chamber (20) at a position above a substrate (12), and a start-up line (60) connecting the second outlet (46) to an orifice (62) in the chamber (20) at a position not above the substrate (12). Alternatively, the system includes a valve having an inlet connected to the mass flow controller, and a first outlet. In the alternative system, a first gas feed line connects the first outlet of the valve to the inject plate (24), and an acoustical dampening device is provided within the first gas feed line.
    Type: Application
    Filed: December 23, 2003
    Publication date: April 29, 2004
    Inventor: Eric J. Strang
  • Patent number: 6705246
    Abstract: Plasma enhanced chemical vapor deposition (PECVD) reactors and methods of effecting the same are described. In accordance with a preferred implementation, a reaction chamber includes first and second electrodes operably associated therewith. A single RF power generator is connected to an RF power splitter which splits the RF power and applies the split power to both the first and second electrodes. Preferably, power which is applied to both electrodes is in accordance with a power ratio as between electrodes which is other than a 1:1 ratio. In accordance with one preferred aspect, the reaction chamber comprises part of a parallel plate PECVD system. In accordance with another preferred aspect, the reaction chamber comprises part of an inductive coil PECVD system. The power ratio is preferably adjustable and can be varied. One manner of effecting a power ratio adjustment is to vary respective electrode surface areas.
    Type: Grant
    Filed: January 14, 2002
    Date of Patent: March 16, 2004
    Assignees: Micron Technology, Inc., Applied Materials, Inc.
    Inventors: Sujit Sharan, Gurtej S. Sandhu, Paul Smith, Mei Chang
  • Patent number: 6706138
    Abstract: Apparatus and method for processing a substrate are provided. The apparatus for processing a substrate comprises: a chamber having a first electrode; a substrate support disposed in the chamber and providing a second electrode; a high frequency power source electrically connected to either the first or the second electrode; a low frequency power source electrically connected to either the first or the second electrode; and a variable impedance element connected to one or more of the electrodes. The variable impedance element may be tuned to control a self bias voltage division between the first electrode and the second electrode. Embodiments of the invention substantially reduce erosion of the electrodes, maintain process uniformity, improve precision of the etch process for forming high aspect ratio sub-quarter-micron interconnect features, and provide an increased etch rate which reduces time and costs of production of integrated circuits.
    Type: Grant
    Filed: August 16, 2001
    Date of Patent: March 16, 2004
    Assignee: Applied Materials Inc.
    Inventors: Michael S. Barnes, John Holland, Alexander Paterson, Valentin Todorov, Farhad Moghadam
  • Publication number: 20040031565
    Abstract: A new and improved gas distribution plate for a processing chamber for substrates. The gas distribution plate is provided with multiple gas distribution openings which are larger in size in the peripheral or edge regions of the plate than are the openings in the central region of the plate. The larger openings in the peripheral or edge regions of the plate provide a greater area for gas distribution through the plate than the smaller openings in the central region of the plate in order to compensate for the normally higher rate of plasma flow through the center region of the plate.
    Type: Application
    Filed: August 13, 2002
    Publication date: February 19, 2004
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Ying-Zhong Su, Wen-Chi Wang
  • Patent number: 6684523
    Abstract: Embodiments of the invention generally provide an apparatus for removing particles from a substrate surface, wherein the apparatus includes a substrate support member configured to support a substrate thereon, and a broadband actuator in mechanical communication with the substrate support member. Additionally, an air knife assembly may be positioned proximate a perimeter of the substrate surface, and is configured to deliver a laminar stream of air across the substrate surface in order to remove the dislodged contamination particles therefrom. Alternatively, a plasma source may be used to remove dislodged particles from the area proximate the substrate surface.
    Type: Grant
    Filed: December 6, 2001
    Date of Patent: February 3, 2004
    Assignee: Applied Materials, Inc.
    Inventors: Joel Brad Bailey, Reginald W. Hunter, Steven Gianoulakis
  • Patent number: 6681716
    Abstract: A method and apparatus for depositing a uniform coating on a large area, non-planar surface using an array of multiple plasma sources. The apparatus comprises at least one array of a plurality of plasma sources for generating a plurality of plasmas, wherein each of the plurality of plasma sources has a cathode, anode, and an inlet for a non-reactive plasma source gas disposed in a plasma chamber, and at least one reactant gas injector for differentially injecting at least one reactant gas into the plurality of plasmas. The reactant gas injector and substrate are located in a deposition chamber in fluid communication with each plasma chamber. Individual adjustment of the flow of deposition precursor into each of the plasmas generated by the multiple plasma array compensates for changes in substrate processing conditions due to local variations in the working distance between the plasma source and the surface of the substrate.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: January 27, 2004
    Assignee: General Electric Company
    Inventor: Marc Schaepkens
  • Patent number: 6663715
    Abstract: A plasma CVD apparatus includes first and second electrodes, neutral gas introduction pipes, and a plasma confining electrode interposed between the first and second electrodes separating a plasma generation region and a substrate processing region. The plasma confining electrode has a hollow structure defined by an upper electrode plate, and a lower electrode plate and is connected to the neutral gas introduction pipes. A plurality of neutral gas passage holes are provided for the lower electrode plate and the gas diffusing plates to supply neutral gas into the substrate processing region. A total opening area of the plurality of neutral gas passage holes in the gas diffusing plate on a side of the upper electrode plate is smaller than that of the plurality of neutral gas passage holes in the gas diffusing plate on a side of the lower electrode plate.
    Type: Grant
    Filed: November 7, 2000
    Date of Patent: December 16, 2003
    Assignees: NEC Corporation, Anelva Corporation
    Inventors: Katsuhisa Yuda, Manabu Ikemoto
  • Patent number: 6660126
    Abstract: A lid for a semiconductor system, an exemplary embodiment of which includes a support having opposed first and second opposed surfaces. A valve is coupled to the first surface. A baffle plate is mounted to the second surface. The valve is coupled to the support to direct a flow of fluid along a path in original direction and at an injection velocity. The baffle plate is disposed in the path to disperse the flow of fluid in a plane extending transversely to the original direction. In one embodiment the valve is mounted to a W-seal that is in turn mounted to the first surface of the support.
    Type: Grant
    Filed: March 2, 2001
    Date of Patent: December 9, 2003
    Assignee: Applied Materials, Inc.
    Inventors: Anh N. Nguyen, Michael X. Yang, Ming Xi, Hua Chung, Anzhong Chang, Xiaoxiong Yuan, Siqing Lu
  • Patent number: 6656540
    Abstract: The present invention provides methods and apparatus for the formation of a thin noble metal film which can achieve a high rate of film growth, can use inexpensive raw materials, and do not allow any impurities to remain in the thin film.
    Type: Grant
    Filed: November 27, 2001
    Date of Patent: December 2, 2003
    Assignee: Mitsubishi Heavy Industries, Ltd.
    Inventors: Hitoshi Sakamoto, Toshihiko Nishimori, Saneyuki Goya, Takao Abe, Noriaki Ueda
  • Publication number: 20030213561
    Abstract: An atmospheric pressure plasma etching reactor, in one embodiment, has a table holding a wafer to be processed and which moves the wafer to be processed under at least one electrode that is mounted in close proximity to the table and defines an entry of a gas mixture, and in another embodiment, has interleaved radio frequency powered electrodes and grounded electrodes. Electrodes may have grooves having preselected widths to enhance the plasma for treatment of the wafers. With a radio-frequency voltage connected between the electrodes, and a gas mixture between the electrode and the wafer, a plasma is created between the electrode and the wafer to be processed, resulting in surface treatment, film removal or ashing of the wafer.
    Type: Application
    Filed: July 29, 2002
    Publication date: November 20, 2003
    Inventors: Gary S. Selwyn, Ivars Henins, Hans Snyder, Hans W. Herrmann
  • Publication number: 20030209323
    Abstract: The present invention discloses a production apparatus for manufacturing semiconductor device which comprises a vacuum processing chamber where film formation or etching is performed for a semiconductor wafer, a gas introducing part for introducing a process gas into the vacuum processing chamber, and a shower head for uniformly diffusing the introduced process gas, where a plate having a plurality of gas blowing holes for blowing the process gas on the semiconductor wafer are arranged and opened with uniform density is provided on the face of a shower head opposing the semiconductor wafer. Each of the gas blowing holes opened in the plate is a steeped hole having a large diameter hole part and a small diameter hole part, formed by varying the step location in response to the pressure distribution of the process gas within the shower head so as to make the amount of the gas blown from respective gas blowing holes uniform.
    Type: Application
    Filed: May 2, 2003
    Publication date: November 13, 2003
    Applicant: NEC Electronics Corporation
    Inventor: Tsuyoshi Yokogaki
  • Publication number: 20030205328
    Abstract: A plasma processing system (10) is provided, having processor chamber walls (53) and/or a gas distribution or baffle plate (54) equipped with integral cooling passages (80, 156) for reducing an operating temperature thereof during processing of a wafer (18) by the system. Cooling medium inlets (158, 82) and outlets (160, 86) are connected to the cooling passages to permit circulation of a cooling medium through the cooling passages. Preferably, the chamber walls (53) and the gas distribution or baffle plate (54) are comprised of low-alloy anodized aluminum and the cooling passages are machined directly therein. The cooling medium may be either liquid (e.g., water) or gas (e.g., helium or nitrogen). The baffle plate (54) comprises a generally planar, apertured, gas distribution central portion (74) surrounded by a flange (78), into both of which the cooling passages may extend.
    Type: Application
    Filed: April 1, 2003
    Publication date: November 6, 2003
    Inventors: David W. Kinnard, Daniel B. Richardson
  • Patent number: 6638880
    Abstract: In the chemical vapor deposition apparatus, a substrate stage for mounting a substrate is provided inside a reaction chamber of the apparatus. A source gas inlet for introducing a source gas and exhaust outlets and for exhausting the source gas are provided. Exhaust outlet valves provided for exhaust outlets are open and shut successively with time. The direction of the flow of source gas relative to the fixed substrate varies with time. The present chemical vapor deposition apparatus allows the improved evenness of film thickness, the composition ratio, and the like within the substrate surface as well as the reduction of particles of foreign substance generated inside the reaction chamber.
    Type: Grant
    Filed: October 19, 2001
    Date of Patent: October 28, 2003
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventors: Mikio Yamamuka, Takaaki Kawahara, Masayoshi Tarutani, Tsuyoshi Horikawa, Shigeru Matsuno, Takehiko Sato
  • Patent number: 6635117
    Abstract: A plasma processing system is provided, having processor integral cooling passages for reducing an operating temperature thereof during processing of a wafer by the system. Cooling medium inlets and outlets are connected to the cooling passages to permit circulation of a cooling medium through the cooling passages. The baffle plate comprises a generally planar, apertured, gas distribution central portion surrounded by a flange into both of which the cooling passages may extend. Further, the baffle plate may have a non-apertured plate overlying and covering apertures in a central portion of the baffle plate.
    Type: Grant
    Filed: April 26, 2000
    Date of Patent: October 21, 2003
    Assignee: Axcelis Technologies, Inc.
    Inventors: David W. Kinnard, Daniel B. Richardson