Abstract: Disclosed is a process for removing hydrogenation by-products which comprises the use of an extractive distillation tower operated in combination with a solvent stripper, hydrocarbon purge and a water wash column. By the arrangement of the various feeds to and between the above mentioned, the green oil may be extracted away from desirable hydrocarbons.
Type:
Grant
Filed:
April 19, 1993
Date of Patent:
April 19, 1994
Assignee:
Exxon Chemical Patents Inc.
Inventors:
Christopher D. W. Jenkins, Michel H. Masson, Richard A. Reitz
Abstract: Heptane cannot be removed from heptane-vinyl acetate mixtures by distillation because of the minimum boiling azeotrope. Heptane can be readily removed from vinyl acetate by extractive distillation. Typical effective agents are dimethylsulfoxide, phenol, diisobutyl ketone and hexyl acetate.
Abstract: Octene-1 is difficult to separate from several of its isomers by conventional distillation or rectification because of the closeness of their boiling points. Octene-1 can be readily separated from its close boiling isomers by azeotropic or extractive distillation. Effective agents are: for azeotropic distillation, t-amyl methyl ether; for extractive distillation, isophorone.
Abstract: Hexane cannot be separated from vinyl acetate by conventional distillation or rectification because of the minimum boiling azeotrope. Hexane can be readily separated from vinyl acetate by using azeotropic distillation. Typical examples of effective agents are acetone, acetonitrile or methyl t-butyl ether.
Abstract: The separation of vinyl acetate from methyl acrylate by distillation is difficult because of the closeness of their boiling points. Vinyl acetate can be readily removed from methyl acrylate by extractive distillation. Typical effective agents are phenol, methoxyethanol and isobutyl vinyl ether.
Abstract: Hexane cannot be removed from hexane--vinyl acetate--methyl acrylate mixtures because of the ternary azeotrope. Hexane can be readily removed from hexane--vinyl acetate--methyl acrylate mixtures by extractive distillation. Typical effective agents are phenol, diethylene glycol methyl ether and 2-nitropropane.
Abstract: 4-Methyl-2-pentanone cannot be easily separated from formic acid by distillation because of the closeness of their boiling points. 4-Methyl-2-pentanone can be readily removed from formic acid by extractive distillation. Typical effective agents are dimethylsulfoxide (DMSO) and 2-undecanone; DMSO and octanoic acid; DMSO and hexyl acetate.
Abstract: The separation by conventional distillation or rectification of methyl t-butyl ether from close boiling hydrocarbons is difficult because of the closeness of their vapor pressures. Methyl t-butyl ether can be readily separated from these by extractive distillation. Examples of effective agents are: from 1-pentene, dimethylsulfoxide; from cyclopentane, sulfolane and from n-pentane - cyclopentane mixtures, diethyl malonate.
Abstract: Formic acid cannot be easily removed from formic acid-acetic acid mixtures by distillation because of the closeness of their boiling points. Formic acid can be readily removed from mixtures containing it and acetic acid by extractive distillation. Typical effective agents are 2-nitrotoluene, 1-nitropropane and m-nitrobenzoic acid.
Abstract: Hexane cannot be removed from hexane - vinyl acetate mixtures by distillation because of the minimum boiling azeotrope. Hexane can be readily removed from vinyl acetate by extractive distillation. Typical effective agents are phenol, 1-nitropropane and benzyl alcohol.
Abstract: Tetrachloroethylene cannot be completely separated from methanol, ethanol, 1-propanol, isopropanol, 1-butanol, 2-butanol, isobutanol, 1-pentanol, 2-pentanol, 3-methyl-1-butanol or t-amyl alcohol by conventional distillation or rectification because of the minimum boiling azeotropes. Tetrachloroethylene can be readily separated from these alcohols by extractive distillation. A typical effective agent is dimethylsulfoxide.
Abstract: 1,1,1-Trichloroethane cannot be completely separated from methanol, ethanol, n-propanol, isopropanol, 2-butanol or t-butanol by conventional distillation or rectification because of the minimum boiling azeotropes. 1,1,1-Trichloroethane can be readily separated from these alcohols by extractive distillation. A typical effective agent is dimethylsulfoxide.
Abstract: 4-Methyl-2-pentanone cannot be easily separated from acetic acid by distillation because of the closeness of their boiling points. 4-Methyl-2-pentanone can be readily removed from acetic acid by extractive distillation. Typical effective agents are dimethlsulfoxide (DMSO); DMSO and adipic acid; DMSO, adipic acid and adiponitrile.
Abstract: 3-Methyl-2-butanone cannot be separated from formic acid by distillation because of the presence of the maximum boiling azeotrope. 3-Methyl-2-butanone can be readily removed from formic acid by extractive distillation using dimethylsulfoxide (DMSO). Typical effective agents are: DMSO and heptanoic acid; DMSO, octanoic acid and butyl benzoate.
Abstract: Formic acid cannot be completely removed from formic acid--water mixtures by distillation because of the presence of the maximum azeotrope. Formic acid can be readily removed from mixtures containing it and water by using extractive distillation in which the extractive distillation agent is cyclohexanone, isophorone or a mixture of these with certain organic compounds. Typical examples of effective agents are cyclohexanone; isophorone; cyclohexanone and neodecanoic acid; isophorone and diisobutyl ketone.
Type:
Grant
Filed:
December 9, 1991
Date of Patent:
December 22, 1992
Assignee:
Lloyd Berg
Inventors:
Lloyd Berg, Kraig M. Wendt, Rudolph J. Szabados
Abstract: Acetic acid cannot be easily removed from acetic acid - water mixtures by distillaton because of the closeness of their boiling points and the deviation from ideal solution behavior. Acetic acid can be readily removed from the mixtures containing it and water by using extractive distillation. Typical effective agents are sulfolane and adiponitrile.
Abstract: Tetracholorethylene cannot be completely separated from n-butanol, isobutanol or 2-butanol by conventional distillation or rectification because of minimum boiling azeotropes. Tetrachloroethylene can be readily separated from n-butanol, isobutanol or 2-butanol by extractive distillatiion. Typical effective agents are: for n-butanol, dipropylene glycol methyl ether; for isobutanol, dimethylsulfoxide and isobutyl butyrate; for 2-butanol, ethylene glycol methyl ether and isobornyl acetate.
Abstract: An extractive distillation process for separation ethers (in particular methyl t-butyl ether or ethyl t-butyl ether), aliphatic hydrocarbons (in particular isobutane and/or isobutene) and alcohols (in particular methanol or ethanol) employs as solvent sulfolane(s) and/or dialkyl sulfone(s), or N-(.beta.-mercaptoalkyl)-2-pyrrolidone(s), or a mixture of N-alkyl-2-pyrrolidone(s) and either sulfolane(s) or glycol compound(s).
Type:
Grant
Filed:
July 19, 1991
Date of Patent:
November 3, 1992
Assignee:
Phillips Petroleum Company
Inventors:
Fu-Ming Lee, Robert L. Hair, Ronald E. Brown
Abstract: Acrylic acid cannot be completely separated from water by conventional distillation or rectification because of the minimum boiling azeotrope. Acrylic acid can be readily separated from water by extractive distillation. Effective agents are dimethylsulfoxide, sulfolane, dimethylformamide or dimethylacetamide.
Abstract: Methylene chloride cannot be completely separated from methanol or ethanol by conventional distillation or rectification because of the mimimum boiling azeotrope. Methyelne chloride can be readily separated from methanol or ethanol by azeotropic or extractive distillation. Typical effective agents are: for methanol by azeotropic distillation, isopropanol or t-butanol; by extractive distillation, 1-nitropropane or n-butanol; for ethanol by extractive distillation, isobutanol or n-propyl acetate.
Abstract: 2-Methoxyethanol cannot be completely separated from water by conventional distillation or rectification because of the minimum boiling azeotrope. 2-Methoxyethanol can be readily separated from water by extractive distillation. Effective agents are dimethylsulfoxide, sulfolane, dimethylformamide or 1,4-butanediol.
Abstract: The higher boiling ketone isomers are difficult to separate one from another by conventional distillation or rectification because of the close proximity of their boiling points. Ketone isomers can be readily separated from each other by extractive distillation. Typical examples of effective agents are: for 3-pentanone from 2-pentanone, dipropylene glycol; 3-hexanone from 2-hexanone, butoxypropanol; 3-heptanone from 2-heptanone, 50% ethylene glycol--50% butoxypropanol; 3-octanone from 2-octanone, ethylene glycol diacetate.
Abstract: The present invention is directed to an improved reverse osmosis membrane that shows surprisingly improved solute rejection and permeation properties. The membrane includes a separating layer of a polyamideurethane formed in situ by reaction of a haloformyloxy-substituted acyl halide with a diamine-treated substrate.
Abstract: Ethylbenzene is separated from xylene(s) by extractive distillation employing at least one copper(I) salt of a hydrocarbonsulfonic acid as extractant(s).
Abstract: Chloroform cannot be completely separated from methanol, ethanol or isopropanol by conventional distillation or rectification because of the minimum boiling azeotrope between chloroform and the alcohols. Chloroform can be readily separated from methanol, ethanol or isopropanol by extractive distillation. Typical effective agents are: for methanol, isopropanol or 4-methyl-2-pentanone; for ethanol, n-butanol or isobutyl acetate; for isopropanol, butyl acetate or ethylene glycol ethyl ether.
Abstract: Methylene chloride cannot be completely separated from ethyl vinyl ether by conventional distillation or rectification because of the minimum boiling azeotrope. Methylene chloride can be readily separated from ethyl vinyl ether by extractive distillation. Typical effective agents are ethylene glycol methyl ether acetate, 2-hexanone and 1-nitropropane.
Abstract: Trichloroethylene cannot be completely separated from n-butanol, isobutanol, 2-butanol or t-butanol by conventional distillation or rectification because of the minimum boiling azeotropes. Trichloroethylene can be readily separated from n-butanol, isobutanol, 2-butanol or t-butanol by extractive distillation. Typical effective agents are: for n-butanol, dimethylsulfoxide; for isobutanol, n-octanol; for 2-butanol, 2-methyl-1-pentanol and for t-butanol, n-butyl acetate.
Abstract: An extractive distillation agent consisting essentially of 2-hydroxyethyl 2-hydroxyethylcarbamate, and is fed to an extractive distillation column used for the distillation of propylene oxide contaminated with water to obtain an overhead distillate fraction consisting of essentially anhydrous propylene oxide, and a heavier bottoms distillation fraction containing substantially all of the 2-hydroxyethyl 2-hydroxyethycarbamate, and water introduced into the disillation column.
Abstract: Pyridine cannot be completely separated from water by conventional distillation or rectification because of the minimum boiling azeotrope. Pyridine can be readily separated from water by using azeotropic or extractive distillation. Typical examples of effective agents are: by azeotropic distillation, methyl isoamyl ketone and propylene glycol dimethyl ether; by extractive distillation, isophorone and sulfolane.
Abstract: Methylene chloride cannot be completely separated from methyl formate or ethyl formate by conventional distillation or rectification because of the minimum boiling azeotrope. Methylene chloride can be readily separated from methyl formate or ethyl formate by extractive distillation. Typical effective agents are: for methyl formate, n-butyl acetate and 3-hexanone; for ethyl formate, isobornyl acetate and 2-heptanone.
Abstract: m-Xylene is difficult to separate from p-xylene or o-xylene by conventional distillation or rectification because of the close proximity of their boiling points. m-Xylene can be readily separated from p-xylene or o-xylene by using extractive distillation in which the agent is an alcohol. Typical examples of effective agents are: for m-xylene from o-xylene, 1-octanol and cyclododecanol; for p-xylene from m-xylene, diisobutyl carbinol and cyclododecanolphenethyl alcohol mixture.
Abstract: Ethyl ester cannot be completely separated from methylene chloride by conventional distillation or rectification because of the maximum boiling azeotrope. Ethyl ether can be readily separated from methylene chloride by extractive distillation. Typical effective agents are t-butyl alcohol, n-propyl acetate or propoxypropanol.
Abstract: Isopropanol and n-propanol cannot be completely separated from water by conventional distillation or rectification because of the minimum boiling azeotrope. Isopropanol and n-propanol can be readily separated from water by using azeotropic or extractive distillation. Typical examples of effective agents are: for isopropanol by azeotropic distillation, vinyl n-butyl ether; by extractive distillation, polyethylene glycol; for n-propanol by azeotropic distillation, amyl formate; by extractive distillation, n-butyl acetate.
Abstract: t-Butyl alcohol cannot be completely separated from water by conventional distillation or rectification because of the minimum boiling azeotrope. t-Butyl alcohol can be readily separated from water by using azeotropic or extractive distillation. Typical examples of effective agents are: by azeotropic distillation, vinyl n-butyl ether and propylene glycol dimethyl ether; by extractive distillation, 1,3-butanediol and triethylene glycol.
Abstract: A process for producing, from a dilute aqueous solution of a lower (C.sub.1 -C.sub.5) alcohol, a concentrated liquid solution of the alcohol in an aromatic organic solvent is disclosed. Most of the water is removed from the dilute aqueous solution of alcohol by chilling sufficiently to form ice crystals. Simultaneously, the remaining liquid is extracted at substantially the same low temperature with a liquid organic solvent that is substantially immiscible in aqueous liquids and has an affinity for the alcohol at that temperature, causing the alcohol to transfer to the organic phase. After separating the organic liquid from the ice crystals, the organic liquid can be distilled to enrich the concentration of alcohol therein. Ethanol so separated from water and concentrated in an organic solvent such as toluene is useful as an anti-knock additive for gasoline.
Type:
Grant
Filed:
January 24, 1990
Date of Patent:
July 2, 1991
Assignee:
Battelle Memorial Institute
Inventors:
Raymond H. Moore, David E. Eakin, Eddie G. Baker, Richard T. Hallen
Abstract: Formic acid cannot be completely removed from formic acid and water mixtures by distillation because of the presence of the maximum azeotrope. Formic acid can be readily removed from formic acid - water mixtures by extractive distillation in which the extractive agent is a mono carboxylic acid mixed with certain high boiling organic compounds. Examples of effective agents are: hexanoic acid and butyl benzoate; octanoic acid and nitrobenzene; heptanoic acid, benzyl benzoate and pelargonic acid.
Type:
Grant
Filed:
January 17, 1989
Date of Patent:
April 9, 1991
Assignee:
Lloyd Berg
Inventors:
Lloyd Berg, Kraig M. Wendt, Rudolph J. Szabados
Abstract: Ethyl benzene cannot be easily removed from styrene by distillation because of the closeness of their boiling points. Ethyl benzene can be readily separated from styrene by means of extractive distillation using certain nitrogenous organic compounds. Typical effective agents are adiponitrile, methyl glutaronitrile and nitrobenzene.
Abstract: A process for separation of components of a mixture of more than one organic substance or of a mixture of at least one organic substance and water by extraction using a supercritical fluid as an extractant. During the extraction an extraction aid having a higher affinity with an unextractable component of the mixture than with an extractable component of the mixture is present. Also disclosed is an apparatus for carrying out this process.
Abstract: 4-Methyl-2-pentanone cannot be easily separated from formic acid or acetic acid by distillation because of the closeness of their boiling points. 4-Methyl-2-pentanone can be readily removed from formic acid or acetic acid by extractive distillation. Typical effective agents are sulfolane; sulfolane and heptanoic acid; sulfolane, azelaic acid and ethylene glycol diacetate.
Abstract: n-Propanol and t-amyl alcohol cannot be separated from each other by distillation because of the proximity of their boiling points. n-Propanol can be readily separated from t-amyl alcohol by using extractive distillation in which the extractive agent is a higher boiling organic compound or a mixture of two or more of these. Typical examples of effective agents are: methyl salicylate; benzyl benzoate and hexahydrophthalic anhydride; methyl salicylate, benzoic acid and hexahydrophthalic anhydride.
Abstract: This invention relates to a process for producing an olefin product having an enhanced alpha olefin content from an olefin feedstock containing internal olefins or a mixture of internal and alpha olefins which includes:(a) contacting the feedstock with an anthracene and a double-bond isomerization catalyst at a temperature ranging from about 150.degree. to about 275.degree. C. to form an olefin adduct with anthracene,(b) separating the adduct from the product of step (a),(c) heating the separated adduct at a temperature ranging from about 250.degree. to about 400.degree. C. to produce anthracene and an olefin product enhanced in alpha olefin content over the alpha olefin content of the feedstock, and(d) separating anthracene from the product of step (c) to produce the product enhanced in alpha olefin.Linear olefins are a preferred feedstock.
Abstract: Diastereomers can be separated with good industrial success with the aid of extractive distillation. The separation process is characterized in that an auxiliary which changes the partial pressure of the various diastereomers to be separated to a different degree and thus allows easier separation of the diastereomers by distillation is added during the distillation. Using the present process diastereomic cis/trans-permetric acid methyl esters and mixtures of menthol and isomenthol can be separated with isolation of 99% pure product.
Type:
Grant
Filed:
April 16, 1987
Date of Patent:
October 17, 1989
Assignee:
Bayer Aktiengesellschaft
Inventors:
Dieter Arlt, Ulrich Schwartz, Hans-Walter Brandt, Wolfgang Arlt, Andreas Nickel
Abstract: When 4-methyl-2-pentanone and acetic acid mixtures are subjected to extractive distillation with a dimethyl sulfoxide - pelargonic acid mixture as the agent, the acetic acid is converted to gaseous ketene which is easily recovered from the 4-methyl-2-pentanone.
Type:
Grant
Filed:
February 7, 1989
Date of Patent:
August 29, 1989
Assignee:
Lloyd Berg
Inventors:
Lloyd Berg, Richard R. Rall, Marc W. Paffhausen
Abstract: Meta and para-diisopropylbenzenes cannot be easily separated from each other by distillation because of the closeness of their vapor pressures. m-Diisopropylbenzene can be readily removed from p-diisopropylbenzene by azeotropic distillation using certain nitrogenous compounds. Typical effective azeotropic distillation agents are ethanolamine and benzonitrile.
Abstract: Isopropyl acetate cannot be completely removed from isopropyl acetate--isopropanol--water mixtures by distillation because of the presence of the minimum ternary azeotrope. Isopropyl acetate can be readily removed from mixtures containing it, isopropanol and water by using extractive distillation in which the extractive agent is a mixture of a polyol and one or higher boiling oxygenated, nitrogenous and/or sulfur containing organic compounds. Typical examples of effective agents are 1,3-butanediol and dimethylsulfoxide; 1,2,6-hexanetriol, dimethylsulfoxide and dimethylformamide.
Abstract: m-Xylene is difficult to separate from o-xylene by conventional distillation or rectification because of the close proximity of their boiling points. m-Xylene can be readily separated from o-xylene by using extractive distillation in which the extractive agent is dimethylsulfoxide or a mixture of it with certain high boiling organic compounds. Typical examples of effective agents are: dimethylsulfoxide; dimethylsulfoxide and 1,4-butanediol; dimethylsulfoxide, nitrobenzene and diethylene glycol.
Abstract: Dioxane cannot be completely removed from dioxane and formic acid mixtures by distillation because of the presence of the maximum azeotrope. Dioxane can be readily removed from dioxane - formic acid mixtures by extractive distillation in which the extractive agent is dimethylsulfoxide, either alone or admixed with certain high boiling organic compounds. Examples of effective agents are dimethylsulfoxide; DMSO and octanoic acid; DMSO, neodecanoic acid and methyl salicylate.
Abstract: Dioxane cannot be completely removed from dioxane and acetic acid mixtures by distillation because of the presence of the maximum azeotrope. Dioxane can be readily removed from dioxane-acetic acid mixtures by extractive distillation in which the extractive agent is dimethylsulfoxide, either alone or mixed with certain high boiling organic compounds. Examples of effective agents are dimethylsulfoxide; DMSO and octanoic acid; DMSO, hexanoic acid and isophorone.
Abstract: 2-Pentanone cannot be completely removed from 2-pentanone and formic acid mixtures by distillation because of the presence of the maximum azeotrope. 2-Pentanone can be readily removed from 2-pentanone formic acid mixtures by extractive distillation in which the extractive agent is dimethylsulfoxide, either alone or mixed with certain high boiling organic compounds. Examples of effective agents are dimethylsulfoxide; DMSO and octanoic acid; DMSO, hexanoic acid and isophorone.
Abstract: Method and improved apparatus for recovering a volatile organic material, such as caprolactam, from a liquid mixture of organic and inorganic materials are disclosed. The method features the step of mixing the liquid mixture with superheated steam for 0.005 to 1.0 second to vaporize a large portion of the volatile organic material without degrading the organic materials. The steam and vaporized organic materials are then separated from the liquid mixture remaining, followed by separation of the vaporized organic material from the steam. The vaporized organic material subsequently is condensed. The improved apparatus features means for introducing superheated steam into a vaporizer feed pipe, as well as means for mixing the superheated steam with the liquid mixture in the pipe for 0.005 to 1.0 second so that a large portion of the volatile organic material is vaporized and feeds with the steam and remaining liquid mixture into the vaporizer for separation.