Abstract: A system and process for the preparation of high quality gasoline through recombination of catalytic hydrocarbon includes fractionator and extractor. The upper part of the fractionator is equipped with light petrol pipeline, the lower part of the fractionator is equipped with heavy petrol pipeline, the middle part of the fractionator is equipped with medium petrol pipeline. The medium petrol pipeline is connected with a medium petrol extractor, the upper part of the medium petrol extractor is connected with the medium petrol raffinate oil hydrogenation unit through the pipeline, the lower part of the medium petrol extractor is connected with the medium petrol aromatic hydrocarbon hydrogenation unit through the pipeline.
Abstract: Various embodiments described herein provide methods and apparatus for producing purified water from sea water or some other salty or brackish water source by using brackish concentrate mixed with salty water. The various embodiments also provide methods and apparatus for the treatment of toxicity of brackish concentrate, which brackish concentrate exhibits on aquatic life inhabiting the area of discharge of the brackish concentrate, as well as a method for environmentally safe disposal of brackish concentrate.
Abstract: The invention relates to a method and an apparatus for dewatering mixture of ethanol and water. The method comprises steps for feeding mixture of ethanol and water (1) into an evaporator (2), evaporating said mixture of ethanol and water (1) and feeding a stream of vaporized mixture of ethanol and water (3) to a vapor recompression unit (4), pressurizing vaporized mixture of ethanol and water (3) in the vapor recompression unit (4) and feeding a stream of pressurized vaporized mixture of ethanol and water (5) to a membrane unit (6), and dividing said stream of pressurized mixture of ethanol and water (5) in to a stream of mixture of ethanol and water (8) and into a stream of dewatered mixture of ethanol and water (7).
Abstract: Disclosed is an organic material disposal method comprising a step for thermally decomposing a raw organic material and a gas treatment step for treating a gas generated in the preceding step, wherein the thermal decomposition step comprises a substep of decomposing the raw organic material into a carbide and a gaseous component, and the gas treatment step comprises the following substeps (1) to (5): (1) catalytically oxidizing the gaseous component produced in the thermal decomposition step; (2) neutralizing/washing the oxidized gas; (3) subjecting a waste water produced in the neutralization/washing step to the solid-liquid separation; (4) further thermally decomposing a solid component separated in the solid-liquid separation step together with the raw organic material in the thermal decomposition step; and (5) re-using a liquid component separated in the solid-liquid separation step in the solid-liquid separation step and/or the neutralization/washing step.
Type:
Grant
Filed:
December 28, 2007
Date of Patent:
February 19, 2013
Assignee:
N.M.G. Environmental Development Co., Ltd
Abstract: A desalinization plant and process utilizes solar radiation to produce steam from seawater which is then used to generate freshwater and electricity.
Abstract: A desalinization plant and process utilizes solar radiation to produce steam from seawater which is then used to generate freshwater and electricity.
Abstract: Various embodiments described herein provide methods and apparatus for producing purified water from sea water or some other salty or brackish water source by using brackish concentrate mixed with salty water. The various embodiments also provide methods and apparatus for the treatment of toxicity of brackish concentrate, which brackish concentrate exhibits on aquatic life inhabiting the area of discharge of the brackish concentrate, as well as a method for environmentally safe disposal of brackish concentrate.
Abstract: An in situ system used for treating an oil and gas well drilling fluid and treating water after a well is completed. The system includes a fluid treatment unit used in a reserve pit and a water treatment unit disposed next to the pit. The fluid treatment unit includes a floating electrocoagulation unit in the reserve pit for destabilizing contaminates in the fluid and dropping out stable precipitates. The clear treated fluid is then pumped, using a submersible pump, to the water treatment unit. The water treatment includes a number of components including a pre-filter, an activated carbon filter and a heat exchanger for first treating the fluid. The filtered and heated fluid is then piped into a reverse osmosis unit for removing salt and any remaining minerals found therein. From the reverse osmosis unit, approximately 70 to 80% of the filtered water is cleaned and piped to a clean water storage tank for reuse.
Abstract: A top temperature T1 of a distillation tower 1 is held below a liquefying temperature of a light fraction by returning a part of an exhaust gas W, which is cooled by a condenser 5, to the upper zone of the distillation tower 1. A bottom temperature T2 is raised up to 300° C. at highest by returning a part of a liquid product P from a re-boiler 3 to a lower zone of the distillation tower 1. When a liquid hydrocarbon L comes in countercurrent contact with a stripping gas G inside the distillation tower 1 with the temperature profile that an inner temperature gradually falls down along an upward direction, mercury is efficiently transferred from the liquid L to a vapor phase without effusion of the light fraction in accompaniment with the exhaust gas W.
Abstract: An improved process for separating a hydrocarbon bearing feed gas containing methane and lighter, C2 (ethylene and/or ethane), and heavier components into a fraction containing predominantly methane and lighter components and a fraction containing predominantly C2 and heavier hydrocarbon components including the steps of cooling and partially condensing and delivering the feed stream to a separator to provide a first residue vapor and a first liquid containing C2, directing a first part of the first liquid containing C2 into a heavy-ends fractionation column wherein the liquid is separated into a second hydrocarbon bearing vapor residue and a second liquid product containing C2; further cooling the second part of the first liquid containing C2 and partially condensing the second hydrocarbon bearing vapor residue; combining the cooled second part of the first liquid and partially condensed second hydrocarbon-bearing vapor residue and directing them to a second separator effecting a third residue and a third li
Abstract: Water processing method, in particular for producing fresh water from salt water by membrane distillation. In comparison with previously known methods, a significant reduction in investment cost and operating cost can be achieved by the combination of the following measures: The water to be processed is kept in a supply chamber the wall of which is formed at least in part by a hydrophobic membrane being permeable for water vapor. A hydrophilic membrane having a greater thickness in comparison with the hydrophobic membrane and a lower thermal conductivity per unit area runs in parallel with the hydrophobic membrane. By the pumping action a vapor pressure difference is produced between the water to be processed and the fresh water so that the membrane distillation is driven by the vapor pressure difference resulting from the pumping action, the water condensing in the pores of the hydrophilic membrane.
Type:
Grant
Filed:
April 24, 2004
Date of Patent:
February 10, 2009
Assignee:
Clean Water Gesellschaft Fuer Wasseraufbereitungstechnik mbH
Inventors:
Guenther Hambitzer, Heide Biollaz, Markus Borck, Christiane Ripp
Abstract: A process for catalytically treating a feed stream containing at least one organic compound is provided, which includes providing a distillative reaction system having a reaction section positioned at a top portion of the distillative reaction system and a reboiler and/or gas stripping section for vaporizing at least a portion of a bottom stream and returning the vaporized portion of the bottom stream to a bottom portion of the distillative reaction system, introducing an organic feed stream into the distillative reaction system below the uppermost reaction section, optionally introducing a gaseous reactant feed stream into the distillative reaction system below the uppermost reaction section, and removing an overhead product stream from a portion of the distillative reaction system above the uppermost reaction section without substantial reflux or recycling of the overhead product stream or feeding any other liquid stream that might recycle the desired products or any other compounds that are undesired to be
Abstract: A retort heating apparatus for processing a feed material includes a heating chamber bounded at least in part by a side wall. A plurality of baffles are at least partially disposed within the heating chamber. Each baffle includes an elongated body having a top surface, at least a portion of the top surface being arched. The plurality of baffles are vertically and horizontally spaced apart so that substantially all of the feed material that vertically passes through the heating chamber is horizontally displaced as the feed material passes by the baffles. Systems are also provided for heating the feed material within the heating chamber.
Type:
Grant
Filed:
January 29, 2004
Date of Patent:
September 4, 2007
Assignee:
Oil-Tech, Inc.
Inventors:
Byron G. Merrell, Michael R. Keller, Roger K. Noble
Abstract: A low-energy input process for the pyrolytic conversion of biomass to charcoal or carbonized charcoal is provided. The biomass is sealed in a container, pressurized with air and heated to ignition. Control of pressure by input of air and release of gases to maintain successively lower pressure levels results in a typical time for the conversion of less than 30 minutes.
Abstract: Failures associate with bad hand pieces and blade failures in an ultrasonic surgical system are distinguished by monitoring the rate of change of the resonance frequency and the rate of change of the resonance impedance of the hand piece/blade as the drive frequency is changed. As the system reaches resonance, the control system locks onto the resonance frequency. When a loss of lock occurs with no recovery, the rate of change of the frequency and rate of change of the impedance are compared to obtain the fastest rate of change which is stored in non-volatile memory of the ultrasonic generator. If the rates of change are higher than normal rates of change due to temperature changes with the longest blades, a “Bad Blade” message is displayed on an LCD.
Type:
Grant
Filed:
January 6, 2003
Date of Patent:
June 29, 2004
Inventors:
Eitan T. Wiener, Foster B. Stulen, Allan L. Friedman
Abstract: A high yield process for the production of methyl methacrylate or methacrylic acid and an apparatus for increasing the yield in a process for the production of methyl methacrylate or methacrylic acid are disclosed.
Type:
Grant
Filed:
July 29, 2002
Date of Patent:
August 26, 2003
Assignee:
Rohm and Haas Company
Inventors:
Chorng-Shyuan Tsay, Michael Stanley DeCourcy, I-Hwa Midey Chang-Mateu, Heather Granzin Thompson, Diana Elaine Chase
Abstract: A method and an apparatus for heating fluid with a gas heater and distilling fluid with the pilot light of the gas heater are disclosed. The apparatus for heating fluid and distilling fluid includes a main tank for containing fluid to be heated, a heater, adapted to have a pilot light, for heating the fluid in said main tank and an evaporator tank for vaporizing fluid received therein with heat from the pilot light. The method of heating fluid and distilling fluid includes heating a first volume of fluid with a heater having a pilot light and heating a second volume of fluid with the pilot light.
Abstract: A method and an apparatus for heating fluid with a gas heater and distilling fluid with the pilot light of the gas heater are disclosed. The apparatus for heating fluid and distilling fluid includes a main tank for containing fluid to be heated, a heater, adapted to have a pilot light, for heating the fluid in said main tank and an evaporator tank for vaporizing fluid received therein with heat from the pilot light. The method of heating fluid and distilling fluid includes heating a first volume of fluid with a heater having a pilot light and heating a second volume of fluid with the pilot light.
Abstract: An automatic cleaning equipment for solvents and volatile chemicals that enables the re-use of substances used in a laboratory. In a distillation vessel (1) there is a combination stirrer, which stirs, measures the temperature and acts as a base valve. In the combination stirrer, there is a tube made of inert material, there is a stirrer motor and a solenoid or motor operating the base valve. Inside the tube, there is a drive magnet rotating on an axle, and a temperature sensor. The actual paddle of the stirrer contains two magnets and is rotated outside the tube by the drive magnet. A filling vessel (2) is equipped with a separate base valve and overflow pipe. A fraction cutter (5) permits taking of a pre-fraction, a main fraction and post-fraction.
Abstract: A mixture of fatty acids or their esters derived from natural oils and fats including eicosapentaenoic acids or their derivatives is precision distilled under a high vacuum using a plurality of distillation columns, three distillation columns or more in particular, in order to acquire a fraction consisting mainly of fatty acids of carbon number 20 or their esters, which is then subjected to a column chromatography with a reversed-phase distribution system. Eicosapentaenoic acids or their esters, which is useful for preventing or treating thrombus, with a purity as high as 99% and above and with a recovery rate 55% or above, is produced.
Abstract: Apparatus for reducing the amount of water in the feed to a methanol-to-gasoline (MTG) conversion reactor is described. The output products of a dehydration reactor and an aqueous methanol feed are supplied to a primary distillation tower or separator. A dimethylether (DME)/methanol mixture is taken as overhead from the primary tower and can be sent to the MTG conversion reactor to produce hydrocarbons boiling in the gasoline range. Bottoms from the primary tower, containing methanol and water, are supplied to a secondary distillation tower or separator. A methanol stream is drawn as overhead from the secondary tower and is passed to an acid catalyzed dehydration reactor where an equilibrium mixture of dimethylether, methanol, and water is produced. The equilibrium mixture is passed from the dehydration reactor to the primary distillation tower. In preferred embodiments, the conversion reactor feed from the primary distillation tower may be of a gaseous or liquid phase.
Abstract: Arsenic can be continuously removed from shale oil by passing the shale oil through a first guard bed containing catalyst capable of substantially reducing the arsenic content of the oil, until the desired amount of arsenic is removed. The flow of the shale oil is thereafter directed to a second guard bed containing another or similar catalyst capable of substantially reducing the arsenic content of the oil. Concurrently, the spent catalyst in the first bed is regenerated in situ so that continuous upgrading of the shale oil is achieved.
Abstract: Coal fines developed from the processing of coal through a preheating system are accumulated in a secondary cyclone system. The coal fines, at an elevated temperature, are mixed with a hydrocarbon organic binder and compressed into larger particles of sufficient structural integrity and mass to be fed directly through pneumatic pressure coke oven coal charging lines without significant size reduction, resulting in the elimination of fine coal build-up in one coke oven standpipes and charging mains as well as overloading of the charging liquor system.
Type:
Grant
Filed:
June 9, 1980
Date of Patent:
June 5, 1984
Assignee:
Koppers Company, Inc.
Inventors:
Joseph E. Kovacic, Michael Perch, Bernard R. Kuchta
Abstract: A method reducing fine dust emission during the time that predried and preheated coal is charged into coke ovens comprises directing wet coal to be carbonized into direct contact with a hot process gas so that the coal is transported dry and heated, directing the hot process gas with the heated coal to a plurality of different separators in succession with the first separator being set to separate only around from 80 to 90% of the total amount of the coal and without separating the fine dust, and a subsequent separator separate the remaining amount of the solid matter including the fine dust, compacting the dust removed from all of the separators and mixing them together, and charging the compacted mixed dust into the coke oven. The apparatus for effecting the invention includes a material separator which is designed as a gravity separator or gravity sifter which is arranged to discharge into a connection between the mixed and compacted dust separator in separate additional separators.
Abstract: The method of producing blast furnace coke by (1) compacting a finely divided coal wherein at least about 60% by weight of the coal has a diameter of less than about 1/8 inch to form a coal compact, which compact immediately after removal from the compacting means comprises at least about 20% by weight of particles having a particle size of less than 1/4 inch in diameter; (2) breaking the thus formed compact such that the bulk density is sufficiently increased to be capable of conversion into coke suitable for use in large blast furnaces upon carbonization thereof; and (3) carbonizing the broken compact to thereby produce blast furnace coke having a minimum hardness of about 68 and a minimum stability of about 55. The compacting is preferably performed at a pressure equivalent to that achieved by passing the finely divided coal between rolls at a pressure applied to the coal of between about 20 and about 60 tons per lineal inch.
Type:
Grant
Filed:
April 2, 1979
Date of Patent:
March 24, 1981
Assignee:
United States Steel Corporation
Inventors:
William E. Brayton, Fay Fun, Luther G. Hendrickson, Ronald W. Shoenberger
Abstract: This disclosure is directed to an economical system for the pyrolysis of municipal solid waste to recover valuable by-products while reducing the putrecibility and bulk of the residue requiring disposal. Prior to this treatment, the solid waste has been processed to remove most of the metallic components, and shredded, which steps are not part of the invention disclosed. The pyrolysis and by-product recovery technology is complicated by (a) the inherent variability of the chemical and physical characteristics of the shredded solid waste as received at the pyrolysis plant and (b) the relatively low heat value of said waste as thus received.
Abstract: The specification discloses apparatus and methods for recovery of coal fines and for recycling thereof incidental to a self-contained system for charging preheated coal into coke ovens. The apparatus enables a system for charging preheated coal into coke ovens to meet pollution control regulations. The apparatus comprises four circulating streams of liquid for carrying coal fines in a slurry, namely, the charge main liquor circuit, the excess recycle gas scrubber circuit, the charge line condenser circuit and the charge bin vent condenser circuit. The -28 mesh coal with the liquor from the various circuits goes to a clarifier or thickener. Floating fines from top and settled fines from the bottom of the thickener are pumped via a fines tank to filters from which the solid or coagulated fines are restored to the wet coal feed to the heaters.
Type:
Grant
Filed:
July 21, 1976
Date of Patent:
August 1, 1978
Assignee:
Wilputte Corporation
Inventors:
Paul V. Faber, Edwin R. Daly, Prithvi Jain
Abstract: A coke oven system is provided having a coke oven preferably with pipeline charging for converting coal into coke. Carryover fines are collected from the coke oven and preferably a preheater therefor, and then agitated by agitator means and the collected carryover fines thereby agglomerated. Preferably, the carryover fines are first mixed with water to form an aqueous mixture, and then agglomerated. The agglomerated carryover fines are then preferably separated from the aqueous mixture by separated means. The agglomerated carryover fines are preferably conditioned in dryer means and recirculated to the coke oven preferably through a preheater.
Type:
Grant
Filed:
January 12, 1977
Date of Patent:
April 4, 1978
Assignee:
American Minechem Corporation
Inventors:
C. Edward Capes, Allen E. McIlhinney, Leonard Messer