Electrically Coupled To A Power Supply Or Matching Circuit Patents (Class 156/345.44)
  • Patent number: 8002945
    Abstract: A method is provided in plasma processing of a workpiece for stabilizing the plasma against engineered transients in applied RF power, by modulating an unmatched low power RF generator in synchronism with the transient.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: August 23, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Steven C. Shannon, Kartik Ramaswamy, Daniel J. Hoffman, Matthew L. Miller, Kenneth S. Collins
  • Publication number: 20110186227
    Abstract: The embodiments provide structures and mechanisms for removal of etch byproducts, dielectric films and metal films on and near the substrate bevel edge, and chamber interior to avoid the accumulation of polymer byproduct and deposited films and to improve process yield. In one example, a chamber for wafer bevel edge cleaning is provided. The chamber includes a bottom electrode having a bottom electrode surface for supporting the wafer when present. Also included is a top edge electrode surrounding an insulating plate. The insulator plate is opposing the bottom electrode. The top edge electrode is electrically grounded and has a down-facing L shape. Further included in the chamber is a bottom edge electrode that is electrically grounded and spaced apart from the bottom electrode. The bottom edge electrode is disposed to encircle the bottom electrode. The bottom edge electrode is oriented to oppose the down-facing L shape of the top edge electrode.
    Type: Application
    Filed: April 12, 2011
    Publication date: August 4, 2011
    Applicant: Lam Research Corporation
    Inventors: Gregory S. Sexton, Andrew D. Bailey, III, Andras Kuthi
  • Patent number: 7988816
    Abstract: A plasma etching apparatus includes an upper electrode and a lower electrode, between which plasma of a process gas is generated to perform plasma etching on a wafer W. The apparatus further comprises a cooling ring disposed around the wafer, a correction ring disposed around the cooling ring, and a variable DC power supply directly connected to the correction ring, the DC voltage being preset to provide the correction ring with a negative bias, relative to ground potential, for attracting ions in the plasma and to increase temperature of the correction ring to compensate for a decrease in temperature of a space near the edge of the target substrate due to the cooling ring.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: August 2, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Akira Koshiishi, Masaru Sugimoto, Kunihiko Hinata, Noriyuki Kobayashi, Chishio Koshimizu, Ryuji Ohtani, Kazuo Kibi, Masashi Saito, Naoki Matsumoto, Yoshinobu Ooya, Manabu Iwata, Daisuke Yano, Yohei Yamazawa, Hidetoshi Hanaoka, Toshihiro Hayami, Hiroki Yamazaki, Manabu Sato
  • Publication number: 20110162799
    Abstract: A plasma processing apparatus includes a depressurizable processing chamber; an electrode provided in the processing chamber; and a high frequency power supply for supplying a high frequency power into the processing chamber to thereby generating a plasma. Further, the electrode includes a base formed of a dielectric material; a dielectric body buried in the base and formed of the same dielectric material as the base; and a conductive adhesive layer provided in a bonding portion between the base and the dielectric body, the conductive adhesive layer bonding together and fixing the base and the dielectric body to each other.
    Type: Application
    Filed: December 28, 2010
    Publication date: July 7, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Daisuke HAYASHI
  • Publication number: 20110162802
    Abstract: A plasma processing apparatus for performing a plasma process on a target substrate includes a process container configured to accommodate the target substrate and to reduce pressure therein. A first electrode is disposed within the process container. A supply system is configured to supply a process gas into the process container. An electric field formation system is configured to form an RF electric field within the process container so as to generate plasma of the process gas. A number of protrusions are discretely disposed on a main surface of the first electrode and protrude toward a space where the plasma is generated.
    Type: Application
    Filed: March 16, 2011
    Publication date: July 7, 2011
    Inventors: Katsuya OKUMURA, Shinji HIMORI, Kazuya NAGASEKI, Hiroki MATSUMARU, Shoichiro MATSUYAMA, Toshiki TAKAHASHI
  • Publication number: 20110155322
    Abstract: A plasma processing apparatus includes a processing chamber in which a target substrate is processed; an application electrode and a facing electrode provided to face each other in the processing chamber, a plasma generation space being formed between the application electrode and the facing electrode; and an RF power supply connected to the application electrode, an RF power being supplied from the RF power supply to the application electrode. At least one of the application electrode and the facing electrode includes a base formed of a metal, and a dielectric body inserted into the base, one or more metal plate electrodes being buried in the dielectric body.
    Type: Application
    Filed: December 28, 2010
    Publication date: June 30, 2011
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Shinji HIMORI, Daisuke Hayashi, Akitaka Shimizu
  • Patent number: 7967944
    Abstract: A workpiece is processed in a plasma reactor chamber using stabilization RF power delivered into the chamber, by determining changes in load impedance from RF parameters sensed at an RF source or bias power generator and resolving the changes in load impedance into first and second components thereof, and changing the power level of the stabilization RF power as a function one of the components of changes in load impedance.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: June 28, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Steven C. Shannon, Kartik Ramaswamy, Daniel J. Hoffman, Matthew L. Miller, Kenneth S. Collins
  • Patent number: 7969095
    Abstract: The present invention relates to a method of and arrangement for removing contaminants from a surface of a substrate by subjecting said substrate surface to an atmospheric pressure glow plasma. Said plasma is generated in a discharge space comprising a plurality of electrodes, by applying an alternating plasma energizing voltage to said electrodes causing a plasma current and a displacement current. Said plasma is stabilised by controlling said displacement current during plasma generation such that modification of properties of said substrate surface is prevented.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: June 28, 2011
    Assignee: Fuji Photo Film B.V.
    Inventors: Hindrik Willem De Vries, Eugen Aldea, Jan Bastiaan Bouwstra, Mauritius Cornelius Maria Van De Sanden
  • Publication number: 20110139751
    Abstract: The present disclosure provides for a plasma system including a plasma device coupled to a power source, an ionizable media source and a precursor source. During operation, the ionizable media source provides ionizable media and the precursor ionizable media source provides one or more chemical species, photons at specific wavelengths, as well as containing various reactive functional groups and/or components to treat the workpiece surface by working in concert for synergetic selective tissue effects. The chemical species and the ionizable gas are mixed either upstream or midstream from an ignition point of the plasma device and once mixed, are ignited therein under application of electrical energy from the power source. As a result, a plasma effluent and photon source is formed, which carries the ignited plasma feedstock and resulting mixture of reactive species to a workpiece surface to perform a predetermined reaction.
    Type: Application
    Filed: May 29, 2009
    Publication date: June 16, 2011
    Applicant: Colorado State Univeristy Research Foundation
    Inventors: Il-Gyo Koo, Cameron A. Moore, George J. Collins
  • Patent number: 7951262
    Abstract: An apparatus includes an upper electrode and a lower electrode for supporting a wafer disposed opposite each other within a process chamber. A first RF power supply configured to apply a first RF power having a relatively higher frequency, and a second RF power supply configured to apply a second RF power having a relatively lower frequency is connected to the lower electrode. A variable DC power supply is connected to the upper electrode. A process gas is supplied into the process chamber to generate plasma of the process gas so as to perform plasma etching.
    Type: Grant
    Filed: June 21, 2005
    Date of Patent: May 31, 2011
    Assignee: Tokyo Electron Limited
    Inventors: Akira Koshiishi, Masaru Sugimoto, Kunihiko Hinata, Noriyuki Kobayashi, Chishio Koshimizu, Ryuji Ohtani, Kazuo Kibi, Masashi Saito, Naoki Matsumoto, Manabu Iwata, Daisuke Yano, Yohei Yamazawa, Hidetoshi Hanaoka, Toshihiro Hayami, Hiroki Yamazaki, Manabu Sato
  • Patent number: 7951261
    Abstract: The present invention relates to a plasma etching apparatus. In the apparatus, potential difference is applied between a substrate support with a substrate seated thereon and a electrode surrounding an edge region of the substrate, and a distance between the substrate and the electrode is set to 3 mm or less so as to locally generate plasma in an area between the substrate and the electrode, thereby removing particles and a thin film in the edge region of the substrate.
    Type: Grant
    Filed: August 3, 2006
    Date of Patent: May 31, 2011
    Assignee: Jusung Engineering Co. Ltd.
    Inventor: Bu-Il Jeon
  • Patent number: 7942112
    Abstract: A system and method for preventing formation of a plasma-inhibiting substance within a plasma chamber is provided. In one embodiment, an apparatus that includes a barrier component configured to be disposed within a plasma chamber. The barrier component includes a wall that defines a plasma formation region where a chemically-reducing species is formed from a fluid. A portion of the wall is formed of a substance that is substantially inert to the chemically-reducing species. The wall prevents the chemically-reducing species from interacting with an inner surface of the plasma chamber to form a conductive substance. The barrier component also includes an opening in fluid communication with the plasma formation region. The fluid is introduced into the plasma formation region via the opening.
    Type: Grant
    Filed: December 4, 2006
    Date of Patent: May 17, 2011
    Assignee: Advanced Energy Industries, Inc.
    Inventors: Fernando Gustavo Tomasel, Justin Mauck, Andrew Shabalin, Denis Shaw, Juan Jose Gonzalez
  • Publication number: 20110088849
    Abstract: A plasma processing apparatus, comprising: a reaction chamber; a gas inlet portion that introduces a reactant gas into the reaction chamber; an exhaust portion that exhausts the reactant gas from said reaction chamber; at least three discharge portions respectively made up of first electrode and second electrode pairs, a first electrode and a second electrode constituting each one of the first electrode and second electrode pairs being disposed to oppose to each other inside said reaction chamber, so as to cause a plasma discharge in the reactant gas; a support portion that supports and parallels the first electrode and second electrode pairs in one of a horizontal manner and a vertical manner; and a power supply portion that supplies power to all of said discharge portions, wherein said power supply portion includes a high frequency generator and an amplifier that amplifies high frequency power from the high frequency generator to be supplied to the first electrodes, and a first electrode of one discharge
    Type: Application
    Filed: May 14, 2009
    Publication date: April 21, 2011
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Katsushi Kishimoto, Yusuke Fukuoka
  • Publication number: 20110089142
    Abstract: Method and apparatus for treatment of a substrate surface (1) using an atmospheric pressure plasma. The method comprises providing an atmospheric pressure plasma in a treatment space (5) between a first electrode (2) and a second electrode (3), providing a substrate (1) in contact with the first electrode (2) in the treatment space (5), and applying a plasma generating power to the first and second electrode (2, 3). The first electrode (2) has a predefined structure of insulating areas (7) and conductive areas (8) for plasma treatment of surface areas of the substrate (1) corresponding to the areas in contact with the conductive areas (8) of the first electrode (2).
    Type: Application
    Filed: February 19, 2009
    Publication date: April 21, 2011
    Inventors: Bruno Alexander Korngold, Hindrik Willem De Vries, Eugen Aldea
  • Patent number: 7927455
    Abstract: A plasma processing apparatus including a sealable chamber that is sealable, a gas supply section that supplies a reactive material gas into the chamber, and a plurality of cathode and anode electrode pairs provided within the chamber, connected to an external power supply, and producing plasma discharges through the material gas, respectively, wherein the plurality of cathode and anode electrode pairs are provided at a distance from one another at which the plasma discharges are prevented from interfering with one another.
    Type: Grant
    Filed: October 19, 2005
    Date of Patent: April 19, 2011
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Katsushi Kishimoto, Yuhsuke Hukuoka
  • Patent number: 7922880
    Abstract: Local plasma density, e.g., the plasma density in the vicinity of the substrate, is increased by providing an ion extractor configured to transfer ions and electrons from a first region of magnetically confined plasma (typically a region of higher density plasma) to a second region of plasma (typically a region of lower density plasma). The second region of plasma is preferably also magnetically shaped or confined and resides between the first region of plasma and the substrate. A positively biased conductive member positioned proximate the second region of plasma serves as an ion extractor. A positive bias of about 50-300 V is applied to the ion extractor causing electrons and subsequently ions to be transferred from the first region of plasma to the vicinity of the substrate, thereby forming higher density plasma. Provided methods and apparatus are used for deposition and resputtering.
    Type: Grant
    Filed: May 24, 2007
    Date of Patent: April 12, 2011
    Assignee: Novellus Systems, Inc.
    Inventors: Anshu A. Pradhan, Douglas B. Hayden, Ronald L. Kinder, Alexander Dulkin
  • Patent number: 7922862
    Abstract: A plasma processing apparatus for performing a plasma process on a target substrate includes a process container configured to accommodate the target substrate and to reduce pressure therein. A first electrode is disposed within the process container. A supply system is configured to supply a process gas into the process container. An electric field formation system is configured to form an RF electric field within the process container so as to generate plasma of the process gas. A number of protrusions are discretely disposed on a main surface of the first electrode and protrude toward a space where the plasma is generated.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: April 12, 2011
    Assignees: Octec Inc., Tokyo Electron Limited
    Inventors: Katsuya Okumura, Shinji Himori, Kazuya Nagaseki, Hiroki Matsumaru, Shoichiro Matsuyama, Toshiki Takahashi
  • Patent number: 7900580
    Abstract: A substrate processing apparatus comprises a reaction chamber which is to accommodate stacked substrates, a gas introducing portion, and a buffer chamber, wherein the gas introducing portion is provided along a stacking direction of the substrates, and introduces substrate processing gas into the buffer chamber, the buffer chamber includes a plurality of gas-supply openings provided along the stacking direction of the substrates, and the processing gas introduced from the gas introducing portion is supplied from the gas-supply openings to the reaction chamber.
    Type: Grant
    Filed: October 31, 2007
    Date of Patent: March 8, 2011
    Assignee: Hitachi Kokusai Electric Inc.
    Inventors: Tadashi Kontani, Kazuyuki Toyoda, Taketoshi Sato, Toru Kagaya, Nobuhito Shima, Nobuo Ishimaru, Masanori Sakai, Kazuyuki Okuda, Yasushi Yagi, Seiji Watanabe, Yasuo Kunii
  • Patent number: 7901540
    Abstract: The present invention generally relates to a method and apparatus to produce and apply a variety of surface cleaning and modification spray treatments. More specifically, the present invention provides the simultaneous steps of selectively removing one or more unwanted surface contaminants, including extremely hard coatings, exposing a native clean surface layer and modifying said exposed and cleaned native substrate surface layer to energetic radicals and radiation to improve adhesion, wettability or coatability. Reactive species in combination with non-reactive, but chemically or physically active, species provide a reaction control and surface treatment environment by which contaminants and surface interlayers are oxidatively, physically and/or chemically removed or modified to prepare an underlying substrate surface for subsequent bonding, deposition, coating and curing operations. Substrates treated in accordance with the present invention have cleaner and higher surface free energy surfaces.
    Type: Grant
    Filed: August 18, 2006
    Date of Patent: March 8, 2011
    Inventor: David P. Jackson
  • Publication number: 20110042007
    Abstract: In the bevel etching apparatus relating to the present invention, a substrate is inserted between electrically connected electrodes. A high-frequency power source is connected to the electrodes, and ground potential is applied to a support unit that supports the substrate. Gas (atmosphere) is supplied to the gap between the electrodes and the application of the high-frequency electric power to the electrodes causes the generation of atmospheric-pressure glow discharge between the electrode and the substrate. Bevel etching is performed by rotating the substrate along the circumferential direction in this condition. According to this construction, the bevel etching can be simultaneously performed to the front surface, the rear surface and the side of the substrate without causing any configuration change in the substrate.
    Type: Application
    Filed: November 4, 2010
    Publication date: February 24, 2011
    Applicant: PANASONIC CORPORATION
    Inventor: Shin-ichi IMAI
  • Patent number: 7886690
    Abstract: A plasma source is described. The source includes a reactive impedance element formed from a plurality of electrodes. By providing such a plurality of electrodes and powering adjacent electrodes out of phase with one another, it is possible to improve the characteristics of the plasma generated.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: February 15, 2011
    Assignee: Dublin City University
    Inventor: Albert Rogers Ellingboe
  • Patent number: 7883601
    Abstract: An apparatus for controlling a plasma etching process includes plasma control structure that can vary a size of a plasma flow passage, vary a speed of plasma flowing through the plasma flow passage, vary plasma concentration flowing through the plasma flow passage, or a combination thereof.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: February 8, 2011
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Shih Ming Chang, Chi-Lun Lu
  • Patent number: 7883600
    Abstract: An RF supply system is to be connected to an RF electrode disposed outside or inside a process chamber to assist a plasma process performed in the process chamber. This system includes an RF power supply, a matching unit, and an impedance converter. The RF power supply is configured to supply an RF power for plasma generation to the electrode through a transmission path. The matching unit is disposed on the transmission path between the RF power supply and the electrode, and configured to match a load impedance viewing from the RF power supply with an impedance of the RF power supply side. The impedance converter is disposed on the transmission path between the matching unit and the electrode, and configured to convert a load impedance viewing from the matching unit to an impedance higher than an actual impedance on the electrode side.
    Type: Grant
    Filed: November 1, 2005
    Date of Patent: February 8, 2011
    Assignee: Tokyo Electron Limited
    Inventor: Kenji Sato
  • Patent number: 7879185
    Abstract: A dual frequency matching circuit for plasma enhanced semiconductor processing chambers having dual frequency cathodes is provided. The matching circuit includes two matching circuits with variable shunts combined to a common output. The matching circuit balances the load of the independent RF sources to that of the plasma in the processing chamber during operation.
    Type: Grant
    Filed: April 12, 2004
    Date of Patent: February 1, 2011
    Assignee: Applied Materials, Inc.
    Inventors: Steven C. Shannon, John Holland
  • Publication number: 20110005681
    Abstract: Apparatus and method for plasma-based processing well suited for deposition, etching, or treatment of semiconductor, conductor or insulating films. Plasma generating units include one or more elongated electrodes on the processing side of a substrate and a neutral electrode proximate the opposite side of the substrate. Gases may be injected proximate a powered electrode which break down electrically and produce activated species that flow toward the substrate area. This gas then flows into an extended process region between powered electrodes and substrate, providing controlled and continuous reactivity with the substrate at high rates with efficient utilization of reactant feedstock. Gases are exhausted via passages between powered electrodes or electrode and divider.
    Type: Application
    Filed: July 8, 2010
    Publication date: January 13, 2011
    Inventors: Stephen Edward Savas, Carl Galewski, Allan B. Wiesnoski, Sai Mantripragada, Sooyun Joh
  • Publication number: 20110005682
    Abstract: Apparatus and method for plasma-based processing well suited for deposition, etching, or treatment of semiconductor, conductor or insulating films. Plasma generating units include one or more elongated electrodes on the processing side of a substrate and a neutral electrode proximate the opposite side of the substrate. Gases may be injected proximate a powered electrode which break down electrically and produce activated species that flow toward the substrate area. This gas then flows into an extended process region between powered electrodes and substrate, providing controlled and continuous reactivity with the substrate at high rates with efficient utilization of reactant feedstock. Gases are exhausted via passages between powered electrodes or electrode and divider.
    Type: Application
    Filed: July 8, 2010
    Publication date: January 13, 2011
    Inventors: Stephen Edward Savas, Carl Galewski, Allan B. Wiesnoski, Sai Mantripragada, Sooyun Joh
  • Publication number: 20100326601
    Abstract: In the plasma processing apparatus of the present invention, a first electrode (21) for connecting a high frequency electric power source (40) in a chamber is arranged to be opposed to a second electrode (5). A substrate (W) to be processed is placed between the electrodes. There is provided a harmonic absorbing member (51) for being able to absorb harmonics of the high frequency electric power source (40) so as to come in contact with a peripheral portion or circumference of a face of the first electrode 21, which is opposite the second electrode (5). The harmonic absorbing member absorbs the reflected harmonic before the harmonic returns to the high frequency electric power source. By absorbing the harmonic in this manner, the standing wave due to the harmonic will be effectively prevented from being generated, and the density of plasma is made even.
    Type: Application
    Filed: September 10, 2010
    Publication date: December 30, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Akira Koshiishi, Keizo Hirose
  • Patent number: 7850819
    Abstract: The invention relates to a plasma reactor with high productivity for surface coating or modification of objects and/or substrates by plasma processes in a processing chamber, preferably as vacuum processes at reduced pressure, having an entrance lock to the processing chamber and an exit lock. The invention is to create a plasma reactor of high productivity, which, with uniformly high productivity, will make possible a rapid simple and selective cleaning of the plasma sources and adjacent parts of the processing chamber. According to the invention, two plasma sources (1, 2) are provided, each alternately couplable to a reaction chamber (7) or a re-etching chamber (8). The plasma sources (1, 2) are fixed for this purpose to an alternating means (6) in such manner that the plasma sources (1, 2) are positionable by a rotatory motion of the alternating means (6) in the reaction chamber (7) or the re-etching chamber (8).
    Type: Grant
    Filed: April 18, 2005
    Date of Patent: December 14, 2010
    Assignee: Centrotherm Photovoltaics AG
    Inventors: Harald Wanka, Johann Georg Reichart, Hans-Peter Voelk
  • Patent number: 7845309
    Abstract: An apparatus for processing a substrate with a plasma. The apparatus includes first and second electrodes positioned with a spaced apart relationship. A separating ring has a vacuum-tight engagement with confronting surfaces of the first electrode and the second electrode to define an evacuatable processing region therebetween. Communicating with the processing region is a process gas port for introducing a process gas to the processing region. The processing region may be evacuated through a vacuum port defined in one of the first and second electrodes to a pressure suitable for exciting a plasma from the process gas in the processing region when the first and second electrodes are powered.
    Type: Grant
    Filed: July 13, 2004
    Date of Patent: December 7, 2010
    Assignee: Nordson Corporation
    Inventors: Robert S. Condrashoff, James P. Fazio, James D. Getty, James S. Tyler
  • Publication number: 20100300622
    Abstract: A plasma processing apparatus includes a processing chamber the inside of which is maintained in a vacuum; a mounting table configured to mount a target substrate and serve as a lower electrode in the processing chamber; a circular ring-shaped member provided at the mounting table so as to surround a peripheral portion of the target substrate; an upper electrode arranged to face the lower electrode thereabove; and a power feed unit for supplying a high frequency power to the mounting table. The apparatus performs a plasma process on the target substrate by plasma generated in the processing chamber. The circular ring-shaped member includes at least one ring-shaped groove configured to adjust an electric field distribution to a desired distribution in a plasma generation space, and the groove is formed in a surface of the circular ring-shaped member and the surface is on an opposite side to the plasma generation space.
    Type: Application
    Filed: May 27, 2010
    Publication date: December 2, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Koichi Yatsuda, Hideki Mizuno
  • Patent number: 7827931
    Abstract: A plasma processor electrode includes a support member disposed to face to an electrode that holds a substrate to be treated, an electrode plate fixed to the support member and equipped with gas injection holes and a screw hole open and facing to the support member to supply a processing gas through the gas discharge hole into a processing space formed between the electrode plate and the electrode to generate a plasma in the processing space, and a fastening unit that clamps the electrode plate on the support member by fastening the electrode plate to the support member with a screw driven into the screw hole from the support member.
    Type: Grant
    Filed: March 27, 2003
    Date of Patent: November 9, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Keiichi Matsushima, Takashi Suzuki, Hajime Furuya
  • Patent number: 7829469
    Abstract: A method and system for adjusting and controlling the plasma uniformity in a plasma processing system is described. The plasma processing system includes an electron source electrode to which direct current (DC) power is coupled in order to generate a ballistic electron beam during the etching of the substrate. A ring electrode, provided about a periphery of the substrate and opposite the electron source electrode, is utilized to create a ring hollow cathode plasma to affect changes in the distribution of plasma density.
    Type: Grant
    Filed: December 11, 2006
    Date of Patent: November 9, 2010
    Assignee: Tokyo Electron Limited
    Inventors: Lee Chen, Hiromasa Mochiki
  • Publication number: 20100275950
    Abstract: The invention relates to a device and a method for the treatment of surfaces with a plasma produced under atmospheric pressure.
    Type: Application
    Filed: December 9, 2008
    Publication date: November 4, 2010
    Inventors: Helmut Mack, Tobias Austermann, Martin Ebner, Michael Leck, Wolfgang Viöl
  • Patent number: 7824520
    Abstract: In the case of generating plasma under atmospheric pressure, the particle generated due to generation of high-density plasma is to be a cause of a defect such as a point defect or a line defect of a display portion in a display device. The present invention is offered in view of the above situation, and provides a plasma treatment apparatus for suppressing generation of a particle. According to the present invention, plasma is generated in a limited minimum region to be treated by a plasma treatment over a substrate to be treated. Generation of a particle is suppressed to a minimum by providing a plurality of plasma generation units generating minimum plasma having a similar size as the limited minimum region, changing a relative position of the plurality of plasma generation units and the substrate to be treated, and performing a plasma treatment to a limited predetermined region.
    Type: Grant
    Filed: March 24, 2004
    Date of Patent: November 2, 2010
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventor: Osamu Nakamura
  • Patent number: 7819081
    Abstract: In a plasma film forming apparatus, two first electrodes 51 connected to a power source 4 and two grounded second electrodes 52 are arranged in the order of the second electrode 52, the first electrode 51, the first electrode 51 and the second electrode 52. A first flow passage 50a formed between the central first electrodes 51 allows a raw material gas (first gas) for being formed into a film to pass therethrough. A plasma discharge space 50b of a second flow passage formed between the first and second electrodes 51, 52 on the both sides allows an excitable gas (second gas) to pass therethrough, which excitable gas is exited by plasma such that the raw material can be formed into a film, but that the excitable gas itself is merely excited but not formed into a film. Those gases are converged at a crossing part 20c between the first and second flow passages and blown off via a common blowoff passage 25a.
    Type: Grant
    Filed: October 7, 2003
    Date of Patent: October 26, 2010
    Assignee: Sekisui Chemical Co., Ltd.
    Inventors: Shinichi Kawasaki, Sumio Nakatake, Hiroya Kitahata, Setsuo Nakajima, Yuji Eguchi, Junichiro Anzai, Yoshinori Nakano
  • Patent number: 7812278
    Abstract: In one implementation, a method is provided for testing a plasma reactor multi-frequency matching network comprised of multiple matching networks, each of the multiple matching networks having an associated RF power source and being tunable within a tunespace. The method includes providing a multi-frequency dynamic dummy load having a frequency response within the tunespace of each of the multiple matching networks at an operating frequency of its associated RF power source. The method further includes characterizing a performance of the multi-frequency matching network based on a response of the multi-frequency matching network while simultaneously operating at multiple frequencies.
    Type: Grant
    Filed: July 15, 2007
    Date of Patent: October 12, 2010
    Assignee: Applied Materials, Inc.
    Inventor: Steven C. Shannon
  • Patent number: 7811410
    Abstract: A complex waveform frequency matching device is disclosed. In various embodiments, the matching device comprises a plurality of radio frequency generators coupled in parallel with one another. Each subsequent one of the plurality of radio frequency generators is configured to produce a harmonic frequency related by an integral multiple to a frequency produced by any lower-frequency producing radio frequency generator, thereby generating a complex waveform. A plurality of frequency splitter circuits is coupled to an output of the plurality of radio frequency generators, and each of a plurality of matching networks has an input coupled to an output of one of the plurality of frequency splitter circuits and an output configured to be coupled to a plasma chamber.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: October 12, 2010
    Assignee: Lam Research Corporation
    Inventors: Andres Leming, Andras Kuthi, Thomas Anderson
  • Publication number: 20100252198
    Abstract: In a plasma processing apparatus in which a radio-frequency power from a radio-frequency power source is supplied to an electrode disposed in a process vessel, to thereby generate, in the process vessel, plasma with which a substrate is processed, a chemical component emitting member which is caused to emit a chemical component necessary for processing the substrate into the process vessel by entrance of ions in the plasma generated in the process vessel is provided in the process vessel in an exposed state, and an impedance varying circuit varying impedance on the chemical component emitting member side of the plasma generated in the process vessel to frequency of the radio-frequency power source is connected to the chemical component emitting member.
    Type: Application
    Filed: June 16, 2010
    Publication date: October 7, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Yohei Yamazawa, Noriaki Imai
  • Patent number: 7806985
    Abstract: An improvement has been made in contact states between a rotating electrode arranged inside a vacuum chamber and a power supply mechanism which touches the rotating electrode to supply electric power thereto. A vacuum device is provided with a vacuum chamber, a rotating electrode arranged inside and electrically insulated from the vacuum chamber, and a power supply mechanism which touches the rotating electrode to supply electric power thereto, wherein the rotating electrode has an annular shape and horizontally rotates with respect to the center axis of the annular shape, and the power supply mechanism is composed of electrode members, and the electrode member and the rotating electrode come into contact with each other at at least one contact surface.
    Type: Grant
    Filed: January 24, 2005
    Date of Patent: October 5, 2010
    Assignee: Showa Shinku Co., Ltd.
    Inventors: Masayuki Takimoto, Hiroyuki Komuro, Yutaka Fuse, Tatsumi Abe, Kazuhito Aonahata
  • Publication number: 20100243609
    Abstract: Uniformity of plasma density distribution and process characteristics is improved by greatly improving performance and the degree of freedom for controlling the plasma density distribution. A capacitively coupled plasma processing apparatus includes a plasma density distribution controller, installed in a chamber lower room, for controlling plasma density distribution on a susceptor. The plasma density distribution controller includes a conductive plate (first conductor) which is placed under a rear surface of the susceptor at a certain position to face the susceptor and a conductive rod (second conductor) which supports the conductive plate upward and is electrically grounded. An upper end (first connecting portion) of the conductive rod is fixed to a certain portion of a bottom surface of the conductive plate, and a lower end (second connecting portion) of the conductive rod is fixed to or is in contact with a bottom wall of a chamber.
    Type: Application
    Filed: March 29, 2010
    Publication date: September 30, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Yohei Yamazawa, Naohiko Okunishi, Hironobu Misawa, Hidehito Soeta
  • Publication number: 20100243606
    Abstract: A plasma processing apparatus includes a vacuum evacuable processing chamber; a lower electrode for mounting a target substrate in the processing chamber; a focus ring attached to the lower electrode to cover at least a portion of a peripheral portion of the lower electrode; an upper electrode disposed to face the lower electrode in parallel in the processing chamber; a processing gas supply unit for supplying a processing gas to a processing space; and a radio frequency (RF) power supply for outputting an RF power. Further, the plasma processing apparatus includes a plasma generating RF power supply section for supplying the RF power to a first load for generating a plasma of the processing gas; and a focus ring heating RF power supply section for supplying the RF power to a second load for heating the focus ring.
    Type: Application
    Filed: March 26, 2010
    Publication date: September 30, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Chishio KOSHIMIZU, Yohei Yamazawa
  • Patent number: 7800029
    Abstract: A heating device includes a high-frequency electrode embedded substantially in parallel with a heating surface of a ceramics base in the vicinity of the heating surface. A conducting hole toward this high-frequency electrode is formed in a back face of the ceramics base. This high-frequency electrode has a trapezoidal cone-like concave section toward the conducting hole at a region opposed to the conducting hole.
    Type: Grant
    Filed: March 19, 2007
    Date of Patent: September 21, 2010
    Assignee: NGK Insulators, Ltd.
    Inventor: Masao Nishioka
  • Publication number: 20100224323
    Abstract: A plasma processing apparatus includes a processing chamber that plasma processes a target object therein, first and second electrodes that are provided in the processing chamber to face each other and have a processing space therebetween, and a high frequency power source that is connected to at least one of the first and second electrodes to supply high frequency power to the processing chamber. At least one of the first and second electrodes includes a base formed of a metal, a dielectric material provided at a central portion of a plasma side of the base, and a first resistor provided between the dielectric material and plasma, and formed of a metal with a predetermined pattern.
    Type: Application
    Filed: March 5, 2010
    Publication date: September 9, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventor: Shinji HIMORI
  • Publication number: 20100224325
    Abstract: A plasma processing apparatus includes a processing chamber in which a target object is processed by a plasma, a first and a second electrode that are provided in the processing chamber to face each other and have a processing space therebetween, and a high frequency power source that is connected to at least one of the first and the second electrode to supply a high frequency power to the processing chamber. And at least one of the first and the second electrode includes a base formed of a plate-shaped dielectric material and a resistor formed of a metal and provided between the base and the plasma.
    Type: Application
    Filed: March 5, 2010
    Publication date: September 9, 2010
    Applicant: TOKYO ELECTRON LIMITED
    Inventors: Shinji HIMORI, Daisuke Hayashi
  • Patent number: 7789992
    Abstract: A neutral beam etching device for separating and accelerating a plasma is provided. The device includes a first chamber having a first opening formed at one side thereof; a second chamber having a second opening formed at one side thereof and being disposed inside the first chamber to form a plasma generation area; a first channel fluidly communicating the first opening with the plasma generation area; a second channel fluidly communicating the second opening with the plasma generation area; a coil disposed on an outer surface of the first chamber and which generates a magnetic field to generate a plasma in the plasma generation area; and an acceleration part disposed within the first and second chambers and configured to separate the plasma into a positive ion and an electron, accelerate the positive ion and the electron, and discharge the positive ion and electron through the first and the second channels.
    Type: Grant
    Filed: May 1, 2006
    Date of Patent: September 7, 2010
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Won-tae Lee
  • Patent number: 7791281
    Abstract: Method and apparatus for generating and sustaining a glow discharge plasma in a plasma discharge space comprising at least two spaced electrodes. The method and apparatus are arranged for performing the steps of introducing in the discharge space a gas or gas mixture under atmospheric pressure conditions, energizing the electrodes by applying an AC energizing voltage (Va) to the electrodes, and controlling the energizing voltage (Va) such that at plasma generation a sharp relative decrease of displacement current is provided.
    Type: Grant
    Filed: December 22, 2004
    Date of Patent: September 7, 2010
    Assignee: Fuji Photo Film B.V.
    Inventors: Eugen Aldea, Jan Bastiaan Bouwstra, Mauritius Cornelius Maria Van De Sanden, Hindrik Willem De Vries
  • Patent number: 7780814
    Abstract: A plasma reactor for processing a workpiece in a reactor chamber having a wafer support pedestal within the chamber and process gas injection apparatus, an RF bias power generator coupled to the wafer support pedestal and having a bias frequency, a source power applicator, an RF source power generator having a source frequency and a coaxial cable coupled between the RF source power generator and the source power applicator includes a filter connected between the coaxial cable and the source power applicator that enhances uniformity of etch rate across the wafer and from reactor to reactor. The filter includes a set of reflection circuits coupled between the source power applicator and a ground potential and being tuned to, respectively, the bias frequency and intermodulation products of the bias frequency and the source frequency.
    Type: Grant
    Filed: July 8, 2005
    Date of Patent: August 24, 2010
    Assignee: Applied Materials, Inc.
    Inventors: John A. Pipitone, Kenneth D. Smyth, Mei Po (Mabel) Yeung
  • Patent number: 7771562
    Abstract: An integrated capacitively-coupled and inductively-coupled device is provided for plasma etching that may be used as a primary or secondary source for generating a plasma to etch substrates. The device is practical for processing advanced semiconductor devices and integrated circuits that require uniform and dense plasma. The invention may be embodied in an apparatus that contains a substrate support, typically including an electrostatic chuck, that controls ion energy by capacitively coupling RF power to the plasma and generating voltage bias on the wafer relative to the plasma potential. An etching electrode is provided opposite the substrate support. An integrated inductive coupling element is provided at the perimeter of the etching electrode that increases plasma density at the perimeter of the wafer, compensating for the radial loss of charged particles toward chamber walls, to produce uniform plasma density above the processed wafer.
    Type: Grant
    Filed: November 27, 2006
    Date of Patent: August 10, 2010
    Assignee: Tokyo Electron Limited
    Inventor: Jozef Brcka
  • Patent number: 7764140
    Abstract: A system and method are provided for delivering power to a dynamic load. The system includes a power supply providing DC power having a substantially constant power open loop response, a power amplifier for converting the DC power to RF power, a sensor for measuring voltage, current and phase angle between voltage and current vectors associated with the RF power, an electrically controllable impedance matching system to modify the impedance of the power amplifier to at least a substantially matched impedance of a dynamic load, and a controller for controlling the electrically controllable impedance matching system. The system further includes a sensor calibration measuring module for determining power delivered by the power amplifier, an electronic matching system calibration module for determining power delivered to a dynamic load, and a power dissipation module for calculating power dissipated in the electrically controllable impedance matching system.
    Type: Grant
    Filed: October 31, 2006
    Date of Patent: July 27, 2010
    Assignee: MKS Instruments, Inc.
    Inventors: Siddharth P. Nagarkatti, Michael Kishinevsky, Ali Shajii, Timothy E. Kalvaitis, William S. McKinney, Jr., Daniel Goodman, William M. Holber, John A. Smith, Ilya Bystryak
  • Patent number: 7750575
    Abstract: The present invention relates to a plasma source. The plasma source includes a cathode assembly having an inner cathode section and an outer cathode section. An anode is positioned adjacent to the outer cathode section so as to form a gap there between. A first power supply generates a first electric field across the gap between the anode and the outer cathode section. The first electric field ionizes a volume of feed gas that is located in the gap, thereby generating an initial plasma. A second power supply generates a second electric field proximate to the inner cathode section. The second electric field super-ionizes the initial plasma to generate a plasma comprising a higher density of ions than the initial plasma.
    Type: Grant
    Filed: October 3, 2008
    Date of Patent: July 6, 2010
    Assignee: Zond, Inc.
    Inventor: Roman Chistyakov